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Objectives

• Extend an object-oriented, C++ generic FE program to 
analyze structures under fire action, comprising:
• Heat transfer analysis at the cross section level to evaluate 

temperature profile

• Proper constitutive models for concrete, steel and protection 
materials

• Nonlinear analysis of three-dimensional framed assemblies 
under fire

• Nonlinear analysis of reinforced concrete and composite 
slabs under fire

• Analysis of semi-rigid connections under fire action



August 6th, 2008

Heat transfer analysis

• The heat transfer analysis is carried out in the cross section 

level to evaluate the temperature profile and its effects on 

the resistance of the section.

• Numerical schemes implemented are based on finite 

difference (FD) and finite element (FE) methods.

• Material properties under high temperatures are taken from 

design  codes such as the Eurocodes 2 and 4.

• The resultant forces are obtained using the concept of 

effective strain.
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Heat transfer analysis
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Heat transfer equation for 3-D problems

θ = temperature; λ= thermal conductivity; 

ψ = generated heat; ρ = mass per unit volume; 
c = specific heat; t = time

Boundary conditions include prescribed temperatures, heat 

fluxes (convection and radiation). 
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Finite difference scheme
Finite difference mesh with temperatures 

defined at the center of each grid square
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Finite difference scheme

Heat flux through the 4 sides of a single element in the grid
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Finite difference scheme

Energy balance for an element of the grid
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Finite element scheme
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After spatial discretization and standard FE interpolation, one gets
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Finite element scheme

Time integration scheme:

Assuming linear temperature variation
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Finite element scheme

In general, the material thermal properties are temperature-

dependent, resulting in a nonlinear system of equations:

Solution of this system involves proper time integration 

schemes along with an iterative process. The simplest option 

employs the simple iteration
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Comments about the methods

• FDM is extremely fast and provides good 

precision for the purposes of this work, but is not 

suitable to model complex boundaries.

• FEM is computationally expensive but handles 

complex geometries and boundary conditions.

• Some adjustments to the FE scheme were made to 

gain speed.  
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Examples of heat transfer 

analysis

Example 1. Concrete-filled circular tube (Lie 1994)

• external diameter 273 mm

• thickness 6,35 mm

• moisture content for concrete taken as 10%

Lie, T.T. (1994). Fire Resistance of Circular Steel Columns Filled with Bar-

Reinforced Concrete. Journal of Structural Engineering, 120, 1489-1509.
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Examples of heat transfer 

analysis

Example 1. Concrete-filled circular tube (Lie 1994)

Temperature 

distribution for 

60 min of fire 

exposure
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Examples of heat transfer 

analysis
Example 1. Concrete-filled circular tube (Lie 1994)

 

0

200

400

600

800

1000

1200

0 40 80 120 160 200

Tempo de incêndio (min)

T
em

p
er

at
u

ra
s 

(°
C

)

Presente trabalho (superfície)
Presente trabalho (65mm)
Presente trabalho (130mm)
Ensaio (superfície)
Ensaio (65mm)
Ensaio (130mm)

Temperature-

time results for 3 

different points 

of the section



August 6th, 2008

Examples of heat transfer 

analysis
Example 2. Concrete-encased composite column (Huang et 

al. 2007)

• UC 152x152x37 with 300x300 mm² concrete cover

• EN 1994-1-2:2005 with moisture 8% of concrete weight

• upper limit for concrete conductivity

Huang, Z.F., Tan, K.H., Phng, G.H. (2007). Axial Restraint Effects on the Fire 

Resistance of Composite Columns Encasing I-Section Steel. J. Constr. Steel Res., 63, 

437-447.
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Examples of heat transfer 

analysis
Example 2. Concrete-encased composite column (Huang et al. 2007)

Temperature 

distribution for 

420 min of fire 

exposure
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Examples of heat transfer 

analysis
Example 2. Concrete-encased composite column (Huang et al. 2007)

Results for 

temperature, for 

numerical and 

experimental 

analysis
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Beam-column element 

formulation
• With the temperature distribution it is possible to evaluate 

the cross section resistant forces (N, Mx, My) and tangent 

moduli. This will allow the evaluation of the cross section 

internal force and tangent stiffness, which is necessary for 

the development of the nonlinear finite element.

• The material degradation is taken into account by the 

modification of the stress-strain relationships provided by 

the Eurocodes.
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Beam-column element 

formulation
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Beam-column element 

formulation

Mechanical (stress-inducing) strain at a point in the cross section

( ) thyxothtotalmech xkykyx εεεεε −−+=−=,

The concrete stress-strain relationship relates stress to mechanical 

strain and is supposed to include effects of creep and transient

strains (load-induced thermal strains). This is still much open to 

debate as there are several proposals for these relationships.
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Beam-column element 

formulation

Using the same mesh employed for thermal analysis it is possible

to evaluate cross section resistant forces and tangent moduli:
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Beam-column element 

formulation
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The cross section forces are obtained by a fiber approach

The generalized stiffnesses (or section tangent moduli) are the 

derivatives of the forces w.r.t. the strain variables and are also 

obtained using fiber integration.



