PROPEC Ouro Preto

Steel Buildings and Sustainable Construction

Roger Plank University of Sheffield, UK

August 2008

The need to reduce energy use and CO₂

The need to reduce energy use and CO₂

The main environmental issues

- Climate change
 - 89% of energy derived from fossil fuels
- Resource
 depletion
- Construction & Demolition waste

Data for UK construction sector

- 420Mt of a raw materials
- 94Mt of waste
 - (~ 12% due to over specification)
- 50% of all energy used
- 2% of CO₂ from cement production

Positive aspects of buildings We spend 90% of our lives in buildings

...at work

...at leisure

Construction can improve productivity & efficiency

Construct for regeneration

- Limited land, decaying cities
- Redevelopment of waste (brownfield) sites
- Reduce travel

Poor foundation conditions

- Lightweight long span construction
 - Reduces loads
 - Minimise columns

The sustainability challenge

Improve living standards for all

 Without environmental or ecological harm

Affordably

The principal issues for sustainable construction

- Build what is needed
- Maximise useful life of buildings and structures – flexibility, durability
- Build efficiently & consider end of life
- Design for operational efficiency

What to build?

- Respond to real need
 - Approx 4m new homes needed in the UK

Reuse existing buildings?

Reclad

Over-roof

...Refurbish

...Extend

Convert

...Restructure

Steel's versatility

- Igus factory, Cologne
 - Extended horizontally seven times
 - Internal flexibility
- Car park, Hamburg
 - Dismantled
 - Moved
 - Reassembled

How to build

- Flexibility
 - -to allow change of use
- Durability
 - -to maximise life
- Demountability
 - to facilitate re-use

Flexibility

- Long spans
- Flexible, open, columnfree space

Flexibility

Flat soffits provide easy installation (and refit) of services

Durability

 Durability is important to minimise the need for replacement

Re-using steel

- Reuse preserves the value added during manufacture
- Technically feasible but other barriers
- Limited reuse market

Elements must be recoverable

Concerns about:

- Supply
- Quality

How to build?

- Minimise impacts of both construction and occupation
 - Materials
 - Waste
 - Energy
 - The construction process

Materials

- Reduce
- Maximise use of recycled materials
- Source from sustainable supplies
- Minimise waste
- Minimise energy and pollution in production

Embodied energy seen as less important than operational energy

Lean construction

- Efficient supply chain
- Low waste
- Product standardisation
- Computerised design and manufacture

Reduce

Efficient design - not only structure..

..but also finishes, cladding etc

Use of recycled materials

- Minimises depletion of raw materials
- Reduces energy for production
- UK proposals for minimum % of recycled/ recyclable materials

Use of recycled materials

- Steel almost fully recycled
 - No degradation of quality
- Concrete recycled as aggregate for:
 - Sub-base or fill
 - New concrete production

Energy consumption

Energy reduction – 40% since 1970

The need for energy efficient buildings

- Energy from fossil fuels → CO₂
- Finite reserves
- Renewable energy → environmental changes
- Increased energy costs

 Buildings in use account for high proportion of total energy use

Operational and embodied energy

- Operational energy ~ 5-8 x embodied energy
- Heat, light, ventilation & cooling

Embodied energy

- More important for buildings which are:
 - unserviced
 - energy efficient
 - of short design life

Minimise operational energy

- Reduce cooling loads
- Reduce heat losses
 - through envelope
- Reduce artificial lighting
- Self generation of energy
 - wind turbines
 - photovoltaics

Cooling

- Commercial offices
 - cooling
 - air conditioning is energy intensive

Principles of Natural Cooling

Principles of natural cooling • Referred to alternatively as: Fabric energy storage (FES) Thermal capacity Thermal mass

- Passive systems
 - Rely on natural heat exchange
- Active systems
 - 'Forced' ventilation encourages heat exchange
 - Water circulation to chill elements
Natural cooling – key issues

- Expose soffit
- Allow free ventilation
- Mass less
 critical
- Appearance important

Active systems

- Forced ventilation through:
 - Raised floor voids
 - Air cores (eg Termodek)
- Water circulation
 - Chilled slabs (plastic pipes cast in slab)
 - Chilled beams

Termodeck

Significantly reduced energy & CO₂ compared with

- Average figures
- Government targets
- Best practice

Effectiveness of natural cooling

- Passive systems
 - typical night cooling performance (UK) 10 to 20 W/m².
- Active systems
 - cooling of 20 to 30 W/m^2
- Can reduce peak temperatures by 3-5°C

Importance of envelope

- Insulation
- 'Air tight' construction
- Higher specification saves
 - Net capital costs
 - Operational costs

Insulation

Highly insulating cladding

Cavity insulation

Artificial lighting

- High energy use
- Maximise natural lighting

Natural lighting

- Reduces energy use
- Improves internal environment
- Increases productivity

Avoid

- Direct sun
- Glare
- Solar gain

Shading

Control solar gain by shading devices

Interior shading provides some benefit

External shading devices

Exterior shading – fixed or moveable - better

Energy generation

- Increasing interest in local energy generation
 - Photovoltaic cells
 - Solar panels
 - Wind turbines

Impact of construction

- Prefabrication
- Minimise site activity

Modular Construction

Consider future refit

Sustainable construction consistent with quality & good practice

Summary

- Construction important
- Very broad holistic approach
- Depends on many small contributions
- Construction team must work together
- Requires conscious consideration
- Regional variations

Sustainable construction - summary

- Re-use existing built assets
- Design for minimum waste & long life
- Source materials carefully
- Lean construction
- Minimise energy
 - Operational
 - Embodied
- Do not pollute
- Monitor, set and report targets

The contribution of steel

- Structurally efficient
- Versatile
- Adaptable/flexible
- Low waste
- Highly demountable
- Reusable
- 100% recyclable

Why should we do it?

- Realise unseen opportunities
 - Energy saving
 - Employee efficiency
- Commercial advantage
- Modest commitment
- Minimal risk
- For the benefit of your (and their) grandchildren

The choice is ours – this...

...or this

