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em tanto papel, em especial ao meu mestre Gilson Queiroz, com quem aprendi muito. Não posso me 

esquecer dos amigos, que compartilharam tantas vezes do meu desespero e deram forças (gente da UFOP, 

da UFMG, do CEC/ORG, clientes da Persec Engenharia)... É tanta gente que não vou citar nomes, porque 

seria injusto esquecer qualquer um. 

E, agradeço, principalmente, ao meu querido orientador Ricardo Azoubel (e esposa!), que viu o 

empenho da minha vida neste trabalho e disse: “Não se preocupe, vamos em frente”! Sempre um apoio 

para prosseguir! Este trabalho tem uma enorme parcela dele também, da sua vida, da sua dedicação e do 
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RESUMO 

Neste trabalho, estuda-se como desenvolver a Análise Avançada empregando o 

método da Zona Plástica em portais planos de aço, agora incluindo o efeito das ligações. 

Primeiramente, define-se esta análise como a inelástica de segunda ordem, na qual se 

avalia a plasticidade distribuída (por meio da técnica das fatias) e consideram-se os 

chamados “Aspectos importantes”, como as imperfeições geométricas (curvatura inicial 

e fora de prumo) e físicas (tensões residuais). Em seguida, introduz-se o efeito das 

ligações, mediante uma revisão bibliográfica abrangendo histórico, propriedades, tipos, 

modelos de comportamento de momento rotação M-θ. Propõe-se um novo modelo, 

chamado Rigidez Bilinear (RBL), que é empregado também em várias análises e permite 

fazer uma estimativa de curvas M-θ por analogia. 

É desenvolvida a formulação numérica do EF com ligação numa extremidade e se 

define um novo parâmetro índice de giro próprio da ligação η. Estuda-se a sua 

influência na formulação, seus valores, variações e seu efeito nas análises produzidas. A 

Integração Iterativa do Esforço Axial (IIEA), que é uma correção necessária quando 

ocorre o escoamento na seção, é ajustada e empregada. Estuda-se o deslocamento do 

centro de gravidade plástico, que leva a comportamentos da plasticidade não abordados, 

em geral, na literatura. 

A implementação computacional desse elemento, incluindo o ajuste da IIEA e da 

excentricidade, permite o estudo de vários modelos de ligações, inclusive o proposto. 

São abordados também: a determinação da rotação da ligação, o acompanhamento da 

curva M-θ e controles para os casos de não linearidade dessa curva. São analisados 

exemplos de vigas, colunas e portais, no regime elástico ou inelástico, com ligações 

lineares e não lineares, validando a formulação e as contribuições deste trabalho. 

Por fim, estuda-se a definição da configuração geométrica limitadora, ou seja, 

aquela que permite obter a carga limite mínima de projeto para um portal plano com 

ligações. É estabelecida a validade da proposta do Teorema da Configuração Inicial, 

visto que existem situações em que a carga limite encontrada não se altera em razão de 

mudanças na geometria imperfeita inicial.  Mesmo nessas condições, comprovou-se que 

a deformada inelástica pode definir essa configuração limitadora. No caso de dúvidas, 

são apresentadas recomendações simples (corolários) e um roteiro para projeto no 

contexto da Análise Avançada incluindo o efeito das ligações semirrígidas. 
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ABSTRACT 

 

(The semi-rigid connections on plastic-zone’s advanced analysis of plane steel portals) 

 

In this work, the development of the Plastic-Zone’s Advanced Analysis of plane 

steel portals is studied, now including the connections effect. Firstly, this analysis is 

defined as inelastic second-order which capture the plasticity spread by slice technique 

and includes the “Main Aspects” as geometric (out-of-straight and out-of-plumb) and 

physical imperfections (residual stress). The connection effect is introduced, with 

bibliographic review ranging from history, properties, types, up to moment-rotation 

behavioral models (M-θ). A new connection’s model called Bi-linear Rigidity (BLR) is 

proposed. This model is applied in some analysis and allows the M-θ approaching by 

analogy. 

The numerical FE formulation with one end-connection and a new parameter 

called connection’s own-rotation index η, are presented. This influence of this index on 

formulation, values, changes and its effects on analysis are shown. The Axial Force 

Iterative Integration (AFII), that is a necessary task when section yielding happens, is 

adjusted and employed. The effect of plastic geometric center’s move is studied, which 

arrived to plastic behaviors not covered in general literature. 

The computer implementation provides several connection models study, 

including the proposed one. Also are treated: how to define the connection rotation, the 

M-θ following path, and the non-linear cases of this graph control. There are analysis of 

beam, column and portal’s examples, at elastic and inelastic range, with non-linear and 

linear connection’s behavior, validating the contributions of this work. 

Further, the study defines the limiting geometric configuration as the one which 

brings the least limit load to design of the plane portal with connections. The Initial 

Configuration Theorem proposal validity is stated, as there are some cases where the 

found limit load doesn’t modify because of initial imperfect geometry changes. Even in 

this situation, it is assured that the inelastic deformed shape can define this limiting 

configuration. When in doubt, simple tips (corollary) and a design rules for Advanced 

Analysis including semi-rigid connections are provided.   
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1. LETRAS MAIÚSCULAS COM NEGRITO 
A – matriz de incidência cinemática do EF corrotacional, com ângulo ϕ, também 

denominada matriz de mudança de coordenadas instantânea, Eq. 3.59. 

A0 – matriz de incidência cinemática do EF corrotacional, com ângulo zero, Eq. 3.60. 

D – matriz de rigidez elastoplástica básica, Eq. 3.70. 

F (Fj) – vetor dos esforços globais, (índice j = {1-6}), ver Fig. 3.8(b). 

FI – vetor das forças nodais equivalentes e/ou dos esforços internos genérico, Eq. 3.103. 

F0
 – vetor das cargas nodais de referência ou originais.  

Fω – vetor das cargas nodais aplicadas até o instante (iteração do passo) ω. 

Gα – matriz de compatibilidade geométrica, associada a cada grandeza corrotacional qα, 

índice α = {1-3}, Eq. 3.67(b). 

H – matriz de rigidez básica referente à curvatura do EF, Eq. 3.72 

K – matriz de rigidez genérica do EF, Eq. 3.67(a). 

Kep – matriz de rigidez elasto-plástica do EF, versão corrotacional, Eqs. 3.67(b) e 3.79. 

K g – matriz de rigidez geométrica, método elástico de segunda ordem e Eq. 3.67(c). 

K gα – matriz de rigidez geométrica corrotacional do EF, Eq. 3.68. 

K h – matriz de rigidez de curvatura do EF, Eqs. 3.67(c) e 3.81. 

Kr – matriz de rigidez [6:6] gerada pela função ft aplicada à matriz R [3:3]. 

Q – vetor dos esforços corrotacionais, Eq. 3.57 e Fig. 3.8(b). 

R – matriz genérica [3:3], empregada também para rotação no Sec. A.6, Eq. A.9. 

