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Applied fire protection
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Intumescent coatings

• Recent developments:
• Reduced costs

• Improved performance

• Development of off-site application

• Market share increased from 7% to 40%



4

Saves time on site
Reduces overall cost

Off-site Protection
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Moment Capacity Method
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Stock Orchard St
Steel framed
P/C joist + block floor

No composite 
action
No membrane 
action

But…
Some shielding
Low load ratios

Beams and columns treated as simple isolated elements
Outcome:

Most elements unprotected
Significant cost savings

Application of simple methods
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Corporate HQ

• A/s steel beams 12.6m span

• Haunched precast floor slabs

• External steelwork exposed

• 60 minute fire period
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‘Slimfloor’ construction

Asymmetric Slimflor Beam 
(ASB) 

Manufactured as standard

• Becoming popular

• Provides implicit 
protection
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Broadgate Phase 8, London

 4½ hours’ duration

 Unprotected steel

 Total cost of fire £20m

 Structural repair cost £1.5m

Real structures more fire-
resistant than simple 

rules suggest?

Cardington research 
programme
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Outside

The BRE Cardington laboratory

Inside

The 1920s

54m
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33m

21m

Sand bags

The Cardington composite building
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BS Restrained beam test

BRE Corner testBS demonstration office test

BRE large compartment test

BS 2-D cross-frame test BS Corner test
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BS demonstration fire test

Unprotected secondary beams: 
(Deflection on heating ~400mm)

“Yellow Book” failure 550/620 °C

BS5950 Pt 8 limiting temp 670 °C

Actual temperature 1150 °C

Why did unprotected beams survive to double the 
conventional critical temperatures ?
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At low deflections:

• Compressive arching 
against adjacent 
structure

• Thermal buckling

At high deflections:

• Biaxial tension in mesh 
at centre of slab; 
compressive ring in 
concrete around edge

• Catenary tension 
support, reacting 
against adjacent 
structure

Geometrically non-linear actions in slabs
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The Restrained Beam Test

• Steel temperature 834°C

• Slab temperature 481°C

• Deflection ≈ span/40

• Test terminated due to 
very slow heating rate 

BS Restrained beam test
8m heated 
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BS demonstration test: fire load
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British Steel demonstration test
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The British Steel Corner Bay Test

BS Corner test

• Fire: 45kg/m2 of timber

• Max. fire temperature 
1028°C at 80 minutes

• Max. steel temp >900°C

• Max. slab temperatures 
360°C (bottom) and 70°C 
(top)
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Plane frame test

• Gas furnace across 
primary frame

• Max. steel temperature 
(lower flange) 1150°C

• Top 500mm of internal 
columns unprotected –
with very visible results
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Plane frame test
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Summary of Cardington results

• Contribution of 
slab very important

• Non-linear 
analytical model 
validated

• Translation into 
practice

What conditions required for membrane action

• Physical requirements

• Simplified design approaches for non-specialists
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Protected

Unprotected

Possible catenary action
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Protected

Tensile membrane action

Vertical support required on all 4 edges to enable tensile 
membrane action to develop
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Typical Design Strategy

• Provide edge 
support to individual 
bays

• Protect columns on 
column gridlines

• Leave intermediate 
beams unprotected

• Consider tensile 
membrane action 
between protected 
members

• FE analysis (Vulcan) 
or simplified design 
approaches
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20°C

Example:  Deflected shapes
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100°C

Example:  Deflected shapes
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200°C

Example:  Deflected shapes
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300°C

Example:  Deflected shapes
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400°C

Example:  Deflected shapes
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500°C

Example:  Deflected shapes
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600°C

Example:  Deflected shapes



37

700°C

Example:  Deflected shapes
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800°C

Example:  Deflected shapes
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900°C

Example:  Deflected shapes
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20°C

Example:  Principal membrane tractions
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100°C

Example:  Principal membrane tractions
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200°C

Example:  Principal membrane tractions
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300°C

Example:  Principal membrane tractions
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400°C

Example:  Principal membrane tractions
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500°C

Example:  Principal membrane tractions
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600°C

Example:  Principal membrane tractions
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700°C

Example:  Principal membrane tractions
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800°C

Example:  Principal membrane tractions
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900°C

Example:  Principal membrane tractions
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Structural fire resistance methods

Non-square structural 
frames:

Much lower 
enhancement of 
capacity due to tensile 
membrane action.

A

B
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20°C

Protection Regime 2: Deflection profile
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200°C

Protection Regime 2: Deflection profile
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400°C

Protection Regime 2: Deflection profile
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600°C

Protection Regime 2: Deflection profile



55

700°C

Protection Regime 2: Deflection profile
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800°C

Protection Regime 2: Deflection profile
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900°C

Protection Regime 2: Deflection profile
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Protection Regime 2: Deflection profile

950°C
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Deflection necessary to develop 
required enhancement
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Vulcan analysis

Comparisons

Span/30

Span/20
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Vulcan analysis with rigid vertical 
support along all edges

Effect of Vertical Edge Support

Vulcan analysis with protected edge 
beams and vertical support at 
corners
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Effect of Rotational Edge Continuity

Rotational restraint along 2 opposite edges

Vulcan analysis with protected edge beams, and 
vertical support at corners

No rotational restraint 
along edges

Rotational restraint along 
all edges
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80

Effect of increasing reinforcement

Vulcan analyses

Simple design method
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Robustness
• Connection forces can be very large 

• Need to know connection robustness as well as stiffness

• Benefit of component based approach for connections
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Connection behaviour in fire
• Traditional moment-rotation characteristics inappropriate

• Impractical

• Axial forces important
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The Component Method
• Treats separate zones of a  joint

• Behaviour of each zone represented as a spring

M

P
V

Tension zone

Compression zone

Shear zone

• Established for ambient temperature behaviour

• Currently being extended for high temperatures
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Comparison with joint tests 
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Connection behaviour
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Some failure modes

At 20oC

At 550oC
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Long span systems

Standard test over 4.5m 
span unrepresentative

Large scale testing needed
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Reinforced concrete structures

Principal concern is spalling as seen in tests and real fires
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Conclusions

• Advanced modelling offers a performance based 
approach to structural fire engineering 

• Potential benefits include
• Reduced protection

• Consistent safety

• Improved treatment of robustness

• Some outstanding issues
• Failure criteria

• Connection behaviour

• Long span systems

• Concrete spalling
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Thank you