August 6th, 2008

Beam-column element 

formulation
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Beam-column element 

formulation

Deformed configurations, 

along with element initial 

and final local triads after 

deformation. The triad in 

node I rotates to nIi and 

the triad in node J rotates 

to nJi
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Beam-column element 

formulation
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Beam-column element 

formulation

Example 1. Steel column

• pin-ended column subjected to standard fire on 3 and 4 faces

• section IPE 360

• at ambient temperature subjected to axial force and single 

curvature bending correspondent to 30% and 20% of the 

respective cross section plastic resistances

• results compared with SAFIR and VULCAN 10.0
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Beam-column element 

formulation
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Beam-column element 

formulation
Example 2. Reinforced concrete beams tested by Ellingwood and Lin

(1991) and analyzed with VULCAN por Cai et al. (2003).
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Beam-column element 

formulation
Example 2. Reinforced concrete beams tested by Ellingwood and Lin

(1991) and analyzed with VULCAN por Cai et al. (2003).
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Beam-column element 

formulation
Example 2. Reinforced concrete beams tested by Ellingwood and Lin

(1991) and analyzed with VULCAN por Cai et al. (2003).
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Beam-column element 

formulation
Example 2. Reinforced concrete beams tested by Ellingwood and Lin

(1991) and analyzed with VULCAN por Cai et al. (2003).
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Beam-column element 

formulation
Example 3. 3-D steel frame analyzed by Souza Jr. and Creus (2006) 

cobertura

z
y

x

segundo

piso

base

elementos 

aquecidos

2.20 m

1.76 m

3,00 m

2,50 m

H2=P/6

H1=P/3

P

P

P

P

• steel has fy=325 MPa 

• cross sections H 150x150x7x10

• load P 250 kN

V. Souza Jr., G.J. Creus (2006). Simplified 
Elastoplastic Analysis of General Frames on 

Fire. Engineering Structures.
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Beam-column element 

formulation
Example 3. 3-D steel frame analyzed by Souza Jr. and Creus (2006) 

• fy=325 MPa 

• sections H 150x150x7x10
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Shell element formulation

• real fires and experiments show that slabs under fire 

present membrane behaviour.

• several models have been developed for the numerical 

simulation of RC and composite slabs under fire.

• these models include Kirchhoff and Reissner-Mindlin

based shell models, discrete and distributed (smeared) 

cracking, nonlinear geometric effects (von Karman 

hypothesis) and others.

• others consider composite slabs as association of beams.
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Shell element formulation

• In this work a damage model was developed for the 

simulation of the concrete behaviour, in association with a 

layered approach to represent layers of concrete and 

reinforcement under ambient temperature and fire.

• The model assumes the existence of a compliance relation 

in compression and tension with smeared (distributed) crack 

representation.

• temperature distribution is obtained by a FD scheme 

through the thickness of the slab.



August 6th, 2008

Shell element formulation

The model assumes a compliance relation 1212 Dσε =

In a local system 12 parallel to the principal strain directions.
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Shell element formulation

The local (secant) constitutive tensor is equal to the inverse of the 

compliance matrix
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Shell element formulation

The local (tangent) constitutive tensor is equal to

( ) 12
12

s
12s

1212
t
12

1212

12t
12 ε

ε

C
CεC

εε

σ
C

∂

∂
+=

∂

∂
=

∂

∂
=

The reinforcement is considered as a layer of material with 

uniaxial response in the direction of the bars.
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Shell element formulation
The FE geometrical nonlinear formulation employs von Karman’s 

kinematical hypothesis
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Shell element formulation

The shear strains are given by sθγ +=
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Shell element formulation
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Shell element formulation
Using standard interpolation and strain-displacement relations, 

one gets the internal force vector

∫ γε ++= o
TT

k
T

i dA)( QBMBNBp

∫= dzσN

∫= zdzσM

∫α= γQ G



August 6th, 2008

Shell element formulation

Differentiation of the internal force leads to the element 

tangent stiffness matrix
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Shell element formulation
Example 1. Ambient temperature results

Ghoneim and MacGregor (1994a, 1994b) tested several RC slabs. 

Huang et al. (2003b) simulated tests B1 e C1 with VULCAN
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Shell element formulation

Example 1. Ambient temperature results
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Shell element formulation
Example 2. RC slabs under fire action

Talamona and Franssen (2005) present the results of Lim and 

Wade (2002) of a RC slab under high temperatures

• concrete strength 36 MPa and 25 mm cover. 

• reinforcement 8,7 mm every 300 mm in both directions. 

• yield strength 565 MPa. 

• high temperature properties from EN 1992-1-2:2004.

• limestone aggregate and upper limit for concrete thermal 

conductivity EN 1992-1-2:2004. 

• moisture 3% of concrete weight. 

•22 layers across the slab thickness
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Shell element formulation

Example 2. RC slabs under fire action
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Shell element formulation

Example 2. RC slabs under fire action
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Spring element

• In order to model connections under fire action a simple 6-

dof zero-length spring element was implemented.

• The element may be employed to simulate semi-rigid, 

composite and shear connectors under fire on its own or as 

part of a more complex assemblage such as in component 

method.

• Constitutive relations are assumed to be bilinear and 

temperature dependence is taken into account.
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Spring element
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Spring element

• Semi-rigid frame analyzed by Bailey (1998)
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Spring element

• Approximation of moment-curvature relations by Bailey 

(1998)
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Spring element

• Comparison of results for displacement
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Summary and conclusions

• A C++ finite element analysis program was extended to the case of 
structural analysis of steel, reinforced concrete and composite 
structures under fire.

• Heat transfer analysis is coupled into the process by finite difference 
and finite element methods at the cross section level.

• 3D large displacement corotational inelastic beam column finite 
elements were implemented for the case of high temperatures.

• Reinforced concrete slabs under high temperature were modeled using 
a damage model accounting for temperature effects.

• A simple spring element was able to simulate connections under fire 
action

• Results compared very well to the most reliable softwares for fire 
analysis (e.g. VULCAN and SAFIR).

• The program may be extended in several directions.
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