S – matriz de rigidez genérica global, com todos os GDLs ordenados, Eq. 3.94. 

Sω – matriz de rigidez genérica global avaliada no instante (iteração do passo) ω. 

T – matriz de transformação da MRE local para global, ver Sec. A.6, Eq. A.8. 

X^
 – vetor das coordenadas globais em 3D, ver Sec. A.4. 

 

 

 

 

 

 



Tese • AR Alvarenga • Lista de Símbolos                                                                              xxiv

2. LETRAS MAIÚSCULAS EM ITÁLICO. 
A @ T – indicam valores dos termos das matrizes de rigidez, genéricos (A-J na Eq. 3.80, 

K-L na Eq. 3.69, M-T na Eq. 3.82, A-I nas Eqs. 5.7 e 6.8). 

Ca – coeficiente angular da curva de Lui & Chen (1988), ver Tab. 2.12; e, também, 

coeficiente do axial atuante (0,9Nd/Ny; Eurocode, 1992) nas Tabs. A.1 e A.2. 

Cdc – coeficiente relativo a esbeltez limite da alma (da/a) à compressão, na Tab. A.1. 

Cdf – coeficiente relativo a esbeltez limite da alma (da/a) à flexão, na Tab. A.1. 

Ce – expoente da Eq. 2.22 (Eurocode, 1992), ver Fig. 2.18 e Tab. 2.9; empregado 

também como coef. de travamento lateral nas regiões elásticas na Tab. A.2. 

Cfc – coeficiente relativo a esbeltez limite da aba (b/t) à compressão, na Tab. A.1. 

Cff – coeficiente relativo a esbeltez limite da aba (b/t) à flexão, na Tab. A.1. 

Ci – coeficiente (de índice “i” {1, 2,...}) das curvas de ligações M-θ, ver Cap. 2. 

CLj – coeficiente linear da curva exponencial de Kishi & Chen (1987), Eq. 2.39. 

Cn – expoente da Tab. 2.8, para obter Ck, curva de Frye & Morris (1975). 

Ck – coeficiente da Tab. 2.8, para converter KSI para Km. 

Czp – coeficiente de travamento lateral nas regiões com ZP na Tab. A.2. 

C1
*
 – coeficiente corrigido da Eq. 2.44 de Yee & Melchers (1986). 

H(x) – função de Heavyside, Eq. 2.19(a-b) (Abramowitz & Stegun, 1972). 

Km – fator de conversão do momento nas Eqs. de Frye & Morris (1975) e Ang & Morris 

(1984), ver Tab. 2.7 e 2.11, respectivamente. 

KSI – conversão de unidades [kip, in] para o Sistema Internacional de Km, ver Tab. 2.8. 

X – indica uma grandeza qualquer (Eq. 3.83), empregada como [log10 (θ)] para definir o 

expoente C1 da Eq. de Kishi & Chen (1987), ver Tab. 2.10; (também na Lista de 

símbolos, para o item 9 subscritos). 

XLIM – indica valor limite [log10 (θ)] para Eq. de Kishi & Chen (1987), ver Tab. 2.10. 

 

3. LETRAS MAIÚSCULAS (SEM NEGRITO, SEM ITÁLICO). 
A – indica área de forma genérica (com subscrito). 

Ag – área bruta da seção [cm
2
]. 

Awe – área elástica remanescente ou efetiva da alma. 

A0 – área da seção original (ou de referência), utilizada para integração das propriedades 

elastoplásticas ou integração dos esforços corrotacionais, Eqs. 3.85, 3.95 e 3.96. 

B – vão de vigas ou largura de pórticos [cm]. 
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B1– coef. de majoração do momento com a estrutura travada, ver Cap. 1. 

B2 – coef. de majoração do momento com a estrutura destravada, Cap. 1 e Sec. A.3.  

Cb – coef. de diagrama de momento relativo das NBR 8800 (1986), ver Cap. 1. 

CGp – centro de gravidade plástico (despreza áreas plásticas), ver Fig. 3.5 e Eq. 3.91. 

Cliga – fator de custo da ligação, ver seção 2.5 e Tab. 2.14. 

Cm – coeficiente de diagrama de momento relativo ao fator de amplificação, ver Eqs. 

6.12 e 6.13, empregado nos Caps. 1 e 6. 

Ctot – fator de custo total da peça: viga e ligação, ver Sec. 2.5 e Tab. 2.14. 

Cviga – fator de custo da viga, ver seção 2.5 e Tab. 2.14. 

D – módulo de rigidez genérico [kN/cm
2
], Eq. 3.3. 

D1j (D2j, D3j) – integral de DdA0 (DydA0, Dy
2
dA0), no regime elástico vale EAg (0, EIz), 

índice j = nós {A, B}, ver Sub. 3.4.4, Eqs. 3.87(b), (3.89 e 3.90), respectivamente. 

D1m – média das integrais de D1A e D1B, Eqs. 3.84 e 3.87(a). 

D2m – média das integrais de D2A e D2B, Eq. 3.84. 

D3ABm – inércia elastoplástica transmitida entre A-B, ver Sub. 3.4.4 e Eq. 3.92(a). 

D3jm – média considerando D3j e a transmissão D3ABm, ver Sub. 3.4.4 e Eq. 3.92(b). 

D3m – média das integrais de D3A e D3B, Eq. 3.84. 

E – módulo de elasticidade ou de Young [kN/cm
2
] do aço, ver Sub. 3.2.2. 

Ec – módulo de elasticidade do concreto [kN/cm
2
], ver Sub. 2.7.1. 

Es – módulo plástico aparente ou endurecimento [kN/cm
2
], ver Sec. 5.6 e Tab. 5.8. 

Et – módulo tangente ou de Engesser [kN/cm
2
], ver Sub. 3.2.2. 

Fj – força global genérica [kN], índice j ={1, 2, 3,...}, ver Fig. 3.8(b) e Eq. 3.56(a). 

Fx – forças nos parafusos e aba inferior da ligação {de tração T1, T2,..., ou compressão, 

N3}, ver Fig. A.7, Tabs. A.3 e A.5. 

G – coeficiente de rigidez entre a viga e a coluna do nó, no portal de Chen & Zhou 

(1987), Eq. 8.1, ver Secs. 8.3 e 8.10. 

GJ – coeficiente de rigidez dos nós, relação coluna × viga, para os ábacos de Julian & 

Lawrence (1959), índice J = nós {A, B}, ver Eqs. 6.15 e 6.16.         

H (H0) – carga horizontal genérica (ou de referência) [kN]. 

HMu – esforço horizontal último transferido pela viga na ligação, ver Fig. 8.24(a). 

Hy – carga horizontal que provoca o colapso rígido-plástico [kN], Eq. 6.17. 

I – inércia principal da seção genérica, em geral, no plano da análise (eixo z) [cm
4
]. 
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Ie – inércia efetiva principal da seção do perfil, descontando a área plástica (eixo z). 

Iy (Iz) – inércia principal da seção do perfil, em relação ao eixo y (z) da seção. 

JA (JB) – nó inicial (final) de uma barra (viga, coluna) ou EF com índice A (ou B). 

J2 – um dos invariantes do tensor das deformações, associado à teoria da menor 

deformação, ver Sub. 3.2 (Chen & Han, 1987). 

Kc – rigidez da coluna, Eq. 2.8(c). 

Kij – elemento de matriz de rigidez genérica, índices i, j = {1-6}. 

Kj – rigidez da ligação, (aqui, j não é índice), Eq. 2.8(d). 

Kv – rigidez mínima da viga, Eq. 2.8(b). 

L – dimensão principal: comprimento ou vão de vigas, altura de colunas ou pórticos, 

nos Caps. 5 a 9, comprimento básico do EF [cm] nos Caps. 3 e 4 e Sub. 9.2.2. 

La – altura do andar, Eq. 2.1. 

Lc – comprimento na configuração conhecida, Fig. 3.2(b) e Eq. 3.15(a) do Cap. 3; ou 

altura da coluna, Eq. 2.8(c) do Cap. 2. 

Ld – comprimento na configuração deformada (ou atual), ver Fig. 3.2(c) e Eq. 3.15(b). 

Lfl – comprimento efetivo ou equivalente de flambagem (= kfl·L), ver Fig. 7.15. 

Lt – distancia entre travamentos, perpendicular ao plano da análise, ver Secs. 3.2 e A.1. 

Lv – comprimento da viga ou barra, ver Eq. 2.8 do Cap. 2, ou Figs. 3.9 e 3.10 do Cap.3. 

L0 – comprimento na configuração original, no instante ω = 0, ver Fig. 3.2(a). 

M (MJ) – momento genérico, (ou no ponto/nó J {A, B, C, D, E}), [kNcm]. 

Mc – momento da coluna, Eq. 2.8(c). 

Mcn – momento da ligação em que há o contato viga × coluna, ver Fig. 2.9.  

Md – momento de dimensionamento, Eq. 6.12. 

Me – momento elástico máximo da ligação (Eurocode 3, 1992). 

MEF – momento na ligação calculado pelo EF, ver Sec. 4.5. 

Mf  – momento da ligação rígida perfeita (engaste), Eq. 2.8(a). 

MJ – integração do momento (integral de σydA, no nó J do EF), Eq. 3.96. 

Mm – momento máximo suportado na ligação (ou limite experimental), ver Fig. 2.6. 

Mp – momento plástico da seção (σy.Zz). 

Mpr – momento plástico reduzido da seção (desconta as TRs), Eq. 6.9 da Sec. 6.4.  

Mq – momento máximo no engaste para viga com carga distribuída (q), Eq. 7.2(b). 

MQ – momento máximo no engaste para viga com carga concentrada (Q), Eq. 7.2(a). 
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Mr – momento genérico na ligação, ver Fig. 2.2. 

Ms – momento associado à rigidez secante, ver Fig. 2.18 e Sub. 2.4.3. 

Mu – momento último da ligação, ver Fig. 2.6. 

Mv– momento na viga engastada, Eq. 2.48 na Sec. 2.5. 

My – momento de início do escoamento, ver Fig. 2.43. 

M0 – momento de referência, associado à rotação θ0, ver Eq. 2.28 e Fig. 2.20. 

N (NJ) – esforço axial (ou “normal”) genérico (ou no ponto J {A, B, C,...}) [kN]. 

Ncrit – carga de flambagem elástica dada por fórmulas (kfl ≠ 1), Eq. 7.7 na Sub. 7.3.1. 

Nd – esforço axial de dimensionamento ou projeto, Eq. 6.12.  

Ne – carga de flambagem de Euler, com kfl = 1, ver Fig. 7.12, Eqs. 6.12 e 7.6. 

Nj – integração do esforço normal (integral de σdA, no nó j do EF), ver Eq. 3.95. 

Nm – carga de flambagem inelástica da barra isolada, ver Fig. 7.15, Eqs. 6.12 e 7.9 

Npp – carga de flambagem determinada por PPLANAVA, ver Tabs. 7.8 e 7.9. 

Ny – carga de escoamento (esmagamento) da seção à compressão (σy.Ag), ver Sec. 5.4.  

jN – esforço axial mais provável para a IIEA, sem escoamento na iteração, Eq. 4.21. 

PA0 – produto escalar dos vetores (uA
T
.u0), ver Eq. 4.11(b) e Fig. 4.6(b). 

Pj – carga vertical [kN], índice j = {1, 2, 3,...} geral; {0} de referência, Secs. 7.3, 7.4, 

7.6 e Cap. 8.  

Pv – peso linear da seção da viga [kN/m], Eq. 2.56 na Sec. 2.5. 

Q (Q0) – carga concentrada no meio-vão da viga (de referência)[kN], ver Secs. 6.4 e 7.2. 

Qb – esforço cortante no chumbador, ver Sub. 4.3.1. 

Qp – esforço de tração gerado por efeito de alavanca, ver Fig. 2.3.4(c) e 2.6.2. 

Qy – carga concentrada no meio-vão da viga que gera mecanismo plástico, Eq. 6.10(a). 

Qα – carga corrotacional genérica, índice α = {1-3}, ver Fig. 3.8(b). 

Rcws, Rca – rigidez do painel da coluna ao corte e à compressão, Eq. A.11 na Sec. A.9. 

Rj – elemento da MR genérica R, índice j = {1-6}, Eq. 3.75. 

Rk – rigidez genérica da ligação [kNm/rad], ver Fig. 2.8. 

Rkab – rigidez média da ligação entre os pontos {A, B}, ver Fig. 2.16 e Eq. 2.14(b). 

Rki – rigidez inicial da ligação, ver Figs. 2.6 e 2.8. 

Rkj – rigidez da ligação bilinear (tri), índice j (trecho) = {1-3}, ver Fig. 7.5 e Sub. 7.2.2. 

Rkm – rigidez máxima da ligação, ver Fig. 2.9(a). 

Rkp (Rku) – rigidez plástica (última) da ligação, ver Fig. 2.8 e Sub. 2.2.3. 
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Rks – rigidez secante da ligação, ver Fig. 2.8. 

Rkt – rigidez tangente (instantânea) da ligação, ver Fig. 2.8. 

Rky – rigidez da ligação secante após o escoamento (Eurocode 3, 1992), ver Fig. 2.48. 

Rkj
*
 – rigidez da ligação, descontando-se Rkp, índice j = {i, 1, 2, A, B}, Eq. 2.66. 

RΣb – rigidez do conjunto de parafusos da ligação, Eq. A.11 na Sec. A.9. 

T – esforço de tração genérico, índices j = {1-4} para tração nos parafusos, ver Tabs. 

A.3 e A.5, bem como Fig. A.7. 

Tb – esforço de tração nos chumbadores, ver Sub. 4.3.1. 

Vj – reação vertical genérica [kN], índice j = nós {A, B, C,...} 

Vd (Vde) – esforço cortante [kN], índice: {d} de projeto; {de} máximo no critério de von 

Mises (1913), Eq. 4.3. 

VO – volume original para integrar as propriedades e os esforços, Eqs. 3.54 e 3.83. 

W – total das cargas verticais aplicadas no portal CZ [kN], ver Sub. 8.2. 

Wy (Wz) – módulo resistente elástico [cm
3
], em relação ao eixo y (z) da seção. 

Zy (Zz) – módulo resistente plástico [cm
3
], em relação ao eixo y (z) da seção. 

 

4. LETRAS MINÚSCULAS EM NEGRITO 
g – vetor de cargas residuais da iteração (= ∆F), ver Sub. 4.3.2. 

q (qα) – vetor de deslocamentos corrotacionais, (índice α = {1-3}), ver Fig. 3.7, Eqs. 

3.11 e 3.12. 

u (uj) – vetor de deslocamentos globais em 2D, (índice j = {1-6}), ver Fig. 3.8(a) e Eq. 

3.14. 

uA – vetor de deslocamentos da iteração anterior, ver Eq. 4.5 e Fig. 4.6(b). 

u0 – vetor de deslocamentos com a carga de referência F0
, ver Eq. 4.6(b). 

u^
 – vetor de deslocamentos globais em 3D, ver Fig. A.1(a). 

x – vetor de coordenadas globais em 2D, ver Fig. 3.2. 

x^
 – vetor de coordenadas globais em 3D, ver Fig. A.1(a). 

 

 

5. LETRAS MINÚSCULAS EM ITÁLICO 
a @ f – coeficientes das funções de interpolação, Eqs. 3.16 e 3.20 da Sub. 3.3.3. 

fT – função linear de transformação da matriz R em Kr, Eq. 3.74 da Sub. 3.4.3. 

h – fator incremental (de 0 a 100%), ver Sub. 4.3.2. 
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6. LETRAS MINÚSCULAS (SEM NEGRITO, SEM ITÁLICO) 
a – espessura da alma do perfil I [cm], ver Fig. 3.1(b). 

ac, bc – dimensões base e altura do bloco de concreto, ver Sec. 2.7, Figs. 2.39 e 2.40. 

ai – coeficientes quadráticos do RBL, índice i = {1, 2}, Eqs. 2.60 a 2.62. 

aL – aba da cantoneira de ligação [cm], ver Fig. 2.17(d, i). 

ap, bp – dimensões base e altura da placa de base, ver Sec. 2.7, Figs. 2.39 e 2.40. 

as, bs, cs – coeficientes do polinômio do 2º grau em ∆λ, ver Fig. 4.6(a), Eqs. 4.10 e 4.11. 

b – largura da aba do perfil I [cm], ver Fig. 3.1(b). 

ba – extensão horizontal da cantoneira, Fig. 2.17(c-d). 

bi – coeficientes lineares do RBL, índice i = {1, 2}, Eqs. 2.60 a 2.62. 

bt – largura da aba do perfil T, Fig. 2.17(g). 

bTb – largura do perfil tubo, ver Fig. 2.17(i) ligação com 4Ls cercando. 

c – coeficiente da Eq. 2.4 e subscrito {2, 3 ou 4}, do índice de fixação γ (= γc). 

ci – coeficientes constantes do RBL, índice i = {1, 2}, Eqs. 2.60 a 2.62. 

d – altura do perfil I [cm], ver Fig. 3.1(b). 

da (dae) – altura da alma do I [cm], [parte elástica remanescente, aproximada por (d-4t), 

descontando o raio do filete], ver Sub. 3.2.3 e Eq. 4.3.  

dAO – variação diferencial da área de referência, para integração. 

db – diâmetro dos parafusos de ligação, ver Fig. 2.17(c-g). 

dc – diâmetro dos chumbadores, ver Sec. 2.7 e Fig. 2.39(c). 

dg – gabarito entre furos da chapa de topo estendida, ver Fig. 2.17(e). 

dh – variação do fator incremental (de 0 a 100%), ver Sub. 4.3.2. 

dM – variação diferencial (ou acréscimo) do momento. 

dMje – variação do momento elástico na iteração antes da IIEA, índice j = nós {A, B}. 

dMjp – variação do momento plástico na iteração após a IIEA, índice j = nós {A, B}. 

dMj
#
 – correção dos momentos no EF para a ligação de M-θ não linear, índice j = nós 

{A, B}, Eq. 4.39 da Sub. 4.5.4. 

dNj – variação do esforço axial na plasticidade, índice j = nós {A, B}, ver Eq. 4.22. 

dqα – acréscimos de rotações naturais, índice α = {1-3} ou nós {A, B}, ver Caps. 3 e 4. 

dq*
 (dq

*
α) – vetor de acréscimos de rotações naturais com a plasticidade no EF, índice α 

= {1-3} ou nós {A, B}, ver Sub. 4.5.3. 

ds – variação corretiva do deslocamento generalizado, Eq. 4.18(b). 
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dVO – variação diferencial do volume de referência, para integração na Eq. 3.83. 

dx – variação diferencial da posição (distancia) x, ver Cap. 3. 

dX – taxa de variação da grandeza X genérica. 

dρ′ (dρ′
#
) – acréscimo da curvatura para a ligação de M-θ não linear, Eqs. 4.37 e 4.38. 

dθ – acréscimo de rotação da ligação, ver Caps. 2 e 4. 

e – excentricidade genérica (M/N), ver Sub. 2.7.1. 

f – relação de tensões de escoamento (23,5/σy), ver Sec. A.1 (Eurocode 3, 1992). 

g – índice de rigidez nodal da ligação, ver Eq. 2.3 na Sub. 2.2.4. 

ga – gabarito horizontal de furos da cantoneira ou chapa, ver Fig. 2.17(a-b, h). 

gb – gabarito líquido (gL – db), ver Fig. 2.17(d). 

gL – gabarito de furo vertical da cantoneira, ver Fig. 2.17(d). 

ha – altura da cantoneira, ver Fig. 2.17(a-b), ver Secs. 8.9 e A.9. 

hc – altura do concreto da base, ver Sec. 2.7 e Fig. 2.39(c). 

hL – altura da ligação flexível, ver Eq. 8.4(b), pode ser (ha ou hp). 

hp – altura da chapa de cabeça, ver Fig. 2.17(h), ver Secs. 8.9 e A.9. 

hs – parâmetro característico da analogia das ligações, ver Secs. 8.9 e A.9. 

i, j, n – índices genéricos para somatórios: fatias, nós, EF, etc. 

k1, k2 – inverso dos parâmetros GA e GB (Li & Li, 2007), ver Tabs. 7.8 e 7.9. 

kfl – coeficiente de comprimento efetivo de flambagem, Eq. 6.18(c) na Sub. 6.6.1. 

kAB, kCD – coeficiente de flambagem kfl da coluna A-B e C-D, respectivamente. 

kTeor – coeficiente de flambagem kfl teórico, ver Sub. 7.3.1 e Tabs. 7.8 e 7.9. 

lc – comprimento de ancoragem do chumbador, ver Sec. 2.7 e Fig. 2.39(c). 

lr – extensão da rosca do chumbador, ver Sec. 2.7 e Fig. 2.39(c). 

m – relação adimensional entre o momento Mr e o último Mu, Eq. 2.25 na Sub. 2.4.3.   

ma – flexibilidade nodal (= βk), inverso de (g), ver Sub. 2.2.4. 

mA – momento relativo do apoio ponto A, ver Eq. 2.52(a). 

mC – momento relativo do meio-vão ponto C, ver Eq. 2.52(b). 

nef  – número de EF da barra, ver Sub. 7.3.2. 

nelem – número total de EF do modelo, para se obter S na Eq. 3.94. 

nfatia – número total de fatias da seção, para se obter as propriedades  e esforços. 

pL – distancia da borda da chapa, ou cantoneira, ao furo, ver Fig. 2.17. 

q (q0) – carga uniformemente distribuída [kN/m], nas Secs. 6.4, 7.2, 8.5 a 8.9, e 9.3. 
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qy – carga uniformemente distribuída [kN/m] que gera mecanismo plástico, Eq. 6.10(b). 

qα – coordenada corrotacional genérica, índice α = {1-3} ou nós {A, B}. 

r – relação adimensional entre a rotação θr a de referência θ0, Eq. 2.25 na Sub. 2.4.3. 

ri – componente da MR Kr, índice i = {1-10}, ver Eqs. 3.76 e 3.77. 

ry (rz) – raio de giro [cm], em relação ao eixo y (z) da seção. 

s (sa, s0) – módulo do vetor de deslocamentos u, (anterior uA e de referência u0, 

respectivamente), ver Eq. 4.7(a-c). 

t – espessura da aba do perfil I [cm], ver Fig. 3.1(b). 

ta, tc, tp, tt – espessura da cantoneira de alma, cantoneira de aba, da chapa de topo (ou de 

cabeça) e da aba do perfil T, respectivamente [cm], ver Fig. 2.17. 

te – espessura do enchimento entre a base e o bloco, ver Sec. 2.7 e Fig. 2.39(c).  

u – deslocamento na direção do eixo x do EF. 

ugk – k-ésimo deslocamento do vetor ug, provocado pela carga ∆F = g, Eq. 4.4. 

uj – deslocamento local genérico, (u, v ou θ), índice j = {1-3}, respectivamente. 

uk – k-ésimo deslocamento do vetor u, selecionado para controle, ver Sub. 4.3.2. 

uO – deslocamento do eixo do EF na direção x local, Eqs. 3.16 e 3.19. 

u0k – k-ésimo deslocamento do vetor u0, provocado pela carga F0
, Eq. 4.4. 

v – deslocamento na direção transversal, eixo y do EF. 

vO – deslocamento do eixo do EF na direção y local, Eqs. 3.20, 3.43, 3.51, 5.1 e 6.2. 

wv – peso linear da viga [kN/m], ver Sec. 2.5. 

x – coordenada genérica no eixo local, axial ao eixo do EF. 

xm – momento modificado (Km·Mr), parâmetro na curva de Frye & Morris (1975) e Ang 

& Morris (1984), ver Eq. 2.15 e 2.34(a-b). 

xm0 – momento modificado de referência (Km·M0) de Ang & Morris (1984), Eq. 2.34(b). 

xp – coordenada de posição de um ponto genérico P do EF. 

y – coordenada genérica no eixo transversal ao do EF, define o plano do EF. 

yCGP – coordenada y do centro de gravidade plástico, ver Fig. 3.5 e 3.91. 

y
a
CGP – coordenada do efeito do axial excêntrico na plasticidade, Eq. 4.40. 

y
b

CGP – coordenada da correção da rotação específica na plasticidade, Eq. 4.41. 

yp – coordenada de posição da fibra, quando ocorre a rotação específica (ρ′). 

ypO – coordenada de um ponto genérico P da seção em relação ao eixo O. 

z – coordenada genérica no eixo horizontal da seção, perpendicular ao plano do EF. 
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7. LETRAS GREGAS MAIÚSCULAS 
∆ – deslocamento lateral genérico de pórticos. 

∆a – deslocamento lateral do andar, Eq. 2.1. 

∆F – vetor de esforços residuais ou de acréscimo de cargas externas (g), Sub. 4.3.2. 

∆FI – acréscimo do vetor de esforços residuais no passo (incremento), ver Caps. 3 e 4. 

∆H2, ∆H1 – deslocamentos de 2ª e 1ª ordem, para definir B2, ver Sec. A.3. 

∆Mi – acréscimo de momentos, índice i = {1-3}, ver Eq. 2.66 na Sec. 2.8. 

∆N – correção do esforço axial na IIEA, ver Subs. 3.6 e 4.4. 

∆P – acréscimo de carga vertical genérica. 

∆s – variação do deslocamento generalizado no passo, Eq. 4.12 na Sub. 4.3.2. 

∆u – acréscimo do vetor de deslocamentos da estrutura, Eq. 4.5 na Sub. 4.3.2. 

∆uk – acréscimo da k-ésima componente do vetor u, Eq. 4.4(a) na Sub. 4.3.2. 

∆0 – imperfeição geométrica relativa ao fora de prumo inicial, ver Sec. 1.4.2. 

∆λ – acréscimo do fator de carga (no passo), Eqs. 4.4, 4.13, 4.14 e 4.17 na Subs. 4.3.2. 

Φ – ângulo associado à curvatura e ao efeito de segunda ordem (MΦ), ver Fig. 1.2(c). 

Ψi – funções de forma genéricas, índice i = {1-3}, Eqs. 3.19 e 3.44 na Sub. 3.3.3. 

Ψ20 – função de forma do EF rígido-rígido, ver Fig. 3.14, Eqs. 3.36, 3.48 e 3.50. 

Ψ30 – função de forma do efeito da ligação, ver Fig. 3.14, Eqs. 3.48 e 3.50. 

 

8. LETRAS GREGAS MINÚSCULAS 
α – ângulo de giro genérico, e genericamente, índice das grandezas corrotacionais. 

αB – ângulo de giro próprio da ligação no nó B, ver Fig. 3.14, Eq. 3.47 e 3.51. 

αm – parâmetro de ajuste de Cm, ver Eq. 6.13. 

αp, βp – fatores de carga de P1 e P2, do portal Fig. 6.14 da Sec. 6.6. 

α1, α2, α3 – parâmetros do RBL relativos às áreas do diagrama Rk-θ, Eqs. 2.66 e 2.67. 

β – fator de momento, em geral M/Mp ou H/Hy, ver Eq. 6.17, Sec. 6.5. 

βk – flexibilidade nodal (Al-Bermani & Kitipornchai, 1992; ver ma), Eq. 2.6(b). 

βL – parâmetro de forma genérico do RBL [α1/(α1 + α2)], ver Fig. 2.52. 

βm – maior momento nas seções travadas, em relação à Mp, Sub. 3.2.3. 

γc – índice de fixação da ligação, indiciado por c = {2-4}, Eq. 2.4 na Sub. 2.2.4. 

γij – deformação de cisalhamento genérica, índices i ≠ j = {1-3}, ver Sec. A.4. 
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γp – fator de carga combinada [βp/(αp + βp)], ver Sub. 6.6.4.  

γz – fatores de inércia da coluna C-D em relação à A-B no portal da Sub. 6.6.1. 

δ – deslocamento transversal ou flecha associada à curvatura da barra ou EF. 

δu – deformação da ligação sob momento último, ver Fig. 8.24(b). 

δu (δug, δugk) – variação corretiva dos deslocamentos (devido à carga residual g, e sua 

k-ésima componente), Eqs. 3.54 e 4.19. 

δX – pequena variação da grandeza X genérica (no processo corretivo). 

δyv – variação da flecha vertical da viga biligada, ver Eq. 2.55 na Sec. 2.5. 

δε – variação ou acréscimo da deformação (no processo corretivo), Eqs. 3.54 e 3.55. 

δεj – variação ou acréscimo da deformação no processo IIEA, Eq. 3.105 e Sec. 4.4. 

δλ  – variação corretiva do fator de carga, ver Sub. 4.3.2, Eqs. 4.4(c) e 4.20. 

δ0 – imperfeição geométrica associada à curvatura inicial da barra, ver Sub. 1.4.1. 

∂ – operador diferencial parcial genérico. 

ε – deformação genérica, avaliada pelo alongamento linear, ver Eqs. 3.2(a), 3.53, 5.2, 

6.3 e Sec. A.4. 

εe – deformação elástica, ver Fig. 3.20. 

εf – deformação na fatia, ver Fig. 3.3. 

εi – deformação axial, índice i = {1-3}, ver Sec. A.4. 

εm (δεm) – deformação média (seu acréscimo na iteração), Eq. 3.52. 

εO – deformação axial do eixo (que contém o centróide) da seção do EF, Eq. 3.6. 

εp – deformação plástica, máximo 4%, ver Fig. 3.20. 

εs – deformação limite do patamar plástico e do endurecimento sob tração, Fig. 3.3(c). 

εu – deformação última ou limite, máximo: εy +4%. 

εy – deformação de início do escoamento (σy/E), ver Figs. 3.3(c), 3.4 e 3.20. 

εεεε^
 (εεεε#

) – vetor de deformações em 3D (ou 2D), ver Sec. A.4. 

ζA − inércia elastoplástica relativa (DIA/EIzA) do nó sem ligação, Eq. 4.27 da Sub. 4.5.3. 

ζB − inércia elastoplástica relativa (DIB/EIzB) do nó com ligação, Eq. 4.28 e Fig. 4.10, da 

Sub. 4.5.3.  

η – índice de giro próprio da ligação ou de semiflexibilidade nodal, Eq. 2.7(a). 

ηEf – índice de semiflexibilidade nodal do EF [emprega L (não Lv) para cálculo de (g)]. 

η*
 – índice de semiflexibilidade nodal com plasticidade, ver Fig. 4.10 e Eq. 4.28. 
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η*
L – índice de semiflexibilidade nodal com plasticidade e estiramento, Eq. 4.33. 

θb – rotação de referência para Bjorhovde et al. (1990), Eq. 2.9 na Sub. 2.3.1. 

θc – rotação de referência para Eurocode 3 (1992), Eq. 2.11 na Sub. 2.3.2. 

θcn – rotação de contato aba da viga lateral da coluna, ver Fig. 2.9 e Eq. 4.23. 

θe – rotação correspondente ao limite do regime elástico, ver Fig. 2.6. 

θg – ângulo de giro de corpo rígido, ver Fig. 3.2 e Eq. 3.1. 

θj – ângulo de giro genérico (inclusive para a ligação) [mrad], índice j = {A, B} para 

viga (ou nó do EF) na Fig. 3.9, {E, D} para portal “ao vento” da Fig. 2.29;{C, D, 

E, F} no ponto de mesma letra, para Figs. 4.8, 4.9 e 4.11. 

θL – rotação isolada só da ligação, sem a viga (= αB). 

θkr – rotação da curva B cúbica, Eq. 2.18 na Sub. 2.4.2. 

θm – rotação correspondente ao momento máximo da ligação, ver Fig. 2.6. 

θp – rotação teórica da rótula plástica (RP), ver Fig. 2.7. 

θQ (θq) – rotação no extremo da viga com carga concentrada Q ou distribuída q, Eq. 7.3 

[a (b)]. 

θr – rotação genérica da ligação [mrad], ver Fig. 2.2. 

θs – rotação da ligação para condições de serviço, ver Sub. 2.2.4. 

θu – rotação última (pré-colapso) da ligação, ver Figs. 2.6 e 8.24, estimativa Eq. 2.1. 

θv – rotação dos extremos da viga biapoiada, Eq. 2.49 na Sec. 2.5. 

θ0 – rotação de referência, ver Fig. 2.9(a) e Eq. 2.2. 

κA – relação de rigidez de transição (ponto A) para o RBL: RkA/Rki, ver Sec. 2.8. 

κd (λd, µd) – constantes de Lamé (Timoshenko & Goodier, 1970), Eq. A.2[a (b, c)]. 

κp – relação de rigidez e parâmetro do RBL: Rkp/Rki, ver Sec. 2.8 e Fig. 2.53. 

λ – fator de carga genérico, em geral associado a N/Ny (ou P/Ny). 

λc – fator de carga de colapso genérico. 

λe – fator de carga crítico (flambagem elástica), ver Sec. 1.2 e Fig. 1.3(b). 

λi – fator de carga de flambagem, índice i = {AB, CD} colunas, Sec. 6.6. 

λlim – fator de carga limite, definido pela análise avançada, ver Sec. 1.2, Fig. 1.3(b). 

λp – fator de carga de colapso por mecanismo (ou plástico), ver Sec. 1.2, Fig. 1.3(b). 

λQ (λq) – fator de carga de colapso na viga, com carga concentrada Q (distribuída q), 

Eq. 6.11(a) [(b)]. 
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λy – fator de carga de início do escoamento da estrutura ou barra. 

λz – esbeltez aparente, Eq. 6.18(b) na Sec. 6.6. 

λω – fator de carga aplicado no instante ω (iteração/incremento), ver Sub. 4.3.2. 

µr – fator de rigidez da ligação, Eq. 2.5 na Sub. 2.2.4. 

ν – coeficiente de deformação transversal ou de Poisson (Timoshenko & Goodier, 

1970), em geral, para o aço 0,3; desprezado nesta tese, ver Sec. A.4. 

ξ – estiramento da fibra, Eq. 3.38 da Sub. 3.3.6 e Sec. A.5. 

ρ – ângulo de giro genérico da seção do EF, ver Fig. 3.6(a) na Sub. 3.3.1. 

ρ’ – rotação específica (dρ/dx), conjugada energética ao momento, ver Fig. 3.6(b). 

ρp – índice de plasticidade na seção retangular das Figs. 3.17, 3.18 e 3.19. 

ρz – parâmetro de flambagem inelástica, ver Eq. 6.18(a) na Sec. 6.6. 

σ – tensões normais genéricas, sinais: tração (+) ou compressão (-), [kN/cm
2
]. 

σck – tensão última ou de ruptura do concreto. 

σe – tensão de flambagem elástica de Euler. 

σf – tensão genérica de uma fatia, ver Fig. 3.3. 

σi – tensão axial, índice i = {1-3}, ver Sec. A.4. 

σr – tensão residual (TR) máxima, ver Fig. 1.5. 

σu – tensão última ou limite de resistência do aço, ver Tab. 5.8. 

σy – tensão de escoamento, ver Fig. 3.3(c), 3.4 e 3.20. 

σyb – tensão de escoamento do chumbador, Sec. 2.7. 

σσσσ^
 (σσσσ#

) – vetor de tensões em 3D (ou 2D), ver Sec. A.4. 

τij – tensão de cisalhamento genérica, índices i ≠ j = {1-3}, ver Sec. A.4. 

ϕA – ângulo de giro interno da viga no nó A, ver Figs. 3.9 e, 6.6 na Sec. 6.4. 

ϕB – ângulo de giro interno da viga no nó B, ver Figs. 3.9 e, 5.2 na Sec. 5.3. 

ϕi – ângulo de posição do eixo corrotacional (x) em relação ao eixo X global, índice i = 

{c, d} conhecido e deformado, respectivamente, Eq. 3.13(a-b), ver Figs. 3.2 e 3.7. 

χi – relação entre o acréscimo de momentos plástico e elástico na iteração, para corrigir 

a rotação da ligação no método XX, Eqs. 4.30 e 4.31, na Sub. 4.5.3. 

ω – instante genérico do processo incremental-iterativo, ver Fig. 4.3. 
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9. SUBSCRITOS 
Xa – relacionado aos apoios. 

XA – relacionado às grandezas do nó inicial do EF (JA). 

XB – relacionado às grandezas do nó final do EF (JB). 

Xc – relacionado às grandezas da configuração conhecida (ω-1) ou à condição de 

colapso ou a coluna, ou ao meio-vão da viga. 

Xd – relacionado às grandezas da configuração desconhecida (ω), ou referente ao 

dimensionamento. 

XD (XE) – relacionado ao lado direito (ou esquerdo) da viga ou portal. 

Xe – relacionado ao estado elástico (de fatias, por exemplo) ou de flambagem elástica. 

Xf – relacionado a um ponto genérico: a fibra, e por extensão a fatia. 

Xg – relacionado às grandezas geométricas. 

Xk – usado nas integrações numéricas das propriedades D1m, D2m e D3m, índice k = {1-

3}, nas Eqs. 3.84 e 3.85, da Sec. 3.4.4. 

Xi,j,k,m,n – são índices genéricos usados nos somatórios. 

Xm – relacionado aos valores médios (propriedades e deformações). 

XO – relacionado ao ponto O, centróide da seção genérica. 

XOd – relacionado ao centróide O da seção genérica, na configuração deformada. 

Xp – relacionado ao estado plástico (de fatias, por exemplo) ou mecanismo plástico. 

XPd – relacionado ao ponto P da seção genérica, na configuração deformada. 

Xu – relacionado ao estado último. 

Xv – relacionado à(s) viga(s). 

Xy – relacionado ao escoamento (y) ou ao eixo (Y). 

Xz – relacionado ao eixo principal Z da seção. 

X0 – relacionado a grandezas da configuração original (ω = 0). 

Xα – índice de grandeza corrotacional genérica. 

X
 ω

 – relacionado à grandeza avaliada no instante atual. 
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10. ABREVIAÇÕES 
AA – portal de Chen & Zhou (1987) modificado, com um só perfil (8 WF 31) e sem o 

apoio horizontal superior (Alvarenga, 2005), ver Secs. 8.1, 8.2 e 8.7. 

AELL – Análise Elástica, Ligação Linear.  

AELN – Análise Elástica, Ligação Não Linear.  

AILL – Análise Inelástica, Ligação Linear.  

AILN – Análise Inelástica, Ligação Não Linear. 

BL – curva M-θ experimental de Bailey (1970), ver Fig. 7.8 na Sub. 7.2.5. 

CC – Controle de Carga (processo incremental), ver Fig. 4.4. 

C1, C2 e C3 – curvas M-θ de Chan & Chui (2000), ver Fig. 7.23 na Sec. 7.5. 

CC1, CC2 e CC3 – resultados de Chan & Chui (2000), ver Sec. 7.5. 

CD – Controle de Deslocamento selecionado (Argyrus, 1964), ver Fig. 4.5(a). 

CDG – Controle de Deslocamento Generalizado, ver Fig. 4.6(a) na Sub. 4.3.2. 

CGP – Centro de Gravidade plástico, ver Fig. 3.5 na Sub. 3.31. 

CI – Curvatura Inicial, ver Fig. 1.4(a) na Sub. 1.4.1. 

CZ – portal de Chen & Zhou (1987) sem o apoio horizontal superior, ver Fig. 8.2. 

D2 e D3 – curvas M-θ obtidas por analogia às curvas C2 e C3, ver Sec. 8.9. 

EF (EFs) – Elemento(s) Finito(s). 

ERP – método Elástico com Rótula Plástica (clássico ou de segunda ordem). 

ERP-CN – método Elástico com Rótula Plástica e Cargas Nocionais, ver Sec. 1.2. 

ERP-M – método Elástico com Rótula Plástica com seção Montada, ver Sec. 1.2. 

ERP-R – método Elástico com Rótula Plástica Refinado, ver Sec. 1.2. 

FE – Fator de Escala para amplificar os deslocamentos, (usual 50 vezes). 

FM – curva M-θ polinomial de Frye & Morris (1975), ver Sub. 2.4.2. 

FP – Fora de Prumo, ver Fig. 1.4(b) na Sub. 1.4.2. 

G&K – indica as TRs de Galambos & Ketter (1959), ver Fig. 1.5(c) na Sub. 1.4.3. 

IIEA – Integração Iterativa do Esforço Axial, ver Secs. 3.6 e 4.4.   

KC – curva M- θ potencial de Kishi & Chen (1987), ver Sub. 2.4.3. 

LC – exponencial Lui & Chen (1986), modificado por Kishi & Chen (1987), ver Sub. 

2.4.4. 

MC – Modelo Com (EF de) rótula, ver Secs. 6.3 e 6.4. 

ME – método usando a MRE para avaliar a rotação da ligação, Eq. 4.34. 

MR – Matriz de Rigidez genérica (qualquer). 
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MRE – Matriz de Rigidez do Elemento finito (K), Eq. 3.67(a). 

MS – Modelo Sem (EF de) rótula, ver Secs. 6.3 e 6.4. 

MT – curva M-θ experimental de Rathbun (1936), ver Fig. 2.25. 

MRG – matriz de rigidez global (S), Eq. 3.94. 

M-θ – curva momento-rotação da ligação, ver Fig. 2.2. 

NFP – Número de Fatias Plásticas, nos diagramas de zonas plásticas. 

PT – nesta Própria Tese. 

PTV – Princípio dos Trabalhos Virtuais. 

QRP – Quase-Rótula Plástica, ver Sec. 1.2. 

RC1, RC2 e RC3 – versão RBL das curvas CC1 a CC3, ver Fig. 7.23 na Sec. 7.5.  

RT – curva Rk-θ experimental de Rathbun (1936), ver Fig. 2.45. 

RBL – curva M-θ com Rigidez BiLinear (proposta), ver Fig. 2.46 e Sec. 2.8. 

RLA – Referencial Lagrangiano Atualizado, ver Fig. 3.2 na Sub. 3.2.1. 

RP (RPs) – Rótula(s) Plástica(s), ver Sec. 1.2. 

R-P – método Rígido Plástico, ver Sec. 1.2. 

RS – ligação linear com a Rigidez Secante (Rks), ver Figs. 2.8 e 2.15. 

S – método Simplificado de avaliar a rotação da ligação, Eq. 4.35. 

TCI – Teorema da Configuração Inicial, ver Secs. 1.6 e 9.3. 

TR (TRs) – tensão(ões) residual(ais), ver Fig. 1.5 na Sub. 1.4.3. 

TC1, TC2 e TC3 – curvas de Chan & Chui (2000) tabeladas, ver Fig. 7.23 na Sec. 7.5.  

XX – método da formulação para a rotação da ligação, com parâmetro χ, Eq. 4.31. 

ZP (ZPs) – Zona(s) Plástica(s), ou método; ver Figs. 3.5 e 4.7, Secs. 1.2 e 4.4, Cap. 3. 

ZPI – método da Zona Plástica com Integração de (M-N-Φ), ver Sec. 1.2. 

1A – modelo com geometria não corrigida, ver Sec. 5.3. 

1B – modelo com dados experimentais, ver Sec. 5.3. 

2D – bidimensional, estruturas planas. 

3D – tridimensional, estruturas espaciais. 
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11. TRADUÇÕES ADOTADAS 
“beam line” – linha de viga, ver Fig. 2.27 e Sec. 2.5. 

“benchmark problems” – problemas de banco de provas (Chen & Toma, 1994).  

“CDC Column Deflection Curves” – curvas de colunas defletidas, formas de obter-se a 

coluna deformada a partir dos esforços atuantes (Higgins et al., 1971).  

“CSP Current Stiffness Parameter” – parâmetro de rigidez corrente, do método de 

controle do trabalho (Bergan et al., 1978). 

“degrading” – degradação da ligação, ver Fig. 2.11.  

“DOF degree of freedom” – GDL grau(s) de liberdade. 

“dynamic jump” – salto dinâmico, acesso a ponto à frente na trajetória, ver Fig. 4.4(b). 

“GSP generalized stiffness parameter” – parâmetro de rigidez generalizada (Bergan et 

al., 1978). 

“JMRC Joint Moment Rotation Curve” – curvas momento-rotação (Faella et al., 2000). 

“loop” – laço ou conjunto de instruções/operações repetidas até um teste terminá-lo. 

“know-how” – técnica ou conhecimento para fazer/produzir algo. 

“overflow” – estouro do valor de uma variável de memória do computador, que ocorre 

após, por exemplo, uma divisão por zero (1/0) ou tan(π/2). (Windows, 2001). 

“prying” – efeito alavanca, ver Fig. 2.34 na Sub. 2.6.2. 

“RBS Reduced Beam Section” – VSR viga de seção reduzida (Kim & Engelhardt, 

2007). 

“SCDB Steel Connection Data Bank” – banco de dados de ligações Chen et al. (1996). 

“shakedown” – acomodação, forma de comportamento elástico após ter sido atingido 

um determinado patamar de plasticidade e reduzir-se a carga (Horne, 1979). 

“sidesway” – galeio lateral (side + sway), ver Sub. 9.3.1. 

“snap-through” – deslizamento descendente (Galambos, 1982), ver Fig. 4.4(a). 

“strain hardening” – endurecimento sob tensão, ver Fig. 2.11. 

“strain softening” – amolecimento sob tensão, ver Fig. 2.11. 

“sway” – deslocamento lateral por onda (náutica), galeio sob o efeito de vento. 

“T stub” – tocos de T, o perfil é cortado longitudinalmente, na metade da altura (como 

um machado cortando o toro de madeira), ver Fig. 2.33 na Sub. 2.6.2. 

“unwinding” – “desenrolar a espiral da mola, tirar da ordem”, adotou-se comportamento 

dissimilar (Galambos, 1982), quebrar a simetria; ver Fig. 8.5 e Sec. 8.3.  

“wind connection” – ligação simples, resistindo ao vento (Disque, 1964), ver Fig. 2.29.  
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12. PROGRAMAS DE COMPUTADOR 
BCIN.for  –  para análise com ZPI de viga-coluna (Chen & Toma, 1994). 

CONANA.for – para obter-se curva M-θ de ligações com cantoneiras, empregando 

estudos de Kishi (1987), (Chen et. al., 1996), ver Sec. A.9. 

FRAMP.for/FRAMH.for – para análise com ZPI de portais, (Chen & Toma, 1994), só 

flambagem (P) e com carga horizontal (H), respectivamente. 

NIM – desenvolvido e empregado por Shen & Zheng (1995), ver Sec. 5.6. 

SCDB.for – acesso aos dados/tabelas do “SCDB” (Chen et al., 1996). 

FLEXCOMP – versão desenvolvida pelo autor do BCIN.for, ver Sec. 5.3 e 5.4. 

PPLANAVX – desenvolvido pelo autor (2005-7), em Turbo-Basic (Miller, 1987), 

operado em sistema IBM PC DOS (1983), que faz Análise Avançada com 

ZP/Técnica das fatias, empregado no mestrado (sem ligações). 

PPLANAVA – desenvolvido pelo autor (2009-10), em Power-Basic (2005), operado em 

sistema Windows (2001), que faz Análise Avançada com ZP/Técnica das fatias, 

empregado no doutorado (com ligações). 

TABELAS.lsp – em AutoLISP para gerar uma tabela, ver Sec. A.8. 

VGASLIGA – desenvolