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 Knowing the integrity of major structural systems in real-time and continuously during 

their operational service is a crucial requirement for manufacturers, owners, users and 

maintenance teams. This knowledge affords the stakeholders relevant structural performance 

information to drive design and production improvements, minimize maintenance costs, and 

increase the operational structure’s safety for the users. Among the several activities that 

comprise Structural Health Monitoring (SHM), damage detection is the core task to satisfy 

maintenance and safety aspects. Thus, an SHM program must be aided by computational tools 

capable of analyzing the acquired sensorial information continuously. Then, it must promptly 

yield one or more indicators of damage (or novelty) occurrence in the structure. Therefore, for 

a damage detection technique to be compatible with the scope of SHM, it should ideally 

respond automatically, in an unsupervised and continuous way, based solely on ambient 

vibration tests when the structure is under normal operation. Hence, this thesis presents two 

approaches: one based on the tracking of structural modal parameters, i.e., natural 

frequencies, damping ratios, and mode shapes; the other based on the analysis of raw 

acceleration measurements. The proposed methodologies were applied to real-case structures 

and showed promising performances when it comes to long-term, continuous and real-time 

monitoring. 
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 Conhecer a integridade de sistemas estruturais de grande vulto durante o serviço, em 

tempo real e continuamente, é uma grande necessidade dos fabricantes, proprietários, 

concessionários, usuários finais e equipes de manutenção destes sistemas. Tal conhecimento 

provê aos gestores informações relevantes sobre o desempenho estrutural para direcionar 

melhorias no projeto e produção, além de minimizar custos de manutenção para o 

proprietário/concessionário e de aumentar a segurança de operação da estrutura para os 

usuários. Dentre as diversas atividades que compreendem o Monitoramento da Integridade 

Estrutural (MIE), a detecção de danos constitui o núcleo básico para atender aos aspectos de 

manutenção e segurança. Para tanto, o programa de MIE deve dispor de ferramentas 

computacionais capazes de analisar as informações adquiridas continuamente e em tempo 

real, fornecendo a cada momento um ou mais indicadores da ocorrência de dano (ou 

alteração) na estrutura. Portanto, para que uma técnica de detecção de danos seja compatível 

com o escopo do MIE ela deve, idealmente, prover respostas de forma automática, não 

supervisionada e contínua, baseando-se unicamente em testes de vibração ambiente com a 

estrutura em operação. Visando atingir estes objetivos, esta tese apresenta duas abordagens: 

uma baseada na evolução dos parâmetros modais, isto é, frequências naturais, taxas de 

amortecimento e modos de vibração; outra baseada na análise direta de medições de 

aceleração. As metodologias propostas foram avaliadas em estruturas reais e demonstraram 

desempenhos promissores quando aplicadas em monitoramentos de estruturas em longo 

prazo, contínuos e em tempo real.  

Palavras-chave: Monitoramento da Integridade Estrutural, Detecção de Danos, Identificação 

Modal.  



 

Foreword 

 

This thesis is written as an effort to gather the last four years of research in a compact, yet 

comprehensible way: each chapter corresponds to a published/accepted or submitted paper. 

The methodologies proposed herein were assessed through numerical and experimental 

(laboratory and in situ) applications, as the techniques had their complexity increased and 

their accuracy improved.  

The author would like to emphasize, however, that the present work is not only 

devoted to being a simple collection of papers. Instead, it was thought to create a smooth 

connection among the publications and to serve as a valuable manuscript on the subject for 

future reference.  

Therefore, the text is structured in four parts as Fig. I shows. 

Part I consists of a brief introduction, pointing out the relevance, motivation, and 

objectives of the developed research.   

Part II and Part III constitute the core of this research. Within these parts, the reader 

will find one chapter for each one of the four written papers. The achieved advances and the 

connecting lines are reported through brief texts between the papers, at the beginning of each 

chapter. 

Part IV concludes this thesis by highlighting the achieved milestones. 

Finally, the reader will find the bibliographic references placed at the end of each 

chapter. 



 

 

Fig. I Thesis’s outline.  
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Chapter 1 

Introduction 

1 Introduction 

1.1 Overview 

Any mechanical structure is, ultimately, a dynamic system. Its vibrational behavior is 

continually informing about its state of integrity, or "health". This information can be acquired 

by various sensors measuring temperature, displacement, strain, acceleration, velocity, 

angular tilt, and so forth. Then, an appropriate software must process the acquired signals to 

allow the information to be accessible for human judgment. This is the core idea behind 

Structural Health Monitoring (SHM), as Fig. 1.1 summarizes.  

 

Fig. 1.1 Extraction of intelligible information for structural health monitoring. 

 

It is worth mentioning that, even though this thesis focuses on SHM of Civil 

Engineering structures, the techniques herein developed can also be applied to any other 

dynamic system, such as electric networks, machines, aerospace structures, the human body, 

hydrologic basins, economic models, production lines, and so on. The proposed algorithms 



 

3 

are supposed to perform the very task of detecting abnormalities in the system's behavior 

utilizing signal processing. Thus, it does not matter from which system this signal (response) 

is collected. Naturally, any application out of the civil engineering scope would possibly 

require some additional calibration. 

1.2 Context 

There has been an increasing awareness of the importance of damage prognosis programs in 

civil, mechanical and aerospace structures. A robust monitoring system could advise about the 

structure’s health state, informing about any incipient damage in real time and providing an 

estimate of the structure’s remaining useful life. The potential benefits that would result from 

such technology are enormous. The maintenance procedures for structures with such 

prognosis systems could change from being schedule-driven to condition-based. Hence, time, 

cost and labor requirements would be drastically saved, thus avoiding the interdiction of such 

structures. This would especially benefit aging structures, which are currently represented by 

the vast majority of viaducts, bridges, buildings, etc., in the world. Last, but not least, such a 

monitoring system would increase the structure’s safety for the users. 

Thus, the acquisition of vibration tests and their subsequent analysis have gained great 

practical importance in the field of civil engineering. Studies have been published on the 

application of several types of instrumentation and data acquisition systems commonly used 

in the dynamic monitoring of large structures, such as the Rio-Niterói Bridge 
[1]

 in Brazil, the 

Z24 bridge 
[2]

 in Switzerland, and the Millau viaduct 
[3]

 in France. 

Indeed, some strategic structures are monitored 24 hours a day, seven days a week – 

continuously or during time intervals – to provide data that can allow detecting structural 

problems in their initial stages, like cracks, excessive vibration, abnormal behaviors, etc. 

Additionally, such monitoring aims at providing a more in-depth assessment of structural 

reliability and vulnerability. 

 In this type of structures, the presence of an SHM program can be crucial for 

preventing disasters. Health-related information extracted from structural behaviors can save 

lives and avoid economic losses. Sadly, a recent example of a great catastrophe occurred in 

Genoa, Italy (August 14, 2018), where a stayed bridge collapsed leaving 43 people dead, as 

dozens of cars fell onto the riverbed, railroad tracks and streets below (Fig. 1.2). The southern 
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stays (from one tower) that initially went slack are the same in which a renowned structural 

engineer found possible damage during dynamic tests performed almost one year earlier. He 

warned the company that managed the bridge but said that they never followed up on his 

recommendation to conduct a thorough study and to instrument the bridge with permanent 

sensors. “Probably they underestimated the importance of the information,” said the engineer 

in an interview 
[4]

. 

 

Fig. 1.2 Bridge collapses in Italy.  

1.3 Damage and Novelty in SHM 

To better understand the object of study of this work, it is imperative to distinguish the 

meaning of the terms structural damage and structural novelty. 

The term damage can be defined as a novelty (or change) in a structural system that 

affects its performance, present or future, both regarding its safety and service. Such novelties 

may be caused by variations in the material properties and/or in the geometric properties of 

the structure, including boundary conditions. While the occurrence of damage implies that 

there has been a structural novelty, the opposite is not true. Identifying a novelty in structural 

behavior does not necessarily mean that performance, present or future, is compromised and, 
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therefore, does not imply that the structural system is damaged. For instance, a novelty can be 

caused by a structural reinforcement imposed by human intervention. 

It is important to emphasize that the present work is devoted to providing tools for 

detecting structural novelty, which may or may not be characterized as damage. In practice, 

except for cases where there were structural reinforcements or intentional changes by human 

actions, almost every novelty is indeed damage. Therefore, the set of techniques developed 

within this thesis can provide useful tools to be placed into Level 1 of SHM Rytter’s 

classification: 

 Level 1: Is there any damage present in the structural system (detection)? 

 Level 2: Where is the damage located (location)? 

 Level 3: What is the damage magnitude (quantification)? 

 Level 4: What is the residual life of the structure (prognosis)? 

1.4 Objectives 

At first sight, an algorithm capable of detecting damage within an SHM context might be seen 

as a product of a simple strategy. However, the extensive literature review presented 

throughout the four papers showed that there are some challenges not yet transposed within 

this subject. In general, three obstacles pose an unpractical aspect to the existing detection 

algorithms (Level 1) for civil structures: 

1. The lack of unsupervised techniques capable of detecting structural damage without 

relying on any prior knowledge about the structure’s condition; 

2. The lack of strategies capable of robustly detecting structural damage automatically; 

3. The lack of algorithms suitable for performing real-time detection. 

Thus, the present work aims at presenting damage detection strategies that are 

unsupervised, automated and suitable for real-time SHM. These strategies are separated 

into two approaches: one based on the automatic identification of structural modal 

parameters, i.e., natural frequencies, damping ratios and mode shapes (Part II); the 

other based on the analysis of raw acceleration measurements (Part III). 
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Chapter 2 

Paper #1 – A clustering-based strategy for 

automated structural modal identification 

2 Paper #1 – A clustering-based strategy for automated structural modal identification 

One of the most common strategies to detect damage is based on the identification and 

tracking of structural modal parameters. Since the latter cannot exist without the former, the 

development and validation of tools for the automatic modal identification of structures under 

normal operation are the first main objective of this research. Therefore, this first research 

proposes a methodology for modal identification automatically, making it suitable for 

unsupervised real-time modal parameter based strategies for damage detection in SHM. In 

2017, a paper was published in the journal “Structural Health Monitoring”. 
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Cardoso RA, Cury A, Barbosa F (2017). A clustering-based strategy for automated 

structural modal identification. Structural Health Monitoring, 17(2): 201-217. 

Abstract 

Structural health monitoring of civil infrastructures has great practical importance for 

engineers, owners and stakeholders. Numerous researches have been carried out using long-

term monitoring, such as the Rio–Niterói Bridge in Brazil, the former Z24 Bridge in 

Switzerland and the Millau Bridge in France. In fact, some structures are continuously 

monitored to supply dynamic measurements that can be used for the identification of 

structural problems such as the presence of cracks, excessive vibration or even to perform a 

quite extensive structural evaluation concerning its reliability and life cycle. The outputs of 

such an analysis, commonly entitled modal identification, are the so-called modal parameters, 

that is, natural frequencies, damping rations and mode shapes. Therefore, the development 

and validation of tools for the automatic modal identification during normal operation is 

fundamental, as the success of subsequent damage detection algorithms depends on the 

accuracy of the modal parameters’ estimates. This work proposes a novel methodology to 

perform, automatically, the modal identification based on the modes’ estimates data generated 

by any parametric system identification method. To assess the proposed methodology, several 

tests are conducted using numerically generated signals, as well as experimental data obtained 

from a simply supported beam and from a motorway bridge. 

2.1 Introduction and state of the art 

The dynamic parameters of a structure are deeply related to its mechanical properties. In fact, 

the deviation of natural frequencies and mode shapes often indicates structural changes. 

Hence, if these deviations are properly assessed, it is possible to have an idea about the 

structure’s condition, that is, to infer about the presence of damage or of any other drastic 

change that could set up a danger condition. Hence, the identification of natural frequencies, 

damping ratios and modal shapes is of utmost importance to the structural health monitoring 

of large civil structures such as tall buildings and long-span bridges [1]. The permanent online 

monitoring of such parameters increases the chance of detecting unusual behaviour of the 

structure in a preventive way.  
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First, for the sake of clarity, one should clearly distinguish modal parameter 

estimation (MPE) from modal tracking. The former consists of the estimation of modal 

parameters from a single record of measured data and the latter corresponds to tracking the 

evolution of the modal parameters of a structure through repeated MPE. This article focuses 

on the MPE process, which means that structural responses are evaluated independently. 

Therefore, what would naturally be the second step, related to modal tracking, will not be 

considered here. 

Thus, concerning the parametric system identification techniques, one can enumerate 

the following two steps for the MPE: 

1. Computation of the modes’ estimates for several orders of the parametric model, by 

fitting them to the response series; 

2. Interpretation (in case of manual interpretation, the stabilization diagram would be one 

of the useful graphical tools used) of the modes’ estimates data by detecting spurious 

modes and selecting the physical ones. 

In fact, without the automation of the MPE process, the user would be required to set 

several input parameters, making the modal identification procedure impractical to long-term 

applications such as the online health monitoring of structures. Therefore, especially over the 

last decade, several methods aiming at the reduction in the number of user-defined parameters 

are being developed [2–5], some of which reached the complete elimination of all manually 

specified parameters and, hence, are usually labelled as fully automated. 

For instance, Reynders et al. [3] proposed a fully automated approach for the 

interpretation of a stabilization diagram. It was cleverly based on clustering techniques 

through three stages: a diagram pre-cleaning by means of a classification of all modes into 

two categories (possible physical or certainly spurious), a hierarchical clustering of the 

possible physical ones to group them together (automatic detection of vertical lines on 

diagram) and a final classification of the formed clusters into a physical or spurious condition. 

No user-defined parameter is needed whatsoever in the entire process. 

On the other hand, the structural dynamic monitoring practice has been showing that 

even the most well-crafted automated process of MPE has to be, at a first use, manually 

checked or tuned to fit a possible specific behaviour of the analysed structure to obtain 

satisfactory results. As a consequence, the development of new methods does not need to 
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focus on the elimination of all user-defined parameters (fully automation), but on the 

construction of a robust automated approach with some few easy configurable user settings, 

which are defined once, before starting the repetitive automated process itself. Thereby, this 

article presents an automated method for interpreting the stabilization diagram with just two 

easily user-defined parameters. Nowadays, the available time domain methods for operational 

modal analysis (OMA), explored in the work of Peeters and De Roeck [6], are essentially 

based on two types of models: discrete-time stochastic states-pace models and auto-regressive 

moving average (ARMA) or just auto-regressive (AR) models. 

The formulations that use state-space models, designated stochastic subspace 

identification (SSI) methods, constitute the parametric approach that is more commonly 

adopted for civil engineering applications. The model can be identified either from 

correlations (or covariances) of the outputs: covariance-driven stochastic subspace 

identification (SSI-COV), or directly from time series collected at the tested structure by the 

use of projections [7]: data-driven stochastic subspace identification (SSI-DATA). As 

reported in the work of Peeters and De Roeck [6], these two methods are very closely related. 

Still, the SSI-COV has the advantage of being faster and based on simpler principles. The 

SSI-DATA, however, yields further outputs such as the decomposition of measured responses 

into modal contributions. 

Considering the existence of a large number of alternative algorithms for OMA 

developed during the last decades, which sometimes are based on similar principles, this work 

focuses on the description of the SSI-DATA method. Since this method yields stabilization 

diagrams as outputs, the authors understand that these diagrams are a resourceful data for 

reliable structural modal identification. Moreover, when associated with clustering 

techniques, they are capable of providing very robust results. Thus, section 2.2 briefly 

discusses this method. 

Section 2.3 presents a reference methodology and the novel approach developed in 

this article. Besides some peculiarities, the proposed method has an innovative way of 

measuring distances between modes’ estimates during the clustering process. Section 2.4 

shows the results for numerical and practical applications. Considerations and discussions 

over the results are drawn in section 2.5. Finally, in section 2.6, a short paragraph points out 

the practical relevance of the work developed. 



Paper #1 –A clustering-based strategy for automated structural modal identification. 

___________________________________________________________________________ 

12 

2.2 SSI-DATA 

Since the work published in the 1990s [7], the application of SSI-DATA algorithms to 

determine the modal parameters of structures has been quite spread over the ambient vibration 

tests. State-space models are computed from output data (structure response) and can have 

their problem stated as following. 

Given s measurements of the output yk  ℝl generated by the unknown stochastic 

system of order n 

k+1 k k

k k k

 

 

A

C

x x w

y x v
                                                          (1) 

where xk  ℝn
 is the state vector at a discrete-time instant k, wk and vk  ℝn

 are zero mean, 

white vector sequences with covariance matrix (at instants p and q with δ meaning the 

Kronecker delta) 
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Q S

S R

w
w v

v
,                                      (2) 

determine the below: 

 The order n of the unknown system; 

 The system matrices A  ℝn×n and C  ℝl×n. 

For this purpose, the SSI-DATA algorithm must consist of the following eight steps: 

1. Organize the response series y (the only measured quantity) in a Hankel matrix Y 

which can be partitioned into a past measurement’s matrix Yp and a future 

measurement’s matrix Yf . 

2. Calculate the orthogonal projection P of the row space of Yf on the row space of Yp 

 
†

T T

f p p p pP Y Y Y Y Y                                                     (3) 

where •
†
 denotes the Moore-Penrose pseudo-inverse of the matrix •. 

3. Compute the singular value decomposition (SVD) of the projection weighted by 

matrices W1 and W2 



Paper #1 –A clustering-based strategy for automated structural modal identification. 

___________________________________________________________________________ 

13 

T

1 2 W PW USV                                                          (4) 

4. Determine the system order n by inspecting the rank of S (the number of non-zero 

singular values) and partition the SVD accordingly to obtain U1 and S1 

 
T

1T 1

1 2 T

2

  
   

  

S 0 V
USV U U

0 0 V
                                            (5) 

5. Compute the extended observability matrix Γ 

1 1/2

1 1 1

Γ W U S                                                            (6) 

6. Determine, in a least square sense, the system (dynamic) matrix A from Γ as 

†A Γ Γ                                                                 (7) 

where Γ  denotes Γ without the last l (number of outputs) rows and Γdenotes Γ without 

the first l rows. 

7. Determine C as the first l rows of Γ. 

8. Finally, knowing A and C, one can calculate the modal frequencies ωi, the modal 

damping ratios ξi and the corresponding modal shapes i. This calculation is made 

through the eigenvalue decomposition of matrix A as the following statements show 

 
 

     
2

      
100  

i

i i i

i
ii

i

i

i i

(rad / s)      f (Hz)

ln
Re

 (%)t


 










  


  

  


 C 

                        (8) 

where μi is the i
th

 discrete-time eigenvalue of A and i is its corresponding 

eigenvector. The eigenvalues of A are also called poles. They are complex numbers 

and appear mostly in conjugated pairs. Only those poles which have a conjugated pair 

and have positive imaginary component are taken into account for the equation (8). 

Therefore, up to n/2 modes are expected to be estimated. The Re(•) is the symbol for 

the real part of • and λi denotes the continuous-time eigenvalue of A. 
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 These eight steps summarize the SSI-DATA routine which is, essentially, a fit of a 

state-space model to the temporal output data by means of the geometric projection of the row 

space of the future measurements onto the past measurements. 

There are several valid sets of weighting matrices W1 and W2 to be used in equations 

(4) and (6). They determine the state-space basis in which the model will be identified. 

Special choices of these matrices correspond to algorithms described in the literature: 

principal component (PC), unweighted principal component (UPC) and canonical variate 

analysis (CVA). The PC algorithm is the one used in the applications shown in section 

‘Results’. 

It is necessary to point out that when one works with real structure response data, it is 

very hard to determine the system’s order through inspection of singular values like stated in 

the fourth step. This happens because the matrix S is actually full rank. Thus, a threshold 

would be necessary to consider a singular value as being null. Therefore, instead of creating 

ways for defining this threshold, the system order n is readily given as an input to the 

algorithm, which solves the problem, however, it creates the need for a further check whether 

this arbitrary order is able or not to accurately represent the actual data. One of the tools for 

this check is exactly the well-known stabilization diagram, where the modes’ estimates are 

plotted for various different system orders. 

2.3 Automation methods for stabilization diagram 

interpretation 

As previously mentioned, the mode estimates (usually presented in a stabilization diagram) 

are supposed to be analysed to get physical modes apart from the spurious (numerical) ones. 

Spurious modes inevitably exist among the data, since they are a natural consequence of the 

parametric model’s attempt to better fit the response data. 

Naturally, due to the large amount of collected data from online structural monitoring, 

a manual interpretation of modes estimates data is unfeasible. Thus, the obvious solution is 

the automation of such a process. For this purpose, in this article, one proposes a novel 

approach, which was mainly inspired by the automation methodology proposed in a PhD 

thesis [2] as well as by some elements found in a recently published fully automated method 

[3]. The main new features found in the proposed method rely on the innovative way of 
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measuring distances between modes’ estimates during the clustering process. Also, some 

additional modifications regarding filtering of spurious modes are included. Besides, a novel 

cluster regrouping technique is proposed. 

For comparison purposes, section 2.3.1 presents a reference methodology, which 

corresponds to the basis of the algorithms proposed by Magalhães [2]. In section 2.3.2, the 

novel approach proposed by the authors is explained and all its contributions are highlighted. 

It is relevant to point out that both methods are suitable for the analysis of the outputs 

generated by any parametric identification technique that produces modes’ estimates 

(frequencies, damping ratios and modal shapes) for several model orders. 

2.3.1 Reference methodology 

In this approach, no pre-filter is applied to the modes’ estimates data, which means that the 

stabilization diagram would be still full of certainly spurious modes, that is, like those with 

extremely high or negative damping ratios. This method is based on a hierarchical clustering 

algorithm. 

First, the dissimilarity (distance) measure between all pairs of estimated modes is 

calculated. The adopted ‘metric’ for calculation of such a distance is 

 1 MAC
i j

i, j i, j

j

f f
d

f


                                                   (9) 

where fi and fj are the natural frequencies of the modes’ estimates i and j, respectively. The 

mode shape similarity between these two modes’ estimates is evaluated by the well-known 

modal assurance criterion (MAC). Moreover, one can note that for this metric, it is possible 

that di,j ≠ dj,i, which leads to an oddly asymmetric dissimilarity matrix. 

Hierarchical clustering algorithms differ in the way they compute the distance between 

two already formed clusters. In this methodology, the single-linkage criterion is used, which 

means that the distance between two clusters will be considered as being equal to the smallest 

distance, also computed with equation (9), between objects inside these two clusters. This 

information allows constructing the hierarchical tree. 

In the following step, one must define the tree’s cut-level. This is usually dependent on 

the expected number of clusters. However, this number is not trivial to predict due to the 
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unknown quantity of clusters grouping spurious modes. Thus, the alternative strategy is the 

use of a distance limit (dlim). Such a distance is the criterion to prone the branches of the 

hierarchical tree, generating clusters that are sufficiently distant from each other. Hence, the 

lower the limit, the higher the number of resulting clusters. 

At this point, one has each cluster representing a single mode. To decide whether the 

mode is spurious or not, the clusters are ranked according to their number of elements. Thus, 

the top nm clusters with more elements are selected. Once physical modes are very consistent 

for models with different orders, their clusters present a much higher number of elements than 

the clusters that contain numerical estimates (which present a higher scatter between models 

of different orders). Therefore, it is expected to find that the nm selected modes are indeed 

physical. In practice, it is common to realize that the number of physical modes nm can be 

guessed, for instance, by a simple preliminary frequency domain analysis. 

Then, the damping ratios are taken into account by means of an outlier analysis within 

each selected cluster. This internal filtering eliminates the modes’ estimates with extreme 

damping ratio values, which are out of the range defined by ±2.698σ (standard deviation) that 

embraces 99.3% of the samples in a Gaussian distribution. Finally, each selected cluster 

produces average values of the modal parameters (natural frequency, modal damping ratio 

and mode shape), which are the outputs of the methodology. 

2.3.2 Proposed methodology 

This method is also based on a hierarchical clustering algorithm. However, differently from 

the previous approach, one intends avoiding unnecessary computational efforts and aims to 

obtain better results from the clustering process. Thus, a pre-filter is applied on the modes’ 

estimates data, which removes all modes whose damping ratios are not between 0% and 15% 

(recommended for civil engineering structures). In addition, the stabilization diagram will 

have eliminated all modes with modal phase collinearity (MPC) indicator lower than a limit 

mlim in the [0, 1] interval of this criterion. The MPC index of a vector  was stated by Juang 

and Pappa [8], revised by Pappa et al. [9] and specifically studied, together with MAC, by 

Vacher et al. [10]. It was used by a number of authors, such as Reynders et al. [3] and Yun et 

al., [11] to help distinguishing physical modes from spurious ones. MPC values closer to 1 

indicates that the mode shape vector is ‘monophase’ and is more likely to be physical, while 
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values closer to 0 show that the mode is either a spurious mode or the mode is significantly 

complex. Such an indicator is computed as 

 
2

MPC 1 2

1 2

 

 

 
  

 
                                                     (10) 

where λ1 and λ2 are the eigenvalues of the matrix 
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                                                            (11) 

composed, as shown in equations (12), by the variances and covariance of the vectors r and 

i which are the real and imaginary parts of , respectively 
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                                                            (12) 

Finally, the user may also have removed all modes’ estimates out of a range of 

frequencies specified (much like a ‘band-pass’ filter on the modes’ estimates data). 

After having the modes’ estimates data processed by the pre-filter, a plot of the 

stabilization diagram would reveal that a significant amount of modes was removed, yielding 

a clearer aspect. Depending on the situation, and this is not rare, the removed modes may even 

represent more than 50% of the initial data. These removed modes’ estimates are considered 

as certainly spurious (or undesired) and will not be processed by the subsequent clustering 

algorithm. 

To calculate the distance between the modes’ estimates i and j, a novel metric is used 

 1 MACi, j i j i, jd f f c                                                (13) 

where c is a constant arbitrarily set to 5 Hz (during initial studies, the authors varied this 

constant from 1 to 10 Hz without obtaining relevant differences in the outputs, which points 

out the low sensitiveness of the proposed methodology to such a parameter. As the authors 

proved in this article, the weighting value set to 5 Hz was appropriate to all presented 

applications. So far, there was no need to set this constant to another value to ensure the 
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success of the method and, therefore, no deeper study about this topic was performed), which 

after some tests was stablished by the authors for being a satisfactory weight value. One 

should note that differently from equation (9), this metric leads to a perfectly symmetric 

dissimilarity matrix, that is, di,j=dj,i. 

Then, the hierarchical clustering is applied. However, differently from the reference 

methodology, the distance between two already formed clusters is measured according to the 

complete linkage criterion, which means that such a distance is equivalent to the largest 

possible distance between two of their elements. Then, the hierarchical tree will be trimmed 

exactly like in the reference methodology by using a distance threshold dlim. 

Differently from what the previous methodology does, the internal filter is here 

applied within the clusters before they are ranked according to their number of elements. This 

is done to penalize the clusters with high scatter (likely to be representing a numerical mode) 

before they could be ranked among the top nm modes that will be selected as physical. 

Thereby, the internal filter removes outlier modes within the cluster considering not only 

damping ratios but also mode shapes. Mode estimates that have damping ratios out of the 

±2.698σ range and/or have a lower than 0.8 MAC related to the cluster average mode shape 

are eliminated. 

After this grouping process, depending on the dlim value, it is possible to find that 

different clusters represent the very same physical mode. In other words, a single physical 

mode could have been split into two or more different clusters. Evidently, this phenomenon is 

to be avoided. Therefore, the authors propose a regrouping procedure to minimize this 

problem. 

The regrouping routine is based on the confidence interval of the frequencies’ 

estimates. Each single cluster has its frequency mean value and its lower and upper limits 

delimiting a confidence interval. All clusters are compared two by two. If the first cluster has 

its average frequency estimate between the confidence limits of the second cluster, they are 

possibly representing the same physical mode, and therefore, they are selected to go through a 

further analysis: the evaluation of the MAC coefficient among their mode estimates. If the 

MAC is higher than 0.9, the clusters are grouped into one single cluster. 
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Finally, the top nm clusters (modes) with more elements are selected as being physical. 

Then, each selected cluster has its average modal parameters (natural frequency, damping 

ratio and mode shape) calculated. 

A flowchart of the developed methodology can be found in Fig. 2.1. The differences to 

the reference method, that is, the contribution of this work, is highlighted in red over the 

diagram shown in this figure. 

The complete description and study of the proposed methodology can be found, in 

detail, in the work of Cardoso [12]. 

2.4 Results 

2.4.1 Numerical experiment 

Introduction 

To initially evaluate the efficiency of the proposed method a numerical experiment was 

performed. The signals correspond to a hypothetical structure. Five degrees of freedom 

(DOFs) were considered. 

Equation (14) describes a free damped vibration of a single-DOF dynamic system. In 

this equation, D represents the damped natural frequency that is approximately equal to, for 

small damping rations ξ, the undamped natural frequency ω = 2πf. Besides, y(t) is the signal 

amplitude at a time instant t, ρ is an amplitude factor and θ is a phase constant. 

2

1

( ) cos( ) i it

i Di i

i

y t t e
    



                                              (14) 

The variables in the equation above were chosen in a manner that two modes with 

close natural frequencies were obtained. Table 2.1 shows the values of the dynamic 

parameters from this hypothetical system. 

Table 2.1: Dynamic parameters of the hypothetical system. 

 f (Hz) ξ (%) 

Mode 1 20.80 1.00 

Mode 2 20.90 2.00 
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Fig. 2.1 Flowchart of the proposed methodology. 
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The modal shapes will not be analysed in this application. The objective here is to 

verify the capability of the proposed method for identifying correctly these closely spaced 

modes. First, a signal without noise will be processed. Then, 20% of white noise is artificially 

added. Such a noise was added to the signal according to equation (15). In this expression, 

ynoise is the signal with noise, ymax is the maximum absolute value of y, β is a factor containing 

the noise level (for instance, 0.2 = 20%) and χ is a random signal (white noise) generated by 

the computer, with amplitude varying from –1 to + 1. 

max( ) ( ) . . ( )noisey t y t y t                                                  (15) 

A 1000 Hz sampling rate was adopted, corresponding to 10 seconds of signal’s length. 

In this numerical experiment, the proposed methodology parameters were set equal to 

dlim = 1 Hz e nm = 2. 

Signal without noise 

The pure signal (without noise), is shown in Fig. 2.2. 

  

(a) (b) 

Fig. 2.2 Time history of the generated signal (five channels) without noise: (a) complete signal and (b) 

zoom. 

 

The SSI-DATA (PC) method was used to identify models with orders varying from 10 

to 80. Once the dynamic system only has two physical modes, a large number of spurious 

modes appeared. This high-order modelling was intentional and aimed to turn the stabilization 

diagram more ‘polluted’, to test the capability of the developed method in distinguishing 

spurious modes from physical ones. In fact, in this study a model with order 4 would be 

enough to represent accurately the structural system. 

As noted in Fig. 2.3, the proposed filters cleaned up dramatically the stabilization 

diagram: 1004 of 1325 (75.8%) modes’ estimates were considered as certainly spurious and, 

therefore, were readily removed from the stabilization diagram. The red dots represent which 
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modes were considered physical by the algorithm (top two clusters with more elements). 

Observing the processed diagram, one can say that, apparently, just one stable column was 

detected. However, when a zoom is given (Fig. 2.4), one can clearly see, the two closely 

spaced modes detected correctly. 

  

(a) (b) 

Fig. 2.3 Stabilization diagram: (a) before and (b) after the automated identification by the proposed 

method. 

 

 

Fig. 2.4 Zoom of the stabilization diagram after algorithm’s application. 

 

A frequency versus damping ratio plot of both identified modes can be found in Fig. 

2.5. One can note, by such a figure, that there was no dispersion at all between the modes’ 

estimates within each one of the two clusters. Of course, this was already expected, once the 

signal is numerically generated and is free of noise. 

Finally, Table 2.2 summarizes the results of the automated identification. It can be 

seen that the relative errors and the intra cluster standard deviations (σ) were technically null. 

Signal with noise 

Intending to create a scenario where the proposed methodology could be tested harder, 

the experiment in this section includes the influence of noise in the signal. Thus, according to 
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equation (15), 20% (β = 0.2) of noise was added to the original signal. The high level of 

embedded noise, depicted in Fig. 2.6, can be seen. 

 

Fig. 2.5 Frequency versus damping ratio plot of the two physical modes (clusters). 

 

Table 2.2: Results of the automated modal identification. 

 f (Hz) σf (Hz) / error (%) ξ (%) σξ (%) / error (%) 

Mode 1 20.79 0.003 / 0.05 0.96 0.00 / 4.00 

Mode 2 20.94 0.017 / 0.19 2.06 0.01 / 2.91 

 

 

Fig. 2.6 Complete time series of the five channels with a 20% noise. 

 

To allow a better insight about the effect of the noise level, Fig. 2.7 shows a part of the 

signal before and after the noise addition. It is clear that from a certain time instant, the 

amplitude of the noise is higher than the pure signal itself. 

As in the previous application, intending to obtain the modes’ estimates, the SSI-

DATA algorithm was applied to models with orders varying from 10 to 80. The obtained 

stabilization diagram is depicted in Fig. 2.8.   



Paper #1 –A clustering-based strategy for automated structural modal identification. 

___________________________________________________________________________ 

24 

  

(a) (b) 

Fig. 2.7 Part of the five channels’ signal: (a) before and (b) after noise addition. 

 

  

(a) (b) 

Fig. 2.8 Stabilization diagram generated by SSI-DATA (PC) algorithm: (a) complete diagram and (b) 

zoom. 

 

After the application of the proposed algorithms, the stabilization diagram was the one 

shown in Fig. 2.9. One can note that the filters had less impact in this case: only 220 of the 

1543 (14.3%) modes’ estimates were removed. Despite that, the red dots indicate that the 

developed method has identified, correctly, the physical modes. 

  

(a) (b) 

Fig. 2.9 Stabilization diagram after the proposed algorithm’s application: (a) complete diagram and (b) 

zoom. 

 

One can note that despite the large number of spurious modes, the proposed method 

clustered the modes’ estimates in such a way that, clearly, only two groups gathered a 
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significant amount of elements (corresponding to the two physical modes). This fact can be 

verified by means of Fig. 2.10. In such a figure, the red-headed stems represent the two 

selected clusters with more objects. 

 

Fig. 2.10 Number of elements per cluster. 

 

The frequency versus damping ratio plot of the selected modes estimates can be seen 

in Fig. 2.11. It is possible to note that a little dispersion in terms of frequency occurs within 

the cluster of higher frequency (green circles). 

 

Fig. 2.11 Frequency versus damping ratio plot of the two physical modes (clusters). 

 

The final results and comparisons are gathered in Table 2.3. One can see that in spite 

of the noise, the method was able to identify, with fair precision, the two modes with, 

respectively, 20.8 and 20.9 Hz. Considering this artificial scenario, it is possible to say that 

the proposed methodology, even handling a signal with a significant level of noise, is good 

enough to identify, correctly, modes with very similar frequencies. In other words, the 

developed algorithms were able to create a single cluster for each one of the physical modes, 

treating them as really being different. 
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Table 2.3: Results of the automated modal identification. 

 f (Hz) σf (Hz) / error (%) ξ (%) σξ (%) / error (%) 

Mode 1 20.79 0.003 / 0.05 0.96 0.00 / 4.00 

Mode 2 20.94 0.017 / 0.19 2.06 0.01 / 2.91 

2.4.2 Laboratory experiment 

This section presents the experimental tests conducted at COPPE/UFRJ laboratory on a 

simply supported steel beam depicted in Fig. 2.12. This beam is 1.46 m long with rectangular 

cross section (76.2 × 8.0 mm) and was instrumented with six piezoelectric accelerometers 

(PCB, 336C31). Data acquisition was carried out using Lynx ADS2002 equipment, which 

essentially is a conditioning/amplifier regulating system. This study considered random 

vibration tests (using a shaker). The random excitation was applied throughout the duration of 

the tests. 

 

Fig. 2.12 Instrumented steel beam. 

 

Again, the PC variant of SSI-DATA method was applied to the response series (six 

channels), leading to modes’ estimates of models with even orders from 10 to 120. Intending 

to create a basis for comparisons, the reference and the proposed methodologies are applied to 

the very same data set. 

After a first quick manual judgement, the user-defined parameters were set up: dlim = 

0.01 and nm = 8 (reference methodology); dlim = 1 Hz and nm = 5 (proposed methodology). 

The mlim filter parameter was set to 0.9. Then, the different methodologies performed the 

automatic interpretation of such a data. The results of the processes, for both methods, can be 

checked in Figs. 2.13 to 2.15. 
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From Fig. 2.13, it is possible to see that the proposed filters had a great impact on the 

initial data set (Fig. 2.13b). Because of such a feature, 1015 (57.83%) of the 1755 modes’ 

estimates were readily removed. The stabilization diagrams depicted in this figure shows red 

dots for the automatically identified physical modes. 

  

(a) (b) 

Fig. 2.13 Stabilization diagrams after processing by (a) the reference methodology and (b) the 

proposed methodology. 

 

The number of elements within each formed cluster can be checked graphically in Fig. 

2.14. Stems’ plot shown in Fig. 2.14a was generated by the reference methodology, while the 

stems’ plot shown in Fig. 2.14b was the result of the proposed methodology. The red head 

stems indicate the top nm clusters with more elements, which will be considered as being 

physical by the algorithms. 

  

(a) (b) 

Fig. 2.14 Number of elements grouped into each cluster by (a) the reference methodology and (b) the 

proposed methodology. 

 

Fig. 2.15 summarizes the results obtained by both methodologies. In such a figure, the 

first two columns of graphics are the results from the reference methodology, while the last 

two columns are from the proposed one. It can be noted, in this figure, the modal shapes of 

each mode estimate within the clusters (grey lines), as well as the mean modal shape of them 
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(red lines). The small font texts show the values (with standard deviations) of natural 

frequencies and damping ratios for each mode. 

 

(a) 

 

(b) 

Fig. 2.15 Modal parameters obtained by (a) the reference method and (b) the proposed method. 

 

By simple inspection of Fig. 2.15, it is possible to see that the reference method was 

not able to identify the first mode with frequency close to 9 Hz because its cluster gathered 

just a few elements (less than 25 as shown in Fig. 2.14). On the other hand, the proposed 

methodology did identify the first mode. It is remarkable that this experiment had a peculiar 

happening: the first mode was excited with a low energy when compared to the second, third 

and fourth, as would reveal a fast Fourier transform (FFT) of the signal. 
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By analysing Table 2.4, one can conclude that the reference method not only ‘missed’ 

the first mode but also ‘captured’ the fifth mode with an unacceptable standard deviation 

(emphasized in bold) in terms of frequency. Differently, the proposed method identified the 

fifth mode with quite low standard deviation of frequencies. As can be seen, although the 

proposed method identified the first mode with high standard deviation of damping ratio 

(emphasized in bold), it was able to ‘capture’ the first mode of 9.16 Hz with just 0.14 Hz of 

standard deviation. 

Table 2.4: Results of the automatic modal identification for the five vertical modes. 

Mode 
Reference Methodology  Proposed Methodology 

f (Hz) / σ (Hz) ξ (%) / σ (%) f (Hz) / σ (Hz) ξ (%) / σ (%) 

1 - -  9.16 / 0.144 4.70 / 4.09 

2 33.28 / 0.160 3.23 / 0.19  33.28 / 0.160 3.23 / 0.19 

3 73.79 / 0.049 0.62 / 0.05  73.79 / 0.049 0.62 / 0.05 

4 136.13 / 0.027 0.37 / 0.05  136.12 / 0.027 0.37 / 0.06 

5 204.00 / 6.493 2.24 / 0.94  198.87 / 0.221 2.05 / 0.67 

2.4.3 PI-57 Oise Bridge 

The PI-57 Bridge is a double-deck bridge located near the town of Senlis in France, crossing 

the Oise River and carrying the A1 motorway, which connects Paris to Lille (Fig. 2.16). The 

bridge, a 116.50-m-long, cast-in-place, post-tensioned segmental structure built in 1965, 

consists of three continuous spans of 18.00, 80.50 and 18.00 m. The two lateral spans play the 

role of counterweights. 

 

Fig. 2.16 PI-57 Bridge. 
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Dynamic tests were performed under ambient excitation: the traffic was used as a 

source of excitation. Sixteen piezoelectric accelerometers (Bruel & Kjaer 4507B-005 with 

sensitivity of 1 V/g, frequency range from 0.4 to 6000 Hz, maximum operational level of 

75 g, temperature range from –54 to +100 °C) have been installed on the bridge deck 

(Lille/Paris – Fig. 2.17). For the acceleration recording, a data programmable controller 

Gantner E-PAC DL was used and connected to an 8 GB USB flash drive. Data were 

transferred by a TCP/IP modem. Accelerations were filtered within the 0–30 Hz frequency 

range and sampling was set to 0.004 s (250 Hz) for 5 min. To make the data processing 

amenable, structural data were only recorded every 3 h over a 24-h time period and stored on 

a buffer hard disc. 

 

Fig. 2.17 Plane view of the bridge with monitoring system. 

 

Exactly like in the previous experiments, the SSI-DATA (PC) was applied to estimate 

structural modes considering both the reference methodology and the proposed methodology. 

However, differently from the previous test, in this application, the first method had dlim set to 

0.1. On the other hand, the proposed algorithm had its distance threshold parameter set to the 

very same value of the last two experiments (dlim = 1 Hz), with one difference: here the 

proposed method also eliminated (through its pre-filter) all the modes’ estimates with 

frequencies out of the 0–50 Hz range. Both methods had the parameter nm set to 8. 

The stabilization diagrams after processing can be checked in Fig. 2.18. Again, as can 

be seen in the diagram generated by the proposed methodology (Fig. 2.18b), the filters had a 

significant impact on the initial data: 81.39% (1347) of the initial 1655 modes’ estimates were 

removed. 

The number of elements per cluster can be seen in Fig. 2.19. Stems with red heads 

represent the nm selected clusters with more elements. 
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(a) (b) 

Fig. 2.18 Stabilization diagrams after processing by (a) the reference methodology and (b) the 

proposed methodology. 

 

  

(a) (b) 

Fig. 2.19 Number of elements grouped into each cluster by (a) the reference methodology and (b) the 

proposed methodology. 

 

 

Fig. 2.20 Mode shapes obtained by both methodologies. 

 

Regarding the mode shapes, both methodologies technically found the very same 

results, which are shown in Fig. 2.20. In this figure, the blue line corresponds to the upper 
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nine vertical accelerometers in the plane view of Fig. 2.17, while the red corresponds to the 

lower line (in the plane view) of seven vertical accelerometers, as shown in the same figure. 

As shown in the results summarized in Table 2.5, for this application, the 

methodologies achieved very similar results, except for the higher standard deviation of the 

first mode identified by the reference methodology (emphasized in bold). 

Table 2.5: Results of the automatic modal identification for both methodologies.  

Mode 
Reference Methodology 

 
Proposed Methodology 

f (Hz) / σ (Hz) ξ (%) / σ (%) f (Hz) / σ (Hz) ξ (%) / σ (%) 

1 2.30 / 0.118 9.02 / 8.58  2.21 / 0.027 2.43 / 0.64 

2 4.89 / 0.003 0.93 / 0.03  4.89 / 0.003 0.93 / 0.03 

3 6.78 / 0.004 1.92 / 0.02  6.78 / 0.004 1.92 / 0.02 

4 8.46 / 0.006 2.87 / 0.15  8.46 / 0.006 2.87 / 0.15 

5 10.96 / 0.022 3.60 / 0.11  10.96 / 0.022 3.60 / 0.11 

6 14.24 / 0.054 2.62 / 0.18  14.24 / 0.052 2.62 / 0.18 

2.5 Results discussion 

First, concerning the numerical experiment, one can conclude that the proposed method is 

suitable for identifying modes with very close natural frequencies, even in the presence of 

high levels of noise. However, it should be noted that the correct closely spaced modes’ 

identification is mainly due to the parametric modal identification method that was used (SSI-

DATA). 

Considering the laboratory and the bridge applications presented, it is possible to note 

that compared to the reference approach, the proposed methodology works with a much lower 

number of mode estimates due to the pre-filter application. As a result, a faster and more 

accurate clustering process is achieved. In the laboratory test, for instance, 1015 (57.83%) of 

the 1755 initial modes’ estimates were automatically considered as certainly spurious and, 

therefore, were immediately removed. This fact can be noted by comparing the full 

stabilization in Fig. 2.13a and the filtered one in Fig. 2.13b. In a similar way, concerning the 

bridge experiment, as can be seen in Fig. 2.18, the pre-filter also deleted a large number of 

undesired noisy modes. More precisely, this quantity reached 81.39% (1347) of the initial 

1655 modes’ estimates. These expressive numbers of removed modes are mainly due to the 

MPC limit, which was set to 0.9. However, at this point, it is important to say that such a 

parameter must be used with caution [3]. 
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The hierarchical clustering process over the modes’ estimates, or over the few 

remaining ones in case of the proposed method, deserves special attention. For the laboratory 

experiment, (Figs. 2.13 to 2.15), one may observe that the reference method was not able to 

identify the first vertical bending mode. However, in spite of the low-energy excitation of this 

mode during the tests, the proposed method did find this mode. Several values for the distance 

threshold (dlim) were tested the reference method to try to induce the algorithm to ‘catch’ the 

first mode. However, the results were conclusive: as one increases the value of dlim, before the 

low frequencies’ clusters could gain enough modes to be ranked among the top nm, the higher 

frequencies’ clusters start to gather, in a too permissive way, a lot of modes (resulting in a fast 

growth of their stems –Fig. 2.14a). Consequently, a high scatter between modes belonging to 

a high-frequency cluster can be observed. Evidently, this excessive scattering is undesirable. 

A possible way of forcing the reference algorithm to catch the first mode is by keeping the 

dlim value fixed and increasing the nm parameter in an extreme conservative way. However, 

one can say that this solution is not elegant, since a lot of spurious clusters (modes) would be 

selected along with the physical ones. 

The high-frequency scattering phenomenon happens, mainly, for two reasons. First, 

the distance metric, which is written in equation (9), presents a dimensionless ratio of 

frequencies and, therefore, does not measure a distance between low-frequency modes with 

the same rigour as it measures a distance between high-frequency modes. Second, the single-

linkage criterion for measuring the distance between two already formed clusters promotes a 

decrease in the heights of the hierarchical U-shaped branches, that is, it makes easier to 

‘gather’ two clusters when compared to the complete linkage criterion. 

On the other hand, the novel methodology proposed in this article is immune to such a 

phenomenon. That is due to the fact that the distance metric, stated in equation (13), does not 

contain any frequency ratio and, therefore, ensures that the distances between modes (with 

either high or low frequency) will be expressed by an absolute value in Hertz. 

Another remarkable point is that the success of the algorithm proposed in this work is 

not as sensitive to the distance threshold as the reference algorithm is. For instance, in all 

tests, the user-defined limit for the proposed algorithm did not need to be adjusted 

(dlim = 1 Hz). This was achieved because of the novel metric and the proposed filters. 

The experiments showed that the peculiarities of the two examined automation 

methods produce significant differences at the final process output. However, the proposed 
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methodology, when compared to the reference in the studied applications, generated better 

results and, therefore, may represent an advance towards a more robust automatic modal 

identification method. 

2.6 Practical relevance and potential applications 

As the results show, the features included in the proposed methodology allowed accurate 

results for the automatic modal identification of civil engineering structures. With this 

algorithm, the large amount of data generated by the online dynamic monitoring can be 

treated automatically without significant loss of quality in the outputs. For the future, the 

suggested routine can be embedded in a standalone program with a graphical user interface to 

turn the application even more friendly and useful. 

Although this article has used the SSI-DATA method to process the structure 

response, the proposed algorithm is also able to treat the outputs of any other parametric 

identification method that generates a stabilization diagram. 

The proposed method is, therefore, a useful tool to modal identification of civil 

engineering structures subjected to ambient vibrations (OMA). Since this kind of test is by far 

the most practical one, it is of utmost importance that the algorithms dedicated to 

automatically interpret the data have a reliable efficiency, which was achieved in this work. 
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Chapter 3 

Paper #2 – A robust methodology for modal 

parameters estimation applied to SHM 

3 Paper #2 – A robust methodology for modal parameters estimation applied to SHM 

The previous chapter showed a method able to perform modal identification with little human 

judgment. Briefly, a stabilization diagram is interpreted by unsupervised machine learning 

algorithms. Although a high level of automation and accuracy has been achieved, the choice 

of the parametric model order and the choice of the number of desired modes consisted in a 

particular limitation for real-time SHM applications. Hence, complementary studies were 

carried out. This research culminated with the implementation of a new strategy: by 

automatically varying the model order and the number of desired modes, several stabilization 

diagrams are generated. Each one of them is interpreted by using the clustering procedures 

already presented. Afterward, the results of the various interpretations are subjected to another 

clustering step. 

Consequently, despite the increase in computational effort, more automation and 

robustness were achieved. Thus, any abnormal deviations can be promptly detected, since 

natural frequencies, damping ratios and mode shape amplitudes are tracked over time. With 

this methodology, the objective related to the first approach of this thesis, i.e., to detect 

damage based on the tracking of structural modal parameters, is fulfilled. The resulting 

paper was published in the journal “Mechanical Systems and Signal Processing”. 
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Cardoso R, Cury A, Barbosa F (2017). A robust methodology for modal parameters 

estimation applied to SHM. Mechanical Systems and Signal Processing, 95(2017): 24-41. 

Abstract 

The subject of structural health monitoring is drawing more and more attention over the last 

years. Many vibration-based techniques aiming at detecting small structural changes or even 

damage have been developed or enhanced through successive researches. Lately, several 

studies have focused on the use of raw dynamic data to assess information about structural 

condition. Despite this trend and much skepticism, many methods still rely on the use of 

modal parameters as fundamental data for damage detection. Therefore, it is of utmost 

importance that modal identification procedures are performed with a sufficient level of 

precision and automation. To fulfill these requirements, this paper presents a novel automated 

time-domain methodology to identify modal parameters based on a two-step clustering 

analysis. The first step consists in clustering modes estimates from parametric models of 

different orders, usually presented in stabilization diagrams. In an automated manner, the first 

clustering analysis indicates which estimates correspond to physical modes. To circumvent 

the detection of spurious modes or the loss of physical ones, a second clustering step is then 

performed. The second step consists in the data mining of information gathered from the first 

step. To attest the robustness and efficiency of the proposed methodology, numerically 

generated signals as well as experimental data obtained from a simply supported beam tested 

in laboratory and from a railway bridge are utilized. The results appeared to be more robust 

and accurate comparing to those obtained from methods based on one-step clustering analysis.  

3.1 Introduction 

Over the last decade, methods using raw dynamic measurements are proving to be a viable 

alternative for the detection of structural damage. Santos [1], for instance, presented a clever 

technique that relies on time series symbolic data objects and moving windows to detect 

structural novelties. Alves [2] presented a methodology based on the use of symbolic data 

coupled with clustering techniques to detect damage using raw acceleration measurements. 

Despite all advances in this field of research, it is common to find studies in the literature that 

considers modal parameters (natural frequencies, damping ratios and mode shapes) as 

preferred inputs to assess structural behaviors or damage states. Evidently, the close 
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relationship that exists between modal parameters and structural stiffness and mass explains 

this tendency. Therefore, it is not by chance that modal parameters are widely used in 

continuous dynamic monitoring systems of important civil structures, such as long-span 

bridges, stadiums, tall buildings, among others [3,4]. 

Continuous monitoring systems are especially relevant due to their preventive nature, 

since they can be inserted in maintenance programs and actually support detecting unusual 

structural behaviors. Abnormal structural states are often assessed by observing the variation 

of modal parameters over time. Hence, the modal identification procedure becomes of utmost 

importance and deserves special attention concerning its accuracy, robustness and automation 

to make it viable in a context of online monitoring. Due to the necessity of an automatic 

feature, parametric time-domain based identification methods have been preferred among 

engineers. Mostly, the so-called SSI (Stochastic Subspace Identification) methods, which use 

discrete-time stochastic state-space models, are very suitable in this case due to their capacity 

to identify closely-spaced frequencies. Moreover, they provide useful ready-to-use data for 

feature extraction by means of clustering techniques or any other data mining methods. 

At this point, it is worth highlighting the difference between modal parameter 

estimation (MPE) and modal tracking (MT). The former consists in the estimation of modal 

parameters from a single record of measured data and the latter corresponds to tracking the 

evolution of modal parameters of a structure through repeated MPE. This paper is limited to 

MPE, not involving what would be a complementary task to online monitoring (MT). 

Therefore, isolated signals of a given dynamic test in a structure are evaluated independently, 

with no time tracking of modal parameters.  

In fact, without the automation of the MPE process, a lot of user interaction over a 

large amount of measured vibration data would be required, leading to an impossibility of 

practical applications such as the health monitoring of important infrastructures. Therefore, 

especially over the last decade, several methods aiming the reduction of the number of user-

defined parameters have been developed [5–8], some of which reached the complete 

elimination of all manually specified parameters and, thus, are usually labelled as fully 

automated.  

For instance, Reynders [6] proposed a fully automated approach for the interpretation 

of stabilization diagrams, which are usual outputs of SSI methods. Their approach was 

cleverly based on clustering techniques built over three stages: pre-cleaning by means of a 
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classification of all modes into two categories (possibly physical or certainly spurious); a 

hierarchical clustering of the possible physical ones to group them together; and a final 

classification of the formed clusters into a physical or spurious condition. No user-defined 

parameter is needed in the entire process. 

However, despite the observed advances, practice has been showing that even the most 

sophisticated automated process of MPE has to be preliminarily checked or tuned in order to 

fit a unique behavior of the analyzed structure. Otherwise, the method might become too 

much vulnerable to fail due to different identification scenarios, like different levels of 

frequencies and damping ratios, different complexities of modal shapes, several types of 

external excitation sources and different amounts of signal noise. For that reason, the present 

work focus on the development of a robust automated approach that depends on just few easy-

to-set user-defined parameters. 

Currently, the available time domain methods for operational modal analysis (OMA), 

explored in the work of Peeters and De Roeck [9], are essentially based on two types of 

models: discrete-time stochastic state space models and ARMA (Auto- Regressive Moving 

Average) or just AR (Auto-Regressive) models. The models can be identified either from 

correlations (or covariances) of the outputs: Covariance driven Stochastic Subspace 

Identification – SSI COV; or directly from time series collected at the tested structure by the 

use of projections [10]: Data driven Stochastic Subspace Identification – SSI-DATA. As 

reported in the work of [9], these two methods are very closely related. Still, the SSI-COV has 

the advantage of being faster and based on simpler principles, whereas the SSI-DATA allows 

obtaining some further information with a convenient post-processing, as for instance, the 

decomposition of the measured response into modal contributions. 

This work focuses on the use of the SSI-DATA method, since this method yields 

stabilization diagrams as outputs, which are a resourceful data for reliable structural modal 

identification. Moreover, when associated with clustering techniques, they are capable of 

providing very robust results. Thus, Section 3.2 briefly discusses the SSI DATA method (a 

more thorough description can be found in reference [10]). 

To provide a comparison basis for this new methodology, a reference procedure based 

on the work of [5] is presented. Section 3.3 details both methodologies. Section 3.4 shows the 

results obtained by both approaches applied to different identification scenarios: numerically 

generated signals, a simply supported steel beam tested in laboratory and a real test on a high-
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speed train (TGV) viaduct in France. Finally, a brief conclusion and comments on practical 

relevance of the work are drawn in Section 3.5. 

3.2 Data-driven Stochastic Subspace Identification 

Since the work published in the nineties [10], the application of data-driven SSI algorithms to 

determine the modal parameters of structures has been quite spread over the ambient vibration 

tests. By computing state space models from output data (structure’s response) the 

identification problem can be enunciated as follows. 

Given s measurements of the output yk  ℝl generated by the unknown stochastic 

system of order n: 

k+1 k k

k k k

 

 

A

C

x x w

y x v
                                                          (1) 

where xk  ℝn
 is the state vector at a discrete time instant k, wk and vk  ℝn

 are zero mean, 

white vector sequences and l  is the number of outputs of the process (number of instrumented 

channels). 

Knowing matrices A and C, one can calculate the modal frequencies ωi, the modal 

damping ratios ξi and the corresponding modal shapes i. This calculation is performed 

through the eigenvalue decomposition of matrix A as the following statements show: 
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where μi is the i
th

 discrete-time eigenvalue of A and i is its corresponding eigenvector. The 

eigenvalues of A are also called poles. They are complex numbers and appear mostly in 

conjugated pairs. Only poles which have a conjugated pair and have positive imaginary 

component are taken into account for the Eq. (2). Therefore, up to n/2 modes are expected to 

be estimated. The Re(•) is the symbol for the real part of • and λi denotes the continuous-time 

eigenvalue of A. 
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When one works with real structure response data, it is very hard to determine the 

system’s order. Thus, one of the tools to overcome this problem is the well-known 

stabilization diagrams, where the modes estimates are plotted for different system orders. 

3.3 Automation methods for stabilization diagram 

interpretation 

The modes estimates, which are the outputs of SSI-DATA algorithm, are usually presented in 

stabilization diagrams. The analysis of such diagrams is supposed to separate physical modes 

from spurious (numerical) ones. The latter inevitably exist among the data, since they are a 

natural consequence of the parametric model attempt to fit the response data. 

The process of detecting physical modes within a stabilization diagram can be 

understood as its interpretation, which, ideally, must be carried out automatically. To this end, 

this section presents two techniques, both based on hierarchical clustering analysis. The first 

one, explained in Section 3.1, was proposed in the work of [5] and will serve as a baseline. 

The second one presents a richer modal identification method by proposing a second 

clustering analysis, shown in Section 3.2. The proposed approach is an enhancement from the 

first and contains some elements found in [6]. In the remainder of the text, these two 

techniques will be referenced as ‘‘reference methodology” and ‘‘proposed methodology”, 

respectively. 

Although this work uses SSI-DATA routine to provide stabilization diagrams, it is 

relevant to point out that both interpreters are suitable for the analysis of the outputs generated 

by any other parametric identification technique that yields modes estimates (frequencies, 

damping ratios and modal shapes) for several model orders. 

3.3.1 Reference methodology 

This approach is based on the routines presented by [5] and does not apply a pre-filter to the 

modes estimates data. Thus, stabilization diagrams would still be full of certainly spurious 

modes, like those with extremely high or negative damping ratios.  

This method is based on a hierarchical clustering algorithm. Hence, in order to stablish 

a concept of similarity/dissimilarity between objects, a dissimilarity (distance) measure 
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between all pairs of modes estimates must be calculated. The adopted metric for the 

evaluation of such a distance is: 

 1 MAC
i j

i, j i, j

j

f f
d

f


                                                   (3) 

where fi and fj are, respectively, the natural frequencies of the modes estimates i and j. The 

mode shape similarity between these two modes estimates is evaluated by the well-known 

Modal Assurance Criterion [11]. Moreover, one can note that for this metric it is possible to 

have di,j ≠ dj,i, which leads to an oddly asymmetric dissimilarity matrix. 

Hierarchical clustering algorithms differ in the way they compute the distance between 

two already formed clusters. In this methodology, the single-linkage criterion is used, which 

means that the distance between two clusters will be considered as being equal to the smallest 

distance, also computed with Eq. (3), between objects inside these two clusters. This 

information allows constructing the hierarchical tree. 

In the following step, one must define the tree’s cut-level. This is usually dependent on 

the expected number of clusters. However, this number is not trivial to predict due to the 

unknown quantity of clusters grouping spurious modes. Thus, the alternative strategy is the 

use of a distance limit (dlim). Such threshold is the criterion to prone the branches of the 

hierarchical tree, generating clusters that are distant from each other more than that value. 

Hence, the lower is the limit, the higher is the number of resulting clusters. In this 

methodology, such threshold is a user-defined parameter. 

At this point, one has each cluster representing a single mode. Then, the clusters are 

ranked according to their number of elements to help deciding whether the mode is spurious 

or not. Thus, the top n clusters with more elements are selected. Since physical modes are 

very consistent for models with different orders, their clusters present a much higher number 

of elements than the clusters that contain numerical estimates (which present a higher scatter 

between models of different orders). Therefore, it is expected to find that the n selected modes 

are indeed physical. In practice, it is common to realize that the number of physical modes n 

can be guessed, for instance, by a simple preliminary frequency domain analysis. In this 

methodology, this number of modes is also a user-defined parameter. 
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The next step is to take into account the damping ratios by means of an outlier analysis 

within each selected cluster. This internal filtering eliminates the modes estimates with 

extreme damping ratio values, which are out of the range defined by ±2.698σ (standard 

deviation) that embraces 99.3% of the samples in a Gaussian distribution.  

Finally, each selected cluster yields mean values of the modal parameters (natural 

frequency, modal damping ratio and mode shape), which are the outputs of the methodology. 

3.3.2 Proposed methodology 

The main idea of the proposed methodology is to enclose three fundamental steps: 

 use a time-domain method for fitting parametric models (such as SSI-DATA) to get 

modes estimates (stabilization diagram);  

 carry out the interpretation of such diagrams using enhanced statistical techniques; 

 perform a novel cluster analysis over the various interpretations results (realizations) 

obtained in the previous step.  

Thus, the proposed approach contains three main subroutines, namely: stabilization 

diagram generator (SSI-DATA), stabilization diagram interpreter (first clustering analysis) 

and the second clustering analysis routine. The flowchart of Fig. 3.1 shows each step of the 

proposed methodology. 

During steps 1 and 2 (Fig. 3.1), the user must feed the routines with some input 

parameters, namely: 

 n – number of desired modes to be identified as final output; 

 fs – signals sampling frequency; 

 fmin and fmax – minimum and maximum frequencies to delimit a frequency band to be 

considered in the analysis; 

 mlim – minimum MPC value of a mode estimate to be considered as physical. 

In step 3, the limits for the number of desired modes (nmin and nmax) are computed 

depending on the value of n. Those values are set as 50% less or 50% more than n, rounded to 

the nearest integer. For instance, for the case when n is equal to 4, nmin and nmax would be 

equal to 2 and 6, respectively.  
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Fig. 3.1 Flowchart of the proposed method. 

 

In step 4, the routine loads a certain number nmat of signal matrices (M1, M2, …, 

Mnmat). After that, a loop over each one of these matrices is initiated with index k = 1 (step 5). 

Thus, the k
th

 signal matrix is kept loaded for step 6. Based on it, three values for maximum 

model orders are set internally (ord1, ord2 and ord3). The bigger is the size of signal matrix 
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Mk, the smaller are these values (step 7). This is due to the fact that high-order state-space 

models imply on huge block Hankel matrices, which may lead to an exorbitant computational 

effort for solving the pseudo-inverse operation of Eq. (2). 

At this point, the third loop (step 10) begins, which is over each value of nm (number 

of modes of this iteration), varying from nmin and nmax. Once SSI-DATA yields the 

stabilization diagram in the previous step, an enhanced interpreter is called. This consists in 

step 11, which is the second main subroutine (first clustering analysis). Its flowchart is 

depicted in Fig. 3.2. 

 

Fig. 3.2 Flowchart of the enhanced interpreter (1st clustering analysis) – step 11 of flowchart of Fig. 

3.1. 

Compared to the reference interpreter, the main new features found in the flowchart 

(Fig. 3.2) rely on the innovative way of measuring distances between modes estimates during 

the clustering process. Moreover, modifications regarding filtering of spurious modes and a 

novel technique for regrouping clusters, which were originally separated incorrectly, are also 

included at this step. 
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Like the reference method, this diagram interpreter is based on a hierarchical 

clustering algorithm. However, differently from that approach, one intends avoiding 

unnecessary computational effort and aims to obtain better results from the clustering process. 

Thus, a pre-filter is applied on the modes estimates data, which removes all modes whose 

damping ratios are not between 0 and 15% (common values for civil engineering structures). 

In addition, all modes with Modal Phase Collinearity (MPC) indicator lower than the limit 

mlim in the [0, 1] interval of this criterion are eliminated. The MPC index of a vector  was 

stated by [12], revised by [13] and specifically studied, together with MAC (Modal Assurance 

Criterion), by [14]. A number of authors, such as [6,15], used this index to help distinguishing 

physical modes from spurious ones. An MPC value closer to 1 indicates that the mode shape 

vector is ‘‘monophasic” and, hence, is more likely to be physical, while values closer to 0 

show that the mode is either a noise mode or the mode is significantly complex. 

Furthermore, the user may also remove all modes estimates out of a predefined range 

of frequencies (much like a ‘‘bandpass” filter on the modes estimates data). All operations 

explained until this point correspond to steps 2, 3 and 4 of the flowchart in Fig. 3.2. 

After having the modes estimates data processed by this pre-filter, a plot of the 

stabilization diagram reveals that a significant amount of modes were removed, yielding a 

clearer aspect. Depending on the situation, and this is not rare, the removed modes may even 

represent more than 50% of the initial data. These removed modes estimates are considered as 

certainly spurious (or undesired) and will not be processed by the subsequent clustering 

algorithm. 

In step 5 (Fig. 3.2), for the distance calculation between the modes estimates i and j, 

the following metric is proposed: 

 1 MACi, j i j i, jd f f c                                                  (4) 

where c is a constant arbitrarily
1
 set to 5 Hz, which after some tests was stablished by the 

authors for being a satisfactory weight value. One should note that, differently from Eq. (3), 

this metric leads to a perfectly symmetric dissimilarity matrix, i.e. di,j = dj,i. 

                                                 
1
 During initial studies, the authors varied this constant from 1 to 10 Hz without obtaining relevant differences in 

the outputs, which points out the low sensitiveness of the enhanced interpreter to such a parameter. As the 

authors proved in Cardoso [16] and in this paper, the weighting value set to 5 Hz was appropriate to all presented 

applications. So far, there was no need to set this constant to another value in order to ensure the success of the 

method and, therefore, no deeper study about this topic was performed. 
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At this point, the hierarchical clustering is applied. However, differently from the 

reference method, the distance between two already formed clusters is measured according to 

the complete linkage criterion, which means that such a distance is equivalent to the largest 

possible distance between two of their elements. With this information, one can construct the 

hierarchical tree that will be trimmed by a constant distance threshold of 1 Hz (steps 6 and 7 

in Fig. 3.2). So far, there is no need to set this threshold to another value in order to ensure the 

success of the method and, therefore, it remains fixed as internal constant of the routine [16]. 

Contrary to what the reference technique does, the internal filter is applied within the 

clusters before they are ranked according to their number of elements. This is done to penalize 

the clusters with high scatter (likely to be representing a numerical mode) before they could 

be ranked among the top nm modes that will be selected as physical ones. Thus, the internal 

filter removes outlier modes within the cluster considering not only damping ratios, but also 

mode shapes. Mode estimates having damping ratios out of the ±2.698σ range and/or having 

MAC values lower than 0.8 related to the cluster average mode shape are eliminated (steps 8 

and 9 in Fig. 3.2). 

After this grouping process, depending on the dlim value, it is possible to find that 

different clusters are representing the very same physical mode. In other words, a single 

physical mode could have been split into two or more different clusters. Evidently, this 

phenomenon needs to be avoided. Therefore, the authors proposed a regrouping procedure in 

order to minimize this problem. 

The regrouping routine (steps 10 to 14 in Fig. 3.2) is based on the confidence interval 

of the frequencies. Each single cluster has its frequency mean and its lower and upper limits 

of frequencies delimiting a certain confidence interval. All clusters are compared two by two. 

If the first cluster has its average frequency within the confidence limits of the second cluster, 

they are possibly representing the same physical mode. Therefore, they are selected to go 

through a further analysis: the MAC between among their mode estimates. If the MAC is 

higher than 0.9, the clusters are grouped into one single cluster. 

Finally, the top nm clusters (modes) with more elements are selected as being physical 

(step 15 in Fig. 3.2). Then, for the methodology output, each selected cluster has its mean 

modal parameters (natural frequency, damping ratio and mode shape) calculated (step 16 in 

Fig. 3.2). Such results correspond to one single realization and are saved to incorporate the 

dataset to be analyzed by the second clustering analysis (step 12 of Fig. 3.1). 
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After the algorithm flows out of all three loops (steps 13, 14 and 15 in Fig. 3.1), the 

third and last main routine is fed with several realizations (stabilization diagrams 

interpretations) to perform a second clustering analysis. This corresponds to step 16 in Fig. 

3.1. Figure 3.3 presents the detailed flowchart of the second clustering analysis. 

 

Fig. 3.3 Flowchart of the 2nd cluster analysis – step 16 of the proposed method shown in Fig. 3.1. 

 

By comparing flowcharts of Figs. 3.2 and 3.3, it is clear that the second cluster 

analysis algorithm is very simple and similar to the first one. The only difference is that the 

former has no pre-filter or regrouping procedures. 

The output from the second clustering analysis (step 17 and 18 in Fig. 3.1) is the final 

output of the proposed methodology, i.e. n identified modes (steps 16, 17 and 18 in Fig. 3.1). 
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3.4 Results 

3.4.1 Numerically generated signals 

To evaluate the efficiency of the proposed methodology handling with close frequency 

modes, a numerical experiment is conducted by simulating signals generated from a 

hypothetical structure. To this end, Eq. (5) describes a free damped vibration of a single 

degree-of-freedom dynamic system. In this equation, D represents the damped natural 

frequency, which is approximately equal to the undamped natural frequency ω = 2πf (for 

small damping rations n). Besides, y(t) is the signal amplitude at a time instant t, ρ is an 

amplitude factor and θ is a phase constant. 

2

1

( ) cos( ) i it

i Di i

i

y t t e
    



                                                 (5) 

The aforementioned variables are chosen in a way so that two modes with close 

natural frequencies are obtained. Table 3.1 shows the values of the dynamic parameters of this 

hypothetical structure. The mode shapes are not considered in this application. 

Table 3.1: Dynamic parameters of the hypothetical structure. 

 f (Hz) ξ (%) 

Mode 1 15.10 2.00 

Mode 2 15.20 2.50 

 

Moreover, 10% of white noise is added to the simulated signals, according to Eq. (6). 

In this expression, ynoise is the signal with noise, ymax is the maximum absolute value of y, β is 

a factor containing the noise level (for instance, 0.1 = 10%): 

max( ) ( ) . . ( )noisey t y t y t                                                    (6) 

where χ is a random signal (Gaussian white noise) generated by the computer with an 

amplitude varying from –1 to +1.  

A 1000 Hz sampling rate is adopted, yielding a 10 s signal. Three signal windows (S1, 

S2 and S3) are extracted from the original signal in order to generate more realizations for the 

modal identification process. Both methods are requested to identify two modes (n = 2), while 

the other inputs are kept in default values (no pass-band filter and mlim = 0). 
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Signal without noise 

Figure 4 shows the time history of the generated signal (five channels) without noise as well 

as the three windows created. 

 

Fig. 3.4 Time history of the generated signal (five channels) without noise. 

 

For each one window, SSI-DATA yielded three stabilization diagrams of maximum 

orders of 100, 140 and 180. For each stabilization diagram, the interpreter provided three 

different results varying the number of desired modes (1, 2 and 3). Consequently, the number 

of realizations was 27. 

The results are presented by the scattered blue points in the Clustered Stabilization 

Diagram (CSD) seen in Fig. 3.5. The word ‘‘Clustered” stands for the reason that the 

scattered points are not in terms of mode estimates frequency, but in terms of frequency 

means of clustered modes estimates considered as being physical by that specific realization 

(interpretation of a stabilization diagram). In such diagrams, the red lines highlight the result 

(in terms of frequency) of the second clustering analysis, i.e. the final output of the proposed 

method. 

Vertical axis corresponds to each realization, which receives a label according to its 

signal matrix (S), the number of desired modes (M) and the maximum order of stabilization 

diagram (R). For instance, S2-M2-R140 stands for: second signal window (S2), number of 

modes equal to two and a stabilization diagram with a maximum order of 140.  
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(a) (b) 

Fig. 3.5 Clustered stabilization diagram (a) and its zoom (b). 

 

Table 3.2 summarizes the results for both reference (varying dlim) and proposed 

methodology. One observes that the relative errors and the intra-cluster standard deviations 

(σ) are zero for both approaches. However, the reference methodology is affected by the dlim 

parameter. For the cases when dlim = 0.05 and dlim = 0.10, the modal identification was 

unsuccessful. 

Table 3.2: Results from the reference interpreter. All values were truncated. 

Mode Parameter 
Reference Interpreter – R140 

Proposed 
dlim = 0.001 dlim = 0.01 dlim = 0.05 dlim = 0.10 

01 
f (Hz) / σ (Hz) 15.10 / 0.000 15.10 / 0.000 15.10 / 0.000 

missing 
15.10 / 0.000 

ξ (%) / σ (%) 2.00 / 0.00 2.00 / 0.00 2.00 / 0.00 2.00 / 0.00 

02 
f (Hz) / σ (Hz) 15.20 / 0.000 15.20 / 0.000 

missing missing 
15.20 / 0.000 

ξ (%) / σ (%) 2.50 / 0.00 2.50 / 0.00 2.50 / 0.00 

 

Signal with noise 

To further assess the robustness of the proposed approach, a new simulation considering 10% 

(b = 0.1) of noise added to the original signal is presented. Figure 3.6 depicts the noisy signal. 
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Fig. 3.6 Time history of the generated signal (five channels) with noise. 

 

One observes that both second and third windows (S2 and S3) are completely affected 

by the presence of noise. This can be confirmed by computing noise-to-signal ratios, as shown 

in Table 3.3. 

Table 3.3: Noise/signal ratio considering RMS values. 

 Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 

Original 0.2433 0.3499 0.7339 0.5915 0.3148 

S1 0.1668 0.2441 0.5880 0.4431 0.2182 

S2 0.9955 1.0059 0.9934 0.9994 0.9996 

S3 0.9913 1.0011 0.9993 1.0005 1.0047 

 

As the ratio gets close to one, the more corrupted with noise the signal is. Moreover, it 

can be noticed that the noise levels in the first window (S1) are also high, with 35% and 73% 

of noise-to-signal ratio for channels 2 and 3, respectively. 

To highlight the difficulty of such an analysis, Fig. 3.7 depicts an FFT (Fast Fourier 

Transform) plot of the signal using 2
16

 points to get a fine frequency resolution (0.015 Hz). 

Clearly, it is impossible to identify these two simulated close-spaced modes. 

Despite this challenging scenario, the proposed method performed the modal 

identification with high precision. Fig. 3.8 shows the CSD. It is interesting to observe that 
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windows S2 and S3 did not provide useful information for the identification of both two 

modes. By inspecting Fig. 3.8, one observes high-scattered blue points corresponding to 

realizations of S2 and S3. Nevertheless, the novel second clustering analysis proposed in this 

paper was able remove those spurious frequencies. 

  

(a) (b) 

Fig. 3.7 FFT of each channel (a) and its zoom (b). 

 

  

(a) (b) 

Fig. 3.8 Clustered stabilization diagram (a) and its zoom (b). 
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Table 3.4: Results from the reference interpreter. All values were truncated. 

Mode Parameter 
Reference Interpreter – R140 

Proposed 
dlim = 0.001 dlim = 0.01 dlim = 0.05 dlim = 0.10 

01 
f (Hz) / σ (Hz) 15.12 / 0.002 

missing missing missing 
15.103 / 0.000 

ξ (%) / σ (%) 1.91 / 0.01 1.96 / 0.06 

02 
f (Hz) / σ (Hz) 15.17 / 0.005 

missing missing 
15.17 / 0.009 

2.90 / 0.03 

15.212 / 0.001 

ξ (%) / σ (%) 2.90 / 0.02 2.52 / 0.19 

 

Table 3.4 summarizes the results for both reference (varying dlim) and proposed 

methodology. The relative errors and the intra-cluster standard deviations (σ) are close to zero 

for both approaches. However, the reference methodology is more severely affected by the 

dlim parameter. For the cases when dlim = 0.01, dlim = 0.05 and dlim = 0.10, the modal 

identification did not yield any results. Moreover, the proposed methodology achieved better 

results in terms of frequency and damping ratio estimates. 

3.4.2 Laboratory experiment 

This section presents an experimental test conducted in laboratory on a simply supported steel 

beam. This beam is 1.46 m long with rectangular cross-section (76.2 × 8.0 mm) and is 

instrumented with six piezoelectric accelerometers (PCB, 336C31). Data acquisition is carried 

out using Lynx ADS2002 equipment, which essentially is a conditioning/amplifier regulating 

system. This study considered random vibration tests (using a shaker). The random excitation 

is applied throughout the duration of the tests. A 25 s signal, sampled at 4000 Hz, is shown in 

Fig. 3.9. 

 

Fig. 3.9 Signal from instrumented steel beam. 
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In this study, the reference methodology has the dlim value set to 0.01, while the 

proposed approach has the mlim set to 0.9. For both methods, the number of requested modes 

was set to five. 

Figure 3.10 highlights the different performances reached by both techniques. The 

stabilization diagram provided by the former (Fig. 3.10a) is full of spurious modes estimates, 

while the latter shows that its pre-filters worked adequately (Fig. 3.10b). In those stabilization 

diagrams, the red colored points correspond to the physical modes. Additionally, the number 

of elements in each cluster, presented by the stem plots depicted in Fig. 3.10c and d show, 

respectively, that the reference interpreter not only missed the first mode, but also gathered 

several spurious modes in its fifth cluster (frequency close to 200 Hz). Conversely, due to its 

different metric, filters and regrouping technique, the enhanced interpreter was indeed able to 

correctly identify all five modes (the red headed stems stand for the five selected clusters 

related to physical modes). 

  

(a) (b) 

  

(c) (d) 

Fig. 3.10 Modes estimates interpretation by reference interpreter (a, c) and enhanced interpreter (b, d) 

– realization S1M5R120. 

 

The results obtained by the enhanced interpreter shown in Fig. 3.10 correspond to a 

single realization of the proposed method (highlighted by the green text in the CSD displayed 

in Fig. 3.11). 
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Fig. 3.11 Clustered stabilization diagram of the analyzed signal. 

 

The mode shapes identified by the proposed approach are presented in Fig. 3.12. 

 

Fig. 3.12 Modal shapes obtained by the proposed method. 

 

 Finally, Table 3.5 summarizes the results obtained by the proposed methodology and 

by three attempts for the reference approach (varying dlim). In all cases, the latter was not able 

to identify the first mode. Besides, it presented high values of intra-cluster standard deviations 

for the fifth mode. This fact is mainly due to the metric used in the reference interpreter. As 

noted in Eq. (3), the metric measures distances between modes estimates in a relative manner 

in terms of frequency, yielding a biased behavior with low-frequency modes distances and 

with high-frequency modes distances. Hence, clusters gathering high-frequency modes 

estimates tend to gather too much elements (‘gathering phenomenon’) erroneously. 

Conversely, clusters with low-frequency modes estimates tend to split into other clusters 
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(‘splitting phenomenon’). As for the proposed methodology, all standard deviations were very 

low due to the enhanced diagram interpreter, which considered an innovative metric, 

additional filters and a regrouping technique. 

Table 3.5: Results of the automatic modal identification for the five vertical modes. 

Mode Parameter 
Reference Interpreter (R120) 

Proposed 
dlim = 0,01 dlim = 0,005 dlim = 0,001 

01 
f (Hz) / σ (Hz) 

missing missing missing 
9.28 / 0.120 

ξ (%) / σ (%) 7.13 / 1.05 

02 
f (Hz) / σ (Hz) 33,28/0,160 33,26/0,139 33,20/0,035 33.32 / 0.047 

ξ (%) / σ (%) 3,23/0,19 3,20/0,14 3,17/0,12 3.34 / 0.06 

03 
f (Hz) / σ (Hz) 73,79/0,049 73,78/0,042 73,78/0,042 73.81 / 0.025 

ξ (%) / σ (%) 0,62/0,05 0,62/0,05 0,62/0,05 0.62 / 0.01 

04 
f (Hz) / σ (Hz) 136,13/0,027 136,13/0,027 136,13/0,027 136.15 / 0.015 

ξ (%) / σ (%) 0,37/0,05 0,37/0,05 0,37/0,05 0.31 / 0.03 

05 
f (Hz) / σ (Hz) 204,00/6,493 199,38/1,882 198,75/0,137 199.70 / 0.183 

ξ (%) / σ (%) 2,24/0,94 2,27/0,86 1,71/0,70 2.42 / 0.15 

3.4.3 Railway viaduct 

Located on the southeast high speed track in France, at the kilometric point 075 + 317, the 

tested viaduct (Fig. 3.13) crosses the secondary D939 road, between the towns of Sens and 

Soucy. Since it was built in the eighties, the increases in the operational speed of high-speed 

trains (TGV) have moved the excitation frequency closer to the first natural frequency of the 

structure. Hence, in order to prevent resonance-induced damages, the viaduct passed by a 

structural intervention, which consisted in tightening a system of rods near the bearings, by a 

torque wrench. Thus, additional stiffness and, therefore, an increase in the natural frequencies 

would be provided. Figure 3.14 shows the instrumentation plan of the structure. 

During approximately 1.6 s, the eight installed accelerometers registered, at 4096 Hz, 

the signal matrix S1 shown in Fig. 3.15. It corresponds to a forced vibration period while the 

train was passing over the structure. 

Again, the reference interpreter and the proposed methodology were applied to the 

signal. In this study, the number of desired modes is set to four. However, in a conservative 
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way, both methods were asked to provide six modes. Additionally, a maximum frequency of 

50 Hz was set, due to prior knowledge of the structure’s dynamic behavior.  

 

Fig. 3.13 PK 075 + 317 Viaduct on the Paris-Lyon high speed train track. 

 

 

Fig. 3.14 Plane view of the viaduct pointing sensors location. 

 

Figure 3.16 depicts the results obtained by the reference interpreter. It is clear that this 

method was not able to identify the second mode (8 Hz). Three attempts were made varying 

dlim: 0.01, 0.05 and 0.10. One can note the ‘‘gathering” phenomenon happening again as the 

distance threshold increases, from left to right. 
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Fig. 3.15 Signal acquired during the transit of the train. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Fig. 3.16 Modes estimates interpretation by reference interpreter, with dlim varying: 0.01 (a, d), 0.05 (b, 

e) and 0.10 (c, f). 

 

For the proposed method, however, all four modes were identified correctly. In Fig. 

3.17a, b and c, three realizations are shown in detail. All 21 realizations and the final result 

can be checked in the CSD presented in Fig. 3.17d. 

Figure 3.18 shows the modal shapes evaluated by the proposed methodology. The 

measured modal amplitudes are marked as dots, whereas interpolated points or supports are 

represented as hollow squares. The blue line represents modal amplitudes measured by 

sensors 1, 2, 3 and 4 whereas the red line stands for accelerometers 5, 6, 7 and 8 (see Fig. 

3.14). 
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(a) Realization S1-M6-R80 (b) Realization S1-M6-R120 (c) Realization S1-M6-R160 

 

(d) Clustered Stabilization Diagram of analyzed signal 

Fig. 3.17 Different realizations results (a, b, c) and CSD of analyzed signal (d). 

 

 

Fig. 3.18 Four identified modal shapes: flexional, flexional-torsional, torsional, and flexional 

torsional, respectively. 
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Finally, Table 3.6 gathers the results for the modal identification. One can note that the 

reference interpreter was unable to identify the second mode regardless of the value of dlim. 

Once again, the proposed method has proved to be more robust and accurate when compared 

to the reference approach. 

Table 3.6: Results of the automatic modal identification. 

Mode Parameter 
Reference Interpreter R120 

Proposed 
dlim = 0.01 dlim = 0.05 dlim = 0.10 

01 

f (Hz) / σ (Hz) 4.579 / 0.085 4.586 / 0.119 4.572  / 0.151 4.563 / 0.056 

ξ (%) / σ (%) 2.23 / 1.07 2.34  / 1.20 2.36  / 1.19 3.59 / 1.59 

MACmin 0.9981 0.9937 0.9937 0.9999 

02 

f (Hz) / σ (Hz) 

missing missing missing 

8.603 / 0.000 

ξ (%) / σ (%) 1.19 / 0.00 

MACmin 1.0000 

03 

f (Hz) / σ (Hz) 13.156 / 0.168 13.344 / 0.384 13.311/ 0.392 13.108 / 0.108 

ξ (%) / σ (%) 4.25 / 0.99 3.58 / 1.82 3.64 / 1.84 2.78 / 1.15 

MACmin 0.9770 0.8787 0.5808 0.9937 

04 

f (Hz) / σ (Hz) 17.520 / 0.208 17.595 / 0.387 18.653 / 1.948 17.511 / 0.178 

ξ (%) / σ (%) 1.98 / 0.99 2.41  / 1.78 3.30 / 2.72 1.72 / 0.81 

MACmin 0.9131 0.7323 0.5990 0.9778 

3.5 Conclusions 

This paper presented a novel methodology that uses a parametric time-domain modal 

identification algorithm and hierarchical clustering techniques to perform automated modal 

identification. The developed routines used SSI-DATA algorithm to generate modes estimates 

for several model orders, followed by two steps of clustering analysis. The first one is the 

clustering analysis of modes estimates coming from a single stabilization diagram, outputting 

a given number of modes with a high chance of being physical. After many different 

stabilization diagrams are interpreted, the second step of clustering analysis is carried out to 

finally select the modes definitely considered physical. 

Modes with very closely-spaced frequencies can be correctly detected by the method. 

The first application of this paper treated numerically generated signals and exposed that, 

even with the presence of high noise level, the proposed routines were able to successfully 

identify the natural frequencies. 
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Experimental applications presented in Sections 3.4.2 and 3.4.3 showed that the 

enhanced diagram interpreter provided a more robust tool to eliminate spurious modes. In 

both applications, all physical modes were correctly identified. The laboratory experiment 

provided a structure with natural frequencies ranging from 9 to 200 Hz. In contrast to what 

happened with the reference method, it was shown that the proposed method is perfectly 

suitable to handle either low or high values of natural frequencies. Besides, the railway 

viaduct test allowed concluding that the developed routines are reliable to be applied to real 

dynamic tests. 

The proposed methodology represents, therefore, a useful tool to modal identification 

of civil engineering structures subjected to ambient vibrations (Operational Modal Analysis). 

In this context, the present work offers a suitable method capable of performing, 

satisfactorily, automated interpretation of modal estimates, which can be obtained by any 

parametric time-domain identification algorithm. 
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Chapter 4 

Paper #3 – Unsupervised real-time SHM 

technique based on novelty indexes 

4 Paper #3 – Unsupervised real-time SHM technique based on novelty indexes 

Both papers presented in the previous chapters provide useful tools for an SHM strategy 

based on the tracking of modal parameters. Another way of extracting damage-related 

information from the structural behavior is utilizing direct raw data measurements. Therefore, 

a new technique was developed. A Symbolic Data Analysis is conducted over collected raw 

time signals to create an original compact, yet comprehensive representation. Afterward, 

unsupervised statistical learning algorithms perform pattern recognition on the symbolic 

representations, with two different damage-related scalar indexes being computed. Such 

indexes are evaluated upon each new symbolic object acquisition, virtually in real-time. The 

proposed technique is explained and validated within a paper accepted for publication in the 

Journal Structural Control and Health Monitoring. 
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Abstract 

Structural Health Monitoring programs play an important role in the field of civil engineering, 

especially for assessing safety conditions involving large structures such as, viaducts, bridges, 

tall buildings, towers and old historical buildings. Essentially, a SHM process needs to be 

based on a trustful strategy for detecting structural novelties or abnormal behaviors. Usually, 

such a strategy is complemented with human inspection and structural instrumentation 

routines, where the latter requires proper hardware equipment and software tools. Recently, 

many advances were achieved regarding the hardware resources, such as wireless 

communication, remotely configurable sensors and other data management devices. On the 

other hand, the software counterpart still is in its early development. In fact, many researches 

are under development to fill this gap. In this context, this paper presents a novel online SHM 

identification method suitable to unsupervised real-time detection of structural abnormal 

behaviors. The proposed methodology includes the use of an original representation of raw 

dynamic signals, i.e., in situ measured accelerations. To assess the proposed approach, two 

experimental applications are studied: a railway viaduct, PK 075+317 in France, and an old 

masonry tower, in Italy. The results suggest that the proposed detection indexes are suitable to 

a wide range of SHM applications.  

4.1 Introduction 

Large structures under continuous operation, such as viaducts, bridges, tall buildings, 

historical towers, among others, need to have their structural condition monitored 

permanently. Usually, this task is performed through visual inspection and/or other manual 

analyses. However, to enhance the structure’s safety assessment, it is necessary to develop a 

continuous monitoring program based on computations capable of looking after the structure 

24/7, uninterruptedly. The main purpose of such an approach is to automatically detect 

damage and/or other structural novelties immediately after their occurrence, ideally at their 

initial stages.  

Recent technological advances allowed the production of reliable, accurate and 

efficient monitoring equipment that can be remotely configured and operated. That fact 

encouraged the installation of dynamic monitoring systems in a considerable number of 

structures abroad. Therefore, especially over the last twenty years, much effort has been made 
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in order to have computational tools able to detect abnormal structural behaviors from 

continuously acquired datasets.  

In general, the literature presents two different damage identification approaches: 

inverse and forward. The inverse SHM identification methods are based on model updating or 

system identification techniques. They consist in finding parametric numerical or analytical 

models that best fit the structural responses. Due to their computational complexity – this kind 

of problem is typically nonlinear and non-unique [1] and demands choosing which structural 

parameters must be analyzed [2] – it is often necessary to use optimization techniques or to 

have constant human decision to state if there is damage or not. Besides, the literature points 

out that this type of method requires the use of a significant number of sensors [3,4] or need a 

considerable amount of identified structural mode shapes [5]. 

Conversely, the forward SHM approach does not require the development of 

numerical or analytical models to fit the acquired data [2]. Instead, these techniques aim at 

extracting sensitive information from the measured time-series, using statistical learning 

methods [6]. Compared to the inverse approach, forward SHM methods are more flexible and 

less computationally expensive, since they do not require the development of specific models, 

which must be usually defined for each structural system [7-9]. Besides their computational 

simplicity, this kind of technique is more capable of handling structures subjected to 

operational and environmental effects, since data-based algorithms can reproduce these 

effects more easily when compared to numerical or analytical models. Due to these 

characteristics, one can conclude that the forward SHM approach is more suitable for carrying 

out real-time SHM in large-scale structures [10].  

Forward SHM techniques are frequently addressed with four distinct steps: [6,11] 

1. Operational evaluation; 

2. Data acquisition and normalization; 

3. Feature extraction and data fusion; 

4. Feature classification. 

The first and second steps require the use of structural and sensorial knowledge to 

define the monitoring plan, including the quantities to be measured and the architecture of the 

data acquisition system. The third step comprises the application of signal processing 

techniques to extract representative features from signals and to perform data fusion. Finally, 
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the fourth step aims at applying statistical learning procedures to classify the features as 

related to known or novel structural condition.  

The statistical learning procedures used in the forward SHM techniques can be 

classified as supervised or unsupervised. Supervised learning is applied to cases where a prior 

dataset exist, known as baseline, which is assumed to be the structure’s healthy state. The 

drawback here is evident, since data acquisition during the undamaged baseline period is not 

always possible. The first reason is that most of SHM applications are based on aged 

structures, which may have already endured any structural modification or even damage. The 

second reason is that newly built structures may not present a long enough baseline to allow 

the establishment of a healthy reference state. Conversely, unsupervised learning methods are 

more suitable to SHM since they do not need prior knowledge of long periods of the 

structure’s response nor target categories related to an assumed healthy reference state. 

Despite its rather impractical aspect, almost all forward SHM methods reported in the 

literature are based on supervised approaches [12-16]. Even the works addressing clustering 

methods, which are very well suited for unsupervised methods, report a supervised strategy of 

pre-defining cluster partitions to describe one or more known structural behaviors and, 

subsequently, compare them with new ones [17-19]. However, some recently published works 

[20,21] propose a time-window procedure to extract sensitive features based on a fully 

unsupervised approach that uses clustering methods for performing feature classification. 

Such a methodology allows (i) detecting structural novelties without resorting to previous 

knowledge; (ii) performing real-time identification relying on the detection of novelties upon 

each new acquired data. 

In that way, aiming to turn the feature extraction richer, a novel symbolic data object 

is proposed in this paper, along with a new strategy for defining indexes able to point out 

whether there has been any structural change (novelty detection). Thus, the proposed 

approach is applied to raw measured dynamic signals directly. This paper is organized as 

follows: sections 2 and 3 detail the methodology, presenting the proposed feature extraction 

(step 3) and classification (step 4) techniques, respectively. To assess the methodology, 

section 4 presents the results from two distinct applications of SHM: a railway viaduct, PK 

075+317 in France, and an old masonry tower, in Italy. Finally, section 5 presents a brief 

discussion related to the proposed approach. 
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4.2 Feature Extraction and Data Fusion 

4.2.1 Literature review 

Since raw data (acceleration time-series) are usually unable to provide a clear evidence of 

structural novelty directly, feature extraction is thus required. The feature extraction 

procedure can be understood as a transformation of raw data. The idea is to extract its 

embedded information, resulting in a more compact yet intelligible representation, which is 

still sensitive to structural novelties. Such a procedure yields sets of multidimensional (or 

multivariate) data named feature vectors. In general, high dimensionalities inhibit a proper 

statistical characterization of such features, since long vectors imply higher computational 

costs. Thus, it is highly desirable that feature vectors are as small as possible (both in length 

and in dimensionality) but, at the same time, they must preserve all the intrinsic information 

of the original data about the structure’s condition. Such “compressing” process is named data 

fusion. Therefore, when referring to the process of feature extraction, it should be kept in 

mind that there is also an inherent data fusion procedure. 

The feature extraction procedure is based on the premise that a structural novelty can 

be revealed by at least one of the five basic data descriptors [13,22,23]:  

1. Vibration (raw data, natural frequencies, spectra, etc.); 

2. Expected value (mean, median, mode, etc.); 

3. Variability (variance, standard deviation, covariance or correlation); 

4. Symmetry (skewness); 

5. Flatness (kurtosis). 

The most commonly used features are those obtained through a dynamic modal 

analysis, i.e., natural frequencies and/or mode shapes (damping rations are rarely used due to 

the imprecision in their identification). Nowadays, dynamic parameters can be accurately 

identified without the need of human intervention in a fully automatic approach [24]. 

Nevertheless, even though modal parameters are features of great physical significance and 

provide a huge reduction in the data volume (multiple time series transformed into just a few 

values), several studies show that these features are insensitive to small changes in structural 

behaviors [20,25-29]. 
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Features built over data statistical measures, such as mean values, variance, skewness 

and kurtosis were also used as damage indicators in the literature. For instance, the works of 

Torres [30] and Finotti [31] presented reasonable results when those features were used as 

inputs to unsupervised and supervised classification methods, respectively.  

In the literature, some features that reflect only the variability (third data descriptor) 

were also used, such as those based on Mahalanobis distance [32] and those based on 

Principal Component Analysis [33]. Another feature reported in the literature [20] is the 

autocorrelation vector, known by the acronym ACF (Auto-Correlation Function). These 

objects take into account only the variations in the expected value and in the symmetry (2
nd

 

and 4
th

 descriptors) of the raw data distribution. 

On the other hand, some authors [20,34] chose to employ Symbolic Data Analysis. A 

Symbolic Data Object (SDO) is able to perform a great fusion of information present in 

massive series of classical dynamic data (raw signals), transforming them into a more 

compact, yet rich representation. Additionally, symbolic objects have the capacity to represent 

multivariate (multidimensional) data, such as those collected from multiple instrumentation 

channels in a structural monitoring program. SDO’s are statistical objects with great 

generalization power, such as interquartile ranges and categorical histograms [35]. While the 

former is more compact, but less representative, the latter is more representative, but less 

compact. 

4.2.2 Proposed symbolic data object 

The interquartile range (IQR) has proven to be adequate for forward real-time SHM in an 

unsupervised framework [21]. However, such a symbolic object includes just one of the non-

vibrational data descriptors presented above: variability. To mitigate this limitation, the 

present work proposes a novel SDO, comprising not only the 1
st 

and 3
rd

 quartiles that define 

IQR, but also the median (2
nd

 quartile) of the raw data distribution. For this reason, the new 

symbolic object was named IQRM, where “M” stands for median. This new representation 

provides a richer, yet compact way to characterize raw dynamic signals. 

The IQRM object consists in a hyper-rectangle with a point within. While the facets 

represent the interquartile range (denoted as IQR) of each property (i.e., acquisition channel), 

the point locates the median (denoted as M) of the distribution. For the case of just two 
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properties (two acquisition channels) its geometry collapses into a rectangle with a single 

point, as shown in Fig. 4.1, where Qk,r is the k-th quartile of the r-th property. 

 

Fig. 4.1 Proposed symbolic data object, named IQRM. 

4.2.3 Proposed symbolic distance metric 

Aiming to extract a unidimensional feature sensitive to structural novelties, one proposes a 

new distance metric for unsupervised statistical learning.   

Being Qk,r the k-th quartile of property , where p is the total number of 

properties of the raw data, the vectors containing the quartiles information of all properties of 

object i can be written as shown in Eq. (1): 

1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3
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L M U                                     (1) 

The p-dimensional vectors Li, Mi and Ui gather the 1
st
, 2

nd
 and 3

rd
 quartiles, 

respectively, of each one of the p properties. Hence, one should notice that such a triplet of 

vectors defines an IQRM object completely. 

Now, as one considers a second object, with index j, it is possible to compute the norm 

of the vectors difference, as shown in Eq. (2), where  is the so-called distance vector, whose 

1, 2, 3, … , r p

Δ
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magnitude is the distance di,j between objects i and j, as shown in Eq. (3), where ||•|| stands for 

the Euclidean norm of vector •. 

,

j i

i j j i

j i

 
 
  
 
 
 

L L

Δ M M

U U

                                                       (2) 

, ,i j i jd  Δ                                                               (3) 

Figure 4.2 depicts the geometric representation of these vectors in a 2-dimensional 

space (p = 2) regarding the proposed symbolic distance. 

 

                   (a)                          (b) 

Fig. 4.2 Proposed symbolic distance measurement. (a) Pair of IQRM objects and its relationship; (b) 

distance vector. 

4.2.4 Unsupervised clustering technique 

Let us now consider a time-window comprising two generic raw signals containing 2000 

samples each, as Fig. 4.3 shows. Each signal can be represented by 20 IQRM objects, each 

one containing 100 classical objects (samples). Thus, using the proposed metric, one can build 

a dissimilarity matrix containing the distance values among all pairs of IQRM objects (see 

Fig. 4.4). Each object is represented by its index both in column and in row of such a matrix. 

The diagonal elements are always zero (full black in Fig. 4.4), since they represent the 
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distance values between the same object. Although the direct observation of raw data (Fig. 

4.3) does not allow any conclusion about structural novelties, the distance matrix plot, 

however, clearly suggests the existence of two well-defined behaviors. This conclusion can be 

reached by observing the dark and light blocks of this matrix, i.e., the group of first ten 

objects has a high internal similarity (smaller distances or darker colors) and, at the same 

time, they present a high external dissimilarity from the group of last 10 objects (higher 

distances or lighter colors). 

 

Fig. 4.3 Time-window comprising 2000 bi-dimensional classical objects (samples). 

 

Once the data transformation process is concluded, the k-medoids clustering 

technique
[36]

 is applied. In order to conduct a completely unsupervised approach, a novel 

strategy based on a voting scheme is used to optimally determine the number of clusters k of 

the dataset. The voting scheme is based on four different clustering validation indexes: 

Calinski-Harabasz,
[37]

 Davies-Bouldin,
[38]

 Gap Statistic
[39]

 and Silhouette.
[40]

 These indexes 

aim at determining the optimal number of clusters within a given dataset. Thus, according to 

this process, the most “voted” number k is the one to be adopted. In case of a tie, the lowest 

value of k prevails. 

Once the optimal number of clusters k is defined, the k-medoids method provides the 

results of data partition, pointing out to a single prototype object (medoid) for each one of the 

clusters. In the current example, the voting scheme elected k = 2. Hence, the symbolic data 

objects were labelled as belonging to cluster 1 (blue) or to cluster 2 (orange), each one with its 

own prototype (in gray), as Fig. 4.5 and Fig. 4.6 depict. Fig. 4.5a and 5b show the IQRM 
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objects for each signal in the time domain, whereas Fig. 4.6 shows those objects described in 

their bi-dimensional form (the prototypes are highlighted in black). 

 

Fig. 4.4 Dissimilarity matrix (20×20), computed using the proposed metric. 

 

 

                   (a)                          (b) 

Fig. 4.5 Cluster labels of IQRM objects in time domain: (a) Channel 1 and (b) Channel 2. 

4.2.5 Unidimensional feature 

Finally, in order to quantify the novelty degree found in the current window, a single-valued 

index initially proposed by Santos 
[20]

, named Novelty Index (NI), is computed as the mean 

distance measured among all possible pairs of prototypes, using the same dissimilarity matrix 

already described. For instance, the time-window containing 20 objects shown from Figs 4.3 

to 4.5 would provide a NI value equal to 0.627. It is clear that this value alone does not allow 

concluding if the structure is undergoing a modification or not. However, a series of NI values 

(one per time-window) would suggest if any new structural behavior began to manifest during 

the real time monitoring. Thus, a time-window containing S symbolic objects, each one 

representing L raw data points, moves forward in time, in discrete steps of L. Summarizing, as 



Paper #3 – Unsupervised real-time SHM technique based on novelty indexes. 

___________________________________________________________________________ 

 

75 

a new object is acquired, the time-window index TW is increased by one and a new NI is 

computed. 

 

Fig. 4.6 Cluster labels of IQRM objects in their bi-dimensional representation. 

 

Referring to the previous example, one considered a time-window comprising 5 

objects (S = 5) of 100 points (L = 100). Hence, each time-window would contain 500 raw data 

points (S x L = 500). Figure 4.7 shows the first 12 time-window instants, which are identified 

by the TW index varying from 5 to 16. On the top right corner of each time-window one can 

find the NI value for each instant. While analyzing the history of these values (Fig. 4.8) it 

becomes clear that this single-valued feature suggests an increase in the “novelty” degree of 

the system behavior, which occurs immediately after the acquisition of the 11
th

 symbolic 

object. 

Concerning the choice of the number of symbolic objects in a time-window (S), 

several tests previously performed showed that the minimum value of 5 is sufficient, provided 

that an adequate object length (L) is chosen. The object length can be adopted after critically 

analyzing the trade-off between swiftness and robustness of detection. This means that the 

shorter the object, the faster the analysis. However, some novelties might be missed. 
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Fig. 4.7 Several instants of the time-window movement, highlighting the respective NI values. 

 

 

Fig. 4.8 Series of Novelty Indexes obtained by the feature extraction process within each time-

window instant. 
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4.3 Feature Classification 

4.3.1 First outlier detection index (FDI) 

Despite the interesting comprehension promoted by the NI series (Fig. 4.8), it is still not 

possible to know whether a newly acquired IQRM object represents a structural damage. 

Therefore, feature classification is required.  

The present paper proposes a technique based on an outlier analysis of NI values 

within each time-window. A confidence boundary (CB) is defined as being the upper limit of 

a 99.9% confidence interval, assuming that the data are modelled by a t-student distribution 

with ‘S-1’ degrees of freedom. To compute CB, one adopts the median and the Sn
[41]

 as the 

expected value and the variability estimators for the NI values distribution, respectively. Thus, 

once the NI value exceeds the CB, novelty detection is then characterized.  

For the previous example, the moving time-windows would yield the CB series 

presented in Fig. 4.9. As suspected, a system novelty is detected immediately after the 

acquisition of the 11
th

 symbolic object.   

 

Fig. 4.9 Series of NI and CB values for the illustrative example. 

 

To make the novelty detection even clearer, a First Outlier Detection Index (FDI) is 

computed in each time-window instant, as defined in Eq. (4). Positive values of FDI indicate a 

system novelty (see Fig. 4.10). The “First Outlier” term is because the index is computed 

through a first outlier analysis (over the NI series). 

 TW TW TWFDI NI CB                                                       (4) 
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Fig. 4.10 Series of FDI values for the illustrative example. 

4.3.2 Second outlier detection index (SDI) 

Long-term continuous SHM programs provide massive amounts of data. In most cases, 

environmental and operational conditions may rise up too many false alarms, especially if no 

normalization techniques are applied. To solve this problem, many authors suggest 

performing Principal Component Analysis (PCA) on the raw data, but the vast majority of 

them point out to a supervised empirical framework. Santos et al.
[21]

 also proposed a PCA-

based normalization strategy, but using the broken-stick rule
[42]

 for choosing the most 

appropriate number of principal components related to global effects, such as those caused by 

environmental and operational actions. This strategy relies on the premise that the higher 

eigenvalues of PCA are related to environmental and operational effects. Nevertheless, 

despite the unsupervised content of this approach, there is no absolute certainty that this 

premise is valid for the many different applications to various SHM scenarios.  

For those reasons, the present work proposes the use of an original approach based on 

a Second Outlier Detection Index. It is named SDI since it consists in a second outlier 

analysis, which is performed over the FDI series. Therefore, the expression to compute SDI is 

similar to that of FDI shown in Eq. (4). The difference is that the SDI computation, presented 

in Eq. (5), considers only the last S positive FDI values as primary data, instead of last S NI 

values. In this equation, CBTW is the upper confidence boundary defined in the same way 

shown previously, but considering the last S positive values of FDI. 

 TW TW TWSDI FDI CB                                                         (5) 
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4.4 Experimental applications 

4.4.1 Railway viaduct 

This railway viaduct was built in the early eighties and is located in the southeast of France 

near the cities of Sens and Soucy (Fig. 4.11). It is considered a strategic structure due to its 

fundamental role in connecting Paris to Lyon via high-speed TGV trains. This structure is 

17.5 m long with a single span. Due to resonance manifestations during the train passages, 

this viaduct has undergone a structural intervention in order to get its flexional stiffness 

increased.
[19]

 

 

Fig. 4.11 Image acquired during the TGV pass. 

 

Eight vertical piezoelectric accelerometers were placed on the viaduct deck and the 

acquisition rate was set to 4096 Hz. Each time the train passed over the viaduct, 2 seconds of 

forced vibrations were recorded. This is equivalent to L = 8192 classical data points per 

channel (Fig. 4.12). The monitoring campaign consisted in 13 tests before and 13 tests after 

the structural intervention. The complete raw data history can be seen in Fig. 4.13, where each 

time-window instant is demarcated (TW index from 1 to 26).  

This application aims at testing if the proposed methodology is suitable to detect 

changes in the structure’s behavior. It is important to emphasize that no modal identification 

or data normalization procedures are previously performed. The feature extraction and 

classification are carried out at each time-window directly from the raw signals provided by 

the eight vertical accelerometers. 
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Fig. 4.12 Raw data acquired during a single train passage. 

 

 

Fig. 4.13 Complete raw data history showing each time-window boundary (one TW per train pass). 

 

The proposed approach considers a single IQRM object per dynamic test. Therefore, 

each symbolic object consists of only 24 values (3 quartiles × 8 channels) representing 65,536 

raw data values (8,192 values measured by eight channels, each). This symbolic 

representation yields a “compression” of 2,700 times in terms of data volume. Figure 4.14 

shows the variation of the IQRM objects for the first channel over the 26 tests. The blue 

dashes represent the median values, while the lower and upper limits of the grey rectangles 

represent the 1
st
 and 3

rd
 quartiles, respectively. 
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Fig. 4.14 Sequence of IQRM objects, represented here by their first property (channel). 

 

Figure 4.15 shows the evolution of both NI and CB indexes. One observes that the 

IQRM objects series do not allow concluding whether or when a novelty occurs. However, 

considering a time-window with five objects (S = 5), the NI history highlights the structural 

“degree of novelty” and, finally, the FDI computation shows that the method detected a single 

novelty, which occurred immediately after the 13
th

 instant (Fig. 4.16), i.e., right after the 

structural intervention. 

 

Fig. 4.15 NI and CB values at each instant TW. 

 

These results give an idea of the generalization power provided by the use of IQRM 

symbolic objects. Besides, for the studied case of forced vibrations, the proposed index FDI 

appears to be appropriate for detecting structural novelties, even without the application of a 
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prior normalization procedure. Such detection occurred immediately after the acquisition of 

the first object containing the data expressing the new behavior (TW = 14), which ensures the 

real-time aspect of the proposed method. However, one should notice that, despite the 

unsupervised approach, the first five instants (TW from 1 to 5) had to be used as a short 

training (or initialization) period so that the method could “learn” about the structure’s 

behavior. 

 

Fig. 4.16 FDI values at each instant TW. 

4.4.2 Masonry tower 

This application consists in a long-term continuous SHM. For this reason, the SDI series will 

be used instead of the FDI. The monitored structure is the Gabbia Tower, about 54 meters 

high and the tallest one located in Mantua, Italy. The end of its construction dates to 1227 

according to recent researches 
[43]

. The tower has a near square plan and the load-bearing 

walls, built in solid brick masonry are about 2.4 m thick except for the upper levels, where the 

section decreases to about 0.7 m, as shown in Fig. 4.17. 

After preliminary ambient vibration tests, a simple continuous dynamic monitoring 

system was installed in the tower. It consists of three piezoelectric accelerometers mounted on 

the cross-section at the crowning level of the tower. A binary file containing three 

acceleration time series is created every hour. The recorded accelerations were low-pass 

filtered, using a classic seventh-order Butterworth filter with a cut-off frequency of 20 Hz, 

and decimated five times, reducing the sampling frequency from 200 Hz to 40 Hz.
[44]
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(a) (b) 

Fig. 4.17 Gabbia tower: (a) floor plans, section and (b) recent photography. 

 

For this application, a 14-day monitoring period (from 15
th

 to 28
th

 of June, 2013) of 

continuously acquired acceleration time series was used. The purpose is to check if the 

proposed routines are able to detect the structural novelty caused by a seismic event occurred 

in 21/06/2013, just by resorting to raw data without signal normalization. Fig. 4.18 shows a 

typical raw data continuously acquired during a period of 5 days, in June of 2013. In fact, just 

by checking the three acceleration signals, it is not possible to confirm the existence of an 

abnormal structural behavior. Thus, again, the method is supposed to extract IQRM objects 

from raw data.  

 

Fig. 4.18 Sample of five days of continuous monitoring (3 channels). 
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To provide promptness in detection, each IQRM object is composed of L = 25000 raw 

data samples that corresponds to 10 minutes of acquisition, approximately. Fig. 4.19 depicts 

the IQRM series for the first day of monitoring (15/06/13) considering one property (channel) 

only. It is interesting to observe how the structure behaves in different intensities during the 

day: at dawn, the acceleration level is the lowest; in the morning, those levels start to increase 

until noon, when they keep their intensity until they reach another peak at the beginning of 

night when, again, it starts to decrease to the minimum level. Traffic-induced vibrations 

nearby the structure probably explain that pattern. 

 

Fig. 4.19 One day of acquired IQRM objects represented by their first property (channel). 

 

Again, each time-window comprises just the minimum of five objects (S = 5), which is 

equivalent to 50 minutes of acquisition, approximately. Figure 4.20 shows the results for both 

NI and its 99.9% confidence boundary (CB) series over the 14 days. 

From Fig. 4.20, it is not possible to observe if any structural novelties have occurred. 

Hence, in the sequence, the FDI values are computed together with its 99.9% confidence 

boundary (CB series). The result is presented in Fig. 4.21, where a single novelty becomes 

evident. Alternatively, this conclusion could also be drawn from Fig. 4.22, through the SDI 

series. One should notice that the proposed index presented a single positive value, which 

corresponds exactly to the seismic event that occurred in 21/06/13.
[43,44]
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Fig. 4.20 NI and CB series generated in 2 weeks of continuous monitoring. 

 

 

Fig. 4.21 Two-week history of First Order Detection Index (FDI). 

 

From Fig. 4.21, one notices that the FDI pointed out to 31 false alarms. Conversely, 

the proposed SDI detected just the one positive value, which occurred immediately after the 

acquisition of the symbolic object containing the novel structural behavior. Additionally, the 

adaptiveness of the SDI to the new system condition can be observed while the CB values 

decrease during approximately two days after the novelty occurrence. After such “recovery 

period” (days 22 and 23), the method is able to detect another abnormal behavior. 
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Fig. 4.22 Two-week history of Second Order Detection Index (SDI). 

4.5 Conclusion 

This paper proposed a fully unsupervised and adaptive methodology capable to detect 

structural novelties accurately using raw dynamic data directly. To this end, it was employed 

a new representation for raw dynamic signals, i.e., accelerations, based on an original 

symbolic data object (SDO). The SDO comprised all four data descriptors, such as expected 

value, variability, symmetry and flatness. Such a representation provides a richer, yet compact 

way to characterize raw dynamic measurements. Moreover, a statistical learning procedure 

based in the k-medoids technique was used to generate the single-valued feature named NI 

(Novelty Index). From the NI series, the First Outlier Detection Index (FDI) was then 

obtained, from which the Second Outlier Detection Index (SDI) could be computed.  

With the results obtained from the two real SHM application cases, one can infer that 

the proposed methodology has two variants: the first one defines FDI as the novelty indicator, 

which seems to be appropriate to short-term monitoring cases, like the one of the studied 

viaduct. The second one defines SDI as a more capable detection index as it seems to be more 

robust to continuous long-term SHM, like the masonry tower case. Indeed, the FDI requires a 

shorter initialization period (Fig. 4.16). On the other hand, it rises up too many false alarms in 

long-term continuous SHM (Fig. 4.21). The SDI, however, requires a longer initialization 

period and may not suitable for short-term SHM. At the same time, it seems to be robust 

enough to perform long-term SHM without revealing too many false alarms or missing real 

damage scenarios (Fig. 4.22). 
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Chapter 5 

Paper #4 – Automated real-time damage 

detection strategy using raw dynamic 

measurements 

5 Paper #4 – Automated real-time damage detection strategy using raw dynamic measurements 

This chapter presents the most recent paper written during this thesis.  In this paper, an 

original symbolic object is proposed to enrich the signal's representation. Such a description 

embraces both temporal and spectral aspects of the raw data. Unsupervised pattern 

recognition procedures are performed to yield an instantaneous damage-sensitive index. The 

results obtained suggest that the developed technique is accurate and robust to detect even 

small damage. With this strategy, the objective related to the second approach of this 

thesis, i.e., to develop an automatic, unsupervised and real-time damage detection 

method based on raw measurements is achieved. This paper was submitted to the journal 

“Engineering Structures”. 
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Abstract 

Over the last decades, several techniques have been developed in the context of Structural 

Health Monitoring (SHM) programs. However, when it comes to novelty (or damage) 

detection, these methods are inevitably based on human decisions. Moreover, most of the 

strategies already published in this topic mainly focus on modal identification procedures and 

tracking their outputs i.e., structural modal parameters. Such approaches usually lead to high 

computational costs and can still be insensitive to minor changes in structural behavior, thus 

missing crucial damage scenarios in their initial manifestations. To circumvent these 

drawbacks, recent researches showed that the use of symbolic representations derived directly 

from raw time-domain data (e.g. acceleration measurements) could provide more damage-

sensitive responses with lower computational effort. Indeed, good results have been achieved 

by representing raw measurements in terms of their statistical distributions over time. 

Nevertheless, the lack of information regarding the frequency spectrum represents a decisive 

drawback. Therefore, this paper presents a novel symbolic object, which considers both time 

and frequency responses of structural dynamic measurements. Then, the proposed 

methodology employs a k-medoids clustering over such objects within a moving time-

window framework and uses a single-valued index to indicate whether a novelty is present in 

the acquired data. Two practical studies – a 3D frame tested in laboratory and a motorway 

bridge – show that the proposed approach provide an unsupervised and adaptive scheme for 

SHM applications. 

5.1 Introduction 

The existence of a SHM program on strategic structures like viaducts, bridges, ageing 

buildings and towers can be crucial for preventing disasters. Damage-related information 

extracted from the structural behavior may save lives and avoid great economical losses. A 

recent example of disaster occurred in Genoa, Italy (August 14, 2018), where a cable-stayed 

bridge collapsed leaving 43 people dead. The southern stays (from one tower) that initially 

went slack are the same where damage was possibly found during dynamic tests performed 

almost one year earlier 
[1]

. 

This example shows the utmost importance that SHM programs have to complement 

or even replace human inspections. Ideally, such a monitoring procedure must work 
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automatically and continuously providing updated sensitive information about the structure’s 

condition. Besides, to reduce maintenance costs and prevent social, physical and economical 

losses from structural collapses, it is fundamental that such algorithms are able to readily 

detect abnormal dynamic behavior (novelty) or even damage in its early manifestations.  

Recent technological advances allowed the construction of reliable, accurate and 

efficient monitoring equipment that can be remotely configured and operated. This fact 

encouraged the development of specific software and the installation of dynamic monitoring 

systems in a considerable number of structures abroad.  

The acquired raw data (usually acceleration measurements) can be processed in many 

different ways to provide damage-sensitive features. In general, the literature presents two 

different SHM strategies for damage detection: inverse (model-based methods) and forward 

(data-driven methods).  

Model-based methods generally require the user to have a deep knowledge of the 

structure’s behavior, usually including a well-tuned Finite Element model corresponding to 

the assumed healthy state of the system. Indeed, it is not a simple task to fit an FE model (or 

an analytic model) to the acquired data by using a limited number of sensors from an actual 

SHM. Struggling to achieve that, many physical parameters must be adjusted via optimization 

routines, but yet with considerable human/computational effort and several subjective 

decisions. Consequently, the problem becomes typically nonlinear and non-unique. 

Furthermore, the literature points out that this type of method requires the use of a large 

number of sensors 
[2,3]

 and usually needs a considerable amount of mode shapes to be 

identified 
[4]

, including local ones. Even the state-of-the-art 
[5-7]

 of this kind of approach is not 

suitable for automated real time damage detection in SHM. 

Conversely, forward strategies are capable of handling significant structural 

complexity with relative low computational cost, depending only on the acquired signals and 

their subsequent processing, which fundamentally consists in two steps: feature 

extraction/data fusion and feature classification. Thus, model construction/fitting and 

updating for each single structural system being monitored are unnecessary. Moreover, this 

type of methodology is capable of handling output-only information i.e., structural responses, 

without requiring the measurement of external excitations, such as operational and 

environmental effects.  
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Despite that, most of the data-driven methods referred in the literature are still based 

on supervised statistical learning procedures, 
[8-15, 20]

 since they require long periods of 

training, known as baselines, during which the structure is assumed to be in its healthy state. 

Such an assumption is not always true or even possible. On one hand, most of SHM 

applications are performed on aged structures, which may already have endured structural 

modifications or even damage. On the other hand, newly built structures may not present a 

long enough baseline period to allow the correct establishment of a healthy reference state.  

As an early attempt to detect damage, many of published techniques depended on 

modal information i.e., natural frequencies, damping rations and mode shapes. Nevertheless, 

although modal frequencies and shapes are deeply related to the mechanical behavior of 

structures (mass and stiffness), they are not sensitive enough to detect small novelties in the 

system (e.g. early damage). The main reason is that most of these abnormalities are local and, 

therefore, do not impact significantly on the first vibration modes, which are estimated, in 

general, with best precision 
[16]

.  

To avoid this limitation, instead of relying on the analysis of modal parameters, some 

recently published methods propose the use of raw time-domain data (e.g. acceleration series) 

represented by means of Symbolic Data Objects (SDOs). This type of approach is gaining 

special attention over the last five years 
[13, 17-20]

 due to the great power of data fusion 

provided by SDOs. Indeed, such a representation allows the efficient manipulation of large 

amounts of data with low computational effort while keeping the original information 

sufficiently preserved. 

Such methods are generally based on machine learning strategies, usually represented 

by classification techniques. However, some of them are still dependent on long damage-free 

baseline periods (supervised approach)
 [13, 20]

. Besides, they are frequently based on the prior 

knowledge of the structure’s behavior: past, present and future. Therefore, they are not 

suitable for the SHM purpose as previously mentioned, which is the real-time unsupervised 

monitoring. 

One of the most promising approaches proposed in 2017
 [18]

 was based on previous 

researches published in 2014 
[17]

 and 2015 
[19]

. It consisted in an unsupervised machine 

learning procedure over SDOs. To enforce the “real-time” character to the method, a time-

window process was employed to extract updated single-valued damage indexes. Firstly, raw 

data was written in a Principal Component (PC) basis. In the sequence, the PC series was 
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truncated using the broken-stick rule (in an attempt to remove environmental related 

influences). Then, they were fused into interquartile ranges (IQR), which was adopted as the 

SDO representation. Thus, the SDOs underwent a hierarchical clustering analysis. For that 

purpose, within each time-window, the distance matrix was computed using the normalized 

Euclidean Ichino-Yaguchi 
[21]

 symbolic metric. The number of clusters was automatically 

chosen by using the Silhouette validity index 
[22]

. Finally, an outlier analysis was performed to 

generate a single-valued index. Nevertheless, it is worth mentioning that even though the 

method was indeed promising, their study was not validated with applications of actual 

experimental cases of SHM. Instead, only numerical simulations were used to generate data. 

The present paper proposes a fully automated unsupervised real-time SHM method for 

damage (or novelty) detection. The proposed approach starts from the premise that structural 

novelties affect both time and frequency domain responses. Thus, an original SDO (richer 

than IQR) comprising these two information domains is designed. Naturally, due to the new 

SDO special characteristics, a suitable distance metric is also proposed. The k-medoids 

technique is chosen due to its attested robustness 
[23]

. Finally, aiming at detecting damage, a 

new procedure to obtain a single-valued index is also explained.  

This paper is organized as follows: Section 5.2 (data fusion / feature extraction) 

presents the newly proposed symbolic object along with a suitable distance metric and the 

procedure to obtain a scalar feature, which value is proportional to the structural changes. 

Section 5.3 (feature classification) shows how the time series of such features go through an 

outlier analysis to generate a single-valued damage index, which points out whether a damage 

(or novelty) has occurred. The proposed methodology is assessed through two experimental 

tests performed on real-scaled structures subjected to ambient vibration (Sections 5.4 and 5.5). 

Finally, Section 5.6 draws conclusions and comments on the overall strategy’s performance. 

5.2 Feature Extraction and Data Fusion 

5.2.1 Extraction of symbolic data objects 

A usual SDO applied to Civil Engineering SHM is the Interquartile Range 
[17-19]

, herein called 

IQR object. In fact, such a SDO represents the statistical distribution of the amplitudes of the 

original signal (raw data) in a very compact form by simply using two values per measuring 

channel: the 1
st
 and 3

rd
 quartiles. Alternatively, a richer way to describe such data is through 
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histograms, where a higher number of divisions (classes) implies a more detailed (yet more 

massive) representation 
[13, 20]

. 

Nevertheless, none of these SDOs takes into account the information contained in the 

frequency spectrum of the original data. Indeed, as the SDOs perform the data fusion 

exclusively in the time domain, they miss relevant information related to the frequency 

domain. 

This paper proposes a more complete SDO that embraces both time and frequency 

information of the original data. The time aspect is represented by the three quartiles of the 

amplitude’s distribution of the raw acceleration signals. The frequency aspect is characterized 

by the three quartiles of the vibrational energy distribution expressed in the frequency 

spectrum (e.g. Power Spectrum Density) of the raw acceleration measurements.  

For reference purposes, the new SDO is onwards named Time-Frequency IQRM 

object (TF-IQRM), where IQR stands for the Interquartile Range, i.e. the difference between 

the third and the first quartiles (Q3 and Q1); and M stands for the median, i.e. the second 

quartile (Q2). Moreover, the superscripts T and F indicate whether the quantity refers to time 

or frequency domain, respectively. 

Figure 5.1 illustrates how to obtain the TF-IQRM object from raw data. In this 

example, the signal consists in a single numerically generated acceleration time history. Let 

the number of channels and the SDO length be denoted by p and L, respectively. Thus, for 

this particular example, p=1 and L=10 s. The signal is sampled at 102.4 Hz (fs=102.4 Hz), 

yielding L=1024 sampling points. 

Thus, two triplets of quartiles compose the novel SDO: one for the time domain 

1 2 3, ,T T TQ Q Q    and the other for the frequency domain 
1 2 3, ,F F FQ Q Q   . 

The quartiles related to the time domain are computed over the statistical distribution 

of the amplitude values of the raw signal. The upper-right plot of Fig. 5.1 shows a histogram 

of such a distribution along with the representation of the three correspondent quartiles. This 

exemplifies how data fusion takes place, since only three values represent 1024 points. 

Complementarily, the frequency content is evaluated through the Fast Fourier 

Transform (FFT). This present case has 1024 FFT points (N=2
10

).  The information 

concerning the energy distribution along the spectral range is expressed by its three quartiles 
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(bottom-left plot of Fig. 5.1). Thus, besides its fusion power (1024 values down to just 3), 

such quartiles also allow the SDO to be sensitive to frequency shifts and redistributions of the 

vibration energy. In other words, the quartiles divide the spectrum into four regions with 25% 

of vibration energy each (analogy to the area below the curve). If the peaks are too sharp, the 

quartiles tend to fall near them. 

 

Fig. 5.1 The process to obtain the proposed SDO. 

 

Thus, for this example, the original signal containing 1024 points is symbolically 

represented by only six values comprising both time and frequency aspects, which constitute 

the TF-IQRM object. 

For the case of a set of signals with an arbitrary number of channels p, the TF-IQRM 

object is represented by two triplets of p-dimensional vectors: one triplet for the time domain 

and another for the frequency domain, yielding six p-dimensional vectors. Let Qk,r be the k-th 

quartile of channel , where p is the total number of channels of the raw data. 

The vectors containing the quartiles information of all channels of test i are expressed in Eqs. 

(1) and (2). Note that the p-dimensional vectors Li, Mi and Ui gather the first, second and 

third quartiles, respectively, of each one of the p channels.    

1, 2, 3, … , r p
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Geometrically, the TF-IQRM object consists in a pair of hyper-rectangles with a single 

point inside each one of them. The hyper-rectangles are related to both time and frequency 

domains. While the facets represent the interquartile range (IQR) of each channel, the point 

indicates the median (M). For the specific case of just two channels (p=2) its geometry 

collapses into a pair of rectangles with a single point inside, as shown in Fig. 5.2.  

 

Fig. 5.2 Representation of a TF-IQRM object with two channels. 

5.2.2 Dissimilarity between Symbolic Data Objects 

The feature extraction procedure relies on the knowledge of the dissimilarity degree of 

patterns expressed in the SDOs. To do so, the distance measure di,j between the TF-IQRM 

objects i and j is defined by an original symbolic metric: 
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The distance metric shown in Eq. (3) comprehends the sum of two dimensionless 

fractions. While the first one accounts for the dissimilarity in the time domain, the second one 

accounts for the dissimilarity in the frequency domain.  

The quartiles of the frequency spectrum (Eq. (2)) are considered in this work as being 

the indexes of the FFT coefficients and, therefore, are dimensionless. One could alternatively 

consider such quartiles as actual frequency values (in Hz). However, in this case, the sampling 

frequency (fs) should be used instead of N in Eq. (3). Thus, the distance metric would remain 

compatible in terms of units. Moreover, the proposed distance measure fulfills the 

requirements for being a valid symbolic metric, which are: 

 Symmetry: the metric always generates a symmetric dissimilarity matrix, i.e. di,j = dj,i 

for any i and j; 

 Non-negative distances: the metric always provides values equal or greater than zero; 

 The metric always provides a null distance measure when a SDO is compared to itself, 

i.e. di,j = 0 when i = j, which generates zeros in all diagonal elements of the distance 

matrix. 

A graphical description of the proposed distance metric is depicted in Fig. 5.3 

considering a 2-channel signal. While Fig. 5.3a shows two objects with their related vectors, 
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Fig. 5.3b shows the graphical interpretation of the distance vector involved. Indeed, the 

relationship is the same either for the time or the frequency hyper-rectangles (or rectangles in 

this case), being expressed by Eqs. (1) and (3) – time – and by Eqs. (2) and (4) – frequency. 

  

(a) (b) 

Fig. 5.3 Graphical interpretation of the proposed metric. (a) Pair of TF-IQRM objects and their 

relationship; (b) distance vector. 

5.2.3 Prototypes’ choice 

The proposed methodology encompasses a procedure of pattern recognition within a time-

window, which is based on partitioning the SDOs according to their similarity. Such a 

procedure is carried out by applying the k-medoids clustering technique 
[23]

, which has shown 

to be more robust than k-means and hierarchical clustering algorithms 
[17]

.  

Within a time-window, the k-medoids algorithm gathers the SDOs into groups with 

high similarity expressing the same pattern or behavior. Each group is represented by one 

prototype 
[23]

, which is the cluster’s medoid SDO (i.e., the object that has the minimum sum 

of distances to the rest of other intra-cluster objects).  

To perform the prototype’s choice, the clustering algorithm needs two input quantities: 

the dissimilarity matrix and the number of partitions k. The former is obtained from Eq. (3) 

including all possible pairs of SDOs within a time-window. The latter is automatically chosen 

by the clustering validity index Calinski-Harabasz 
[24]

. 
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5.2.4 Extraction of unidimensional feature 

The last step for the feature extraction procedure is to obtain a unidimensional quantity 

capable of measuring the degree of novelty present within a time-window. Such a feature is 

called Novelty Index (NI) and is herein defined as the largest distance between all possible 

pairs of prototypes by means of the distance matrix already defined. Hence, considering a 

time-window containing S SDOs, the NI is computed as: 

, 1 2NI max( )    , , , ,i j kd i j t t t                                            (6) 

where di,j is the distance calculated using Eq. (3) and t1, t2, ..., tk are the indexes of SDOs 

assigned as being the prototypes of each one of the k clusters, with k ∈ [2, S-1]. 

It is worth mentioning that the NI values are always positive, since they are directly 

obtained from distance values.  

5.2.5 Schematic overview 

To better illustrate the entire process to obtain the NI value, let us consider the following 

example: Figure 5.4 shows a time-window of a two-channel signal containing 10000 raw data 

points (1). The procedure starts with the extraction of the SDOs, as presented in section 2.1. 

In this example, the signal is represented by 5 SDOs (S = 5), each one with 2000 points (L = 

10000/5 = 2000) (2). In the sequence, the dissimilarity between the SDOs is computed 

according to section 2.2 to generate a 5x5 distance matrix (3), depicted as a gray-scaled 

image. The closer to white, the higher the distance between two SDOs. At this point, the 

choice of prototypes is performed. To do so, the k-medoids clustering technique is applied as 

established in section 2.3. In this case, k=2 and the chosen prototypes are the second and 

fourth SDOs (4). Finally, the NI extraction is performed by evaluating the largest distance 

between the prototypes as explained in section 2.4. In this case, as there are only two 

prototypes, the distance between them is the NI itself (5). 
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Fig. 5.4 Schematic overview of the unidimensional feature extraction. 

5.3 Feature Classification 

A powerful data fusion was achieved (as shown in section 2) by extracting the TF-IQRM 

objects from raw data and proceeding to the NI computation. Thus, a time-window 

comprising thousands of points is represented by a single value, which is proportional to the 

novelty degree. However, this isolated value is insufficient to establish precisely whether 

there is any structural change or damage. For instance, the time-window presented in Fig. 5.4 

has a NI value equal to 0,484. Is that feature pointing out to any damage (or novelty) within 

the analyzed time-window? The answer is provided by what is called feature classification. 



Paper #4 – Automated real-time damage detection strategy using raw dynamic measurements. 

___________________________________________________________________________ 

104 

5.3.1 Confidence boundary 

Similar to what was presented in 
[17]

, this paper suggests the tracking of successive NI values 

as the time-window advances over time. Hence, as a NI series is generated, an outlier analysis 

of their values is performed. If the newly evaluated NI is greater than the upper confidence 

boundary (named CB), a novelty detection is triggered.  

To keep the unsupervised premise, such confidence boundary is not defined through 

the knowledge of a long undamaged baseline period. Instead, this limit is dynamically defined 

within each time-window by considering the last S values of NI as samples. It is assumed that 

the undamaged behavior would generate a t-Student distribution with S-1 degrees of freedom 

of NI values, instead of normal distribution, due to the small sampling population. 

Thus, the upper confidence boundary defined within the time-window with index TW 

is defined as: 

   

 
1, 99.9%

E NI E NI
CB E NI t ,

TW TW
TW STW

S


  
                                (7) 

where E[NI]TW is the expected value of NI within the time-window TW; t[S-1, 99.9%]  is the 99.9 

percentile of a t-Student distribution with S-1 degrees of freedom and E[NI-E[NI]TW]TW is the 

variability, i.e. the expected value of the variation of NI values from its expected value 

E[NI]TW. 

For robustness, the median (or the 50
th

 percentile) estimator is used as the expected 

value of the NI population once it achieves the maximum possible breakpoint i.e., 50%. In the 

same way, a robust estimator for the variability is adopted as being the Sn estimator proposed 

by Rousseuw and Croux 
[25]

. Such assumptions can be formally described as: 

 E NI med( )   ;   1,...,iTW i
NI i TW S TW                                     (8) 

and 

   E NI E NI 1.1926 med med NI NI   ;  , 1,...,n i jTW TW i j
S i j TW S TW                 (9) 

where { } stands for an array and 1.1926 is a factor defined in [25] with the objective of 

making this estimator consistent with Gaussian populations. 
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Hence, by substituting the statements of Eqs. (8) and (9) into Eq. (7), one obtains: 

 

 
Variability

Expected Value

1, 99.9%

1.1926 med med NI NI

CB med( ) t  ; , 1,...,
i j

i j

TW i S
i

NI i j TW S TW
S





          (10) 

5.3.2 Detection index 

Finally, the Detection Index (DI) related to newly acquired SDO with index TW is defined as: 

 DI NI CBTW TW TW                                                     (11) 

Therefore, if DITW is positive, a damage (or structural novelty) is said to have occurred 

in the SDO with index TW. Thus, the alarm is expected to sound almost in real-time, with the 

maximum delay equal to L, which is the length of the newly acquired SDO. 

The time delay until the first DI computation is called initialization period, rather than 

baseline period. It has the duration of (S+1)L and is further explored in the following section. 

5.3.3 Overall scheme of methodology 

This section provides an illustrative example to clarify the concept behind both CB and DI 

values. It also summarizes the entire methodology for damage detection proposed in this 

paper.  

Let us consider the same case showed in section 2.5 under continuous monitoring, 

generating a sequence of time-windows. This provides, purposely, a series of NI values. At 

each NI computation described in section 2, a CB value is also computed using the “memory” 

of the last S NI values, as shown in section 3.1. Whenever NI surpasses CB, damage is 

immediately characterized (DI positive), as described in section 3.2.  

The history of such a continuous monitoring is depicted in Fig. 5.5, where time-

windows comprising five 2-channel SDOs of 2000 points (S=5 and L=2000) are used to 

perform a clear damage detection, which occurred immediately after the acquisition of the 

11
th

 SDO. It is worth noting that the first NI value is computed only when the time-window 

accumulated S SDOs (TW=5, displayed in red). From that moment, after L/fs seconds, a new 

SDO is extracted and a new time-window is defined (TW=6, displayed in green). Again, a 
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new value of NI is computed. However, since two values are available, a CB and a DI are also 

calculated (TW=6). 

 

Fig. 5.5 Schematic overview of the entire methodology. 

 

By means of the monitoring history of Fig. 5.5, it is possible to see that the Novelty 

Index grows so sharply right after the acquisition of the 11
th

 SDO that it falls out of the 99.9% 

confidence interval, which alarms for a new behavior (delayed L/fs seconds from the actual 

occurrence). After S-1 new SDOs (TW=15), when the old behavior is no longer within the 

time-window, the NI drops back to its usual values. This shows the adaptiveness and 

responsiveness of the proposed technique. 
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5.4 Application 1: Yellow Frame 

5.4.1 Test description 

The tested structure, named Yellow Frame, shown in Fig. 5.6, is a 4-story, 2-bay by 2-bay 

steel-frame scale-model (1/3) located in the Earthquake Engineering Research Laboratory at 

the University of British Columbia (UBC), in Canada. The structure was mounted on a 

concrete slab just outside of the structural testing laboratory on the UBC campus to simulate 

typical ambient vibration conditions. The nine columns are bolted to a steel base frame 

encased in the concrete slab. The experimental data described and used in this section are 

publicly available at [26]. 

  

(a) (b) 

Fig. 5.6 Tested frame structure: (a) braced and (b) unbraced. 

 

The structure is 2.5 m × 2.5 m in plan and is 3.6 m tall. The members are hot-rolled, 

grade 300W steel (nominal yield stress 300 MPa). The sections are specifically designed for 

this scale model test structure. The columns are B100x9 sections and the floor beams are 

S75x11 sections. Figure 5.7 shows the typical beam-column connection and the bracing 

system. Figure 5.8 presents the plan view and the east view of the structure. 
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(a) (b) 

Fig. 5.7 Zoom at (a) bracing and (b) mass placement. 

 

In each bay, the bracing system consists of two ½-inch diameter steel rods placed 

parallel along the diagonal. To make the mass distribution reasonably realistic, one floor slab 

is placed in each bay per floor: four 1000 kg slabs at each of the first, second and third levels, 

four 750 kg slabs on the fourth floor (see Fig. 5.7b and 8a). 

Since the structure’s establishment, several experiments were carried out, including: 

ambient vibration tests, impact tests and shaker tests. To assess the capability of the proposed 

approach applied to continuous monitoring, only the ambient vibration tests were used. 

Therefore, the excitations were due to wind, pedestrians and traffic in the vicinities of the 

structure. Further details about the experiment setup can be found in [26] and [27]. 

Fifteen accelerometers (FBA and EPI sensors, 0-50 Hz frequency range, sensitivity of 

5 V/g) were placed throughout the frame, three by each floor including the ground level. Such 

transducers were placed so as they could measure the motions in all directions and also 

torsional modes (Fig. 5.8a). Anti-aliasing filter cutoff of 50 Hz was used and the data was 

sampled at 200 Hz. 

To create different scenarios, two structural conditions were considered: braced and 

unbraced (Fig. 5.6). All possible cases are described in Table 5.1. Damage cases (1 to 6) were 

imposed to the braced structure by removing or placing braces gradually as shown in Fig. 5.9. 

In order of acquisition, cases 1, 5, 4, 3 and 2 simulate gradual damage on the bracing system. 

Finally, case 6 corresponds to the repair of several braces and damage of some others in a 

different face. 
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(a) (b) 

Fig. 5.8 Tested structure: (a) plan view and (b) east view. 

 
Table 5.1: Tested configurations. 

Case Configuration 

1 Fully braced configuration. 

2 All east side braces removed. 

3 Removed braces on all floors in one bay on southeast corner. 

4 Removed braces on 1st and 4th floors in one bay on southeast corner. 

5 Removed braces on 1st floor in one bay on southeast corner. 

6 Removed braces on 2nd floor on north face. 

7 All braces removed on all faces. 

8 Configuration 7 + loosened bolts on all floors at both ends of beam on east face, north side. 

9 Configuration 7 + loosened bolts on floors 1 and 2 at both ends of beam on east face, north side. 

 

The unbraced frame had gradual damage simulated by loosening the bolts at beam-

column connections, as depicted in Fig. 5.10 and 5.11. Cases, 7, 9 and 8, in this order, define 

the progression of damage. 
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Case 1 Case 5 Case 4 

   

Case 3 Case 2 Case 6 

Fig. 5.9 Braced structure: cases 1 to 6. 

 

 

   

Case 7 Case 9 Case 8 

Fig. 5.10 Unbraced structure: cases 7 to 9. 
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Fig. 5.11 Photograph showing typical loosened bolts at beam-column connection (cases 8 and 9). 

5.4.2 Results 

In both tested structures, braced and unbraced, the number of SDOs per time-window and the 

number of terms of FFT is set to S=5 and N=2
13

, respectively.  

Firstly, the braced structure was subjected to continuous monitoring and had its data 

processed by the proposed technique. Since each damage case is 60000 points (300 s) long 

(except for the case 6: 30000 points), a time-window containing half of this length was 

considered reasonable. Thus, the SDO length was set to L=6,000 (30 s), so as to generate a 

time-window with length S.L=30000 points (150 s). The results of such continuous 

monitoring are depicted in Fig. 5.12. 

The first plot of Fig. 5.12 shows the history of the acceleration signals (15 channels 

each). Magenta vertical lines indicate the limits between cases, i.e. inflicted damage. It is 

worth mentioning that the wide variation in terms of response amplitudes is mainly due to 

different levels of ambient excitation of the tested scenarios (more or less wind and traffic).  

While examining the second plot, it is interesting to notice the adaptiveness of both NI 

and CB values by observing their history. For instance, the NI values increase sharply just 

after the damage occurrences and then quickly decrease after a certain period. Also, note that 

the damage occurrences are revealed in the NI series as well-defined “peaks”. 

The third plot shows the DI series. Again, the method correctly detects four out of five 

inflicted damage with the time delay of just 30 seconds. Besides, no false alarms were 
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sounded.  Only the first damage was not detected due to the small height of the NI “peak” 

(TW=11 to 14) in comparison to the large fluctuations in NI values before the damage 

occurrence, which increased the CB.   

 

Fig. 5.12 Damage detection of braced structure, using S=5 and L=6000. 

 

 

Fig. 5.13 Damage detection of unbraced structure, using S=5 and L=10000. 
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Similarly, the unbraced structure was subjected to continuous monitoring, but with the 

object length set to L=10,000. The results can be seen in Fig. 5.13. The two cases of stiffness 

loss in beam-column connections simulated by loosening bolts were clearly detected, as 

depicted. No false alarms were sounded. 

Despite the encouraging performance of the proposed approach, the choice of the SDO length 

can still be tuned to improve damage detection. To explore this topic, the following section 

presents a sensitivity analysis. 

5.4.3 Sensitivity analysis 

The length of the SDO affects the quality of damage detection. Figures 5.14 and 5.15 show, 

respectively, the results obtained from the two structures using different object lengths. 

Complementarily to what was previously presented, the tested lengths are: 1000, 3000, 6000 

and 10000 points, corresponding to 5, 15, 30 and 50 seconds, respectively. 

It is noticeable that false alarms (red crosses) are more prone to occur as the SDO 

length decreases. Such a phenomenon is quite natural, since the SDO is carrying little 

information. As a consequence, the use of short SDOs leads to many alarms (positive DIs), be 

they real or false. However, this type of SDOs has the advantage of better accusing the 

occurrence of damage in a shorter time delay, almost instantaneously. 

Conversely, the use of longer SDOs leads to more accuracy, i.e. the rate of real alarms 

compared to false alarms rises significantly. However, as they surpass a certain length, which 

is difficult to determine, they tend to be prone to miss small damage scenarios.  

These explanations highlight the essence of the behavior of the detection method when 

one adopts different SDO lengths. In some way, this “logic” helps guiding the user. 

Nevertheless, even if the user has doubts about the definition of such a parameter, fair results 

can be achieved, as already shown in Figs 5.12 to 5.15. 

The other parameters, i.e. the number of SDO per time-window (S) and the number of 

FFT terms (N) are kept fixed for all method applications and, therefore, do not need to be 

tuned. 
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Fig. 5.14 Damage detection of braced structure, using S=5 and L=1000, 3000 and 10000, respectively. 

 

 

Fig. 5.15 Damage detection of unbraced structure, using S=5 and L=1000, 3000 and 6000, 

respectively. 

5.5 Application 2: Concrete Bridge 

The PI-57 Bridge is a double-deck bridge located near the town of Senlis in France, crossing 

the Oise River and carrying the A1 motorway, which connects Paris to Lille (Fig. 5.16). The 

bridge, a 116.50 m long, cast-in-place, post-tensioned segmental structure built in 1965, 
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consists of three continuous spans of 18.00, 80.50 and 18.00 m. The two lateral spans play the 

role of counterweights. 

 

Fig. 5.16 Monitored bridge, over Oise River, France. 

 

This structure encountered several problems during and after construction, causing 

localized cracks and increasing deflection in the middle of the span. These problems were 

mainly due to insufficient prestressing caused by the effects of shrinkage, creep and the 

thermal stresses that were not taken into account during the design and construction (the 

knowledge of this type of constraint was limited at the time of construction). Due to the 

potential risk of cracks in the deck, numerical studies have shown that the long-term safety of 

the structure could have been affected if a corrective action was not taken quickly. Based on 

these technical assessments and considering the importance of the structure, SANEF (Société 

des Autoroutes du Nord et de l’Est de la France) decided to reinforce the two decks. Thus, 

two acquisition campaigns have taken place: one before the reinforcement, between October 

2008 and April 2009, and the other after the reinforcement, between October 2009 and April 

2010. 

The monitoring system counted only on ambient vibrations, due to wind and traffic. 

Sixteen piezoelectric accelerometers (Bruel & Kjaer 4507B-005 with sensitivity of 1 V/g, 

frequency range from 0.4 to 6000 Hz, maximum operational level of 75 g, temperature range 

from -54 to +100 °C) have been installed on the bridge deck (Lille/Paris – Fig. 5.17). For the 

acceleration recording, a data programmable controller Gantner E-PAC DL was used and 

connected to an 8 GB USB flash drive. Data were transferred by a TCP/IP modem. 

Accelerations were filtered within the 0–30 Hz frequency range and sampling was set to 0.004 

s (250 Hz). Every hour a 4-minute signal is acquired.  
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Fig. 5.17 Instrumentation plan. 

 

In this case, the length of the SDO is equal to L=60000 (4 min), which corresponds to 

an entire signal. The number of SDOs per time-window is kept unchanged (S=5) and the same 

is done with the number of FFT points (N=2
13

). After 64 days of monitoring, the obtained 

time series of Damage Index is plotted in Fig. 5.18. 

 

Fig. 5.18 Time series of raw data and Damage Index. 

 

The upper plot of Fig. 5.18 shows the time-history of channels 4 to 7 to illustrate the 

entire monitoring period. The magenta vertical line separates the periods before and after 

structural reinforcement, which occurred between April and October, 2009. By observing the 

DI series, one can notice that the proposed methodology detected the structural novelty just 

after the acquisition of the first signal from the reinforced bridge (green circle). Furthermore, 

from February 6 to October 22 (64 days of continuous monitoring), only two false alarms 

were sounded (red crosses).  
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Figure 5.19 shows a typical 4-minute acceleration signal registered by the 16 

accelerometers. This is the typical package of information, obtained every hour, fused in the 

TF-IQRM symbolic object. It is important to note that the cycles of day-and-night, which 

impacts temperature and traffic levels (environmental factors), did not influence the 

methodology performance. This is a quite interesting result, since no signal normalization 

procedure is employed by the proposed technique (except for the use of the RMS value, 

implicit in the symbolic metric). 

 

Fig. 5.19 Typical 4-minute signal acquired at every hour. 

5.6 Conclusion 

This paper presented a methodology able to carry out fully-automated real-time unsupervised 

damage detection on structures subjected to ambient vibration. The continuous acquisition of 

signals is transformed into packages of compact information expressed by the proposed novel 

symbolic object, called TF-IQRM. Such an original representation embraces both time and 

frequency responses of structural dynamic measurements. Then, these objects are used to feed 

a procedure of pattern recognition (k-medoids clustering) within a moving time-window to 

generate single-valued features (NI), which indicates the degree of structural novelty. By 

tracking the evolution of such an index, an outlier analysis is performed yielding the 

Detection Index (DI), which indicates the current structure’s condition, i.e., damaged or 

undamaged. 

The first application (Yellow Frame) assessed the sensitivity of the proposed 

algorithms as the user adopts different lengths for the symbolic objects. Furthermore, several 

scenarios of damage are imposed to the structure, some of which with local/small influence. 

Although the choice of the SDO length is optional, a clear directive instruction is given to the 

user: while short SDOs produce a more “alarmist” detection (conservative), long ones 

generate a more silent and assertive detection (lower rate of false alarms). The tuned choice of 



Paper #4 – Automated real-time damage detection strategy using raw dynamic measurements. 

___________________________________________________________________________ 

118 

this parameter led to impressive results, achieving the detection of 6 out of 7 damage 

occurrences, with no false alarms (see Figs. 5.12 and 5.13). 

The second application presented a real full-scale structure. The method was capable 

of handling environmental factors, such as temperature, traffic, wind, among others. Even 

without an explicit normalization step, the algorithms precisely detected the structural 

novelty. Furthermore, the entire monitoring period of 64 days had only 2 false alarms, which 

is a quite interesting achievement.  

Hence, since the proposed technique is also sensitive to small damage, usually 

invisible to human inspections, this method represents an important aid to maintenance 

schedules for preventive actions. 
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Chapter 6 

Achieved Milestones 

6 Achieved Milestones 

Damage identification in Civil Engineering structures is crucial to avoid social, environmental 

and economic consequences. Thus, it is of paramount interest to develop methodologies able 

to detect, locate and quantify damage at early stages. Related studies in the literature show 

that a lot of research has been done trying to achieve these objectives. For most practical 

cases, however, the first step – detection – remained an ill-solved problem. Therefore, this 

thesis sought to provide reliable and robust tools for damage detection that were 

unsupervised, automated and suitable for real-time SHM. 

Over the last decades, several approaches were proposed to detect damage based on 

the identification and tracking of structural modal parameters. Since the latter deeply relies on 

an accurate and automated estimation of such properties, the development of an automatic 

modal identification technique was the primary objective of this thesis. Thus, Part II of this 

thesis started with Paper #1 by presenting a technique for automated modal identification of 

structures. The developed algorithm depends on a few user-defined parameters that affect 

very little on the quality of the results. However, uncertainties regarding the choice of the 

order of the parametric model still exist. To circumvent this situation, additional research 

provided the development of a second technique, presented in Paper #2, with more 

automation and enhanced robustness. It was demonstrated that the modal parameters are 

indeed estimated accurately with no human intervention, including modes with very closely-

spaced frequencies. Then, the modal parameters, which are the algorithm’s output, can be 

used as input data for unsupervised real-time damage detection procedures in SHM.  

Part III presented two techniques for damage detection based on raw data 

measurements. Paper #3 showed that damage could be detected in real-time, in an 

unsupervised and automatic way. Based on unsupervised pattern recognition of a new 

symbolic representation of raw time-domain data (IQRM object), the technique presents two 

different damage-sensitive indexes: one for short-term monitoring (FDI) and the other for 

long-term monitoring (SDI). Alternatively, Paper #4 proposes a novel kind of symbolic object 
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that represents both time and frequency aspects of raw data. Continuous monitoring of real 

structures attests the remarkable power of data fusion and representability provided by the TF-

IQRM object. In both strategies, damage indexes are computed instantaneously at each object 

acquisition, in a moving time-window framework. Both approaches have also shown 

adaptiveness, i.e., after each detection of damage, the algorithm takes few instants to learn 

about the new structural condition and to be able to detect a new occurrence. A considerably 

low rate of false alarms was also achieved. 

For all that has been presented in this thesis, the developed strategies consist in an 

essential step for practical SHM programs in civil engineering applications, for three main 

reasons:  

i. They are all based on output-only algorithms. Therefore, they do not need to 

have excitations measured or controlled - only Ambient Vibration Tests are 

required. This is especially the case of structures monitored under regular and 

continuous operational service; 

ii. They can detect early damage (Level 1 SHM) in real-time, automatically and 

without needing baseline periods; 

iii. They are insensitive to environmental/operational effects (temperature, wind, 

traffic, etc.). The occurrence of such phenomena did not significantly affect the 

performance of the algorithms during the studied practical applications. 

For future works, some improvements regarding the detection techniques could be 

implemented. For instance, the superposition of several time-windows procedures, each one 

with a different object length running together at the same time would yield various results, 

which could pass through a further statistical analysis. It is expected that such strategy would 

reduce the number of false alarms and increase the accuracy and robustness of damage 

detection. 

A convenient idea of improvement regarding the most recent technique (fourth paper) 

is to use the Power Spectral Density instead of the FFT coefficients for constructing the TF-

IQRM objects. The PSD could also be filtered prior to the quartiles extraction. Such 

procedure could enhance the precision in quantifying the vibrational energy with less 

influence of noise. 
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Also, it is worth mentioning that the two modal identification techniques presented in 

the first and second papers are perfectly suitable to feed the detection techniques presented in 

the third and fourth papers. Such a combination can be certainly explored in the next step of 

this research. 

Aiming at assessing a deeper knowledge about the detection sensitivity, numerical 

simulations of tall buildings and bridges could also be explored in the following years. 

Finally, in order to start applying the developed software into real cases, real structures can be 

monitored. To accomplish that, the main requirement is to set up an acquisition system able to 

export registered signals in real-time. 

Regarding damage detection (SHM Level 1), other types of symbolic objects could 

also be proposed as well as different metrics and feature classification techniques. Of course, 

this subject is still an open line of research. However, since a lot of advances were already 

achieved by the present work, the bigger challenge relies on the next steps of the Rytter’s 

classification. Therefore, for future works in Civil Engineering SHM, one can establish: 

 Damage location (Level 2): through the use of spectral signatures and modal 

amplitudes. Such quantities provide more “localized” structural data and could 

help infer about damage location; 

 Damage quantification (Level 3): by utilizing modal parameters and damage 

indicators coupled with unsupervised learning classification algorithms, such 

as clustering methods for determining damage scenarios.  
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“[…] 

As I have said before CONSCIOUSNESS is 

LIFE and LIFE is CONSCIOUSNESS. 

EVERYTHING in existence is defined by 

vibrational frequencies of consciousness. 

Light, Sound, Colour, all physical phenomena 

both living and inanimate. If you can change 

the frequencies of vibration of any single 

thing, you change the appearance of that thing 

– be it sound, colour, gas, liquid, physical 

organs. 

When physical organs present an appearance 

of ill-health, it is because the normal 

frequencies of vibrations of that physical organ 

have been reduced and the LIFE within the 

organ has been depleted. 

Science presents the universe as being ‘matter’ 

possessing consciousness but the truth is: 

The universe is CONSCIOUSNESS which has 

taken on the appearance of ‘matter’ as a result 

of a descent into the lower frequencies of 

vibration of consciousness.  

[…]” 

Excerpt from the Christ’s Letters - Letter 8 
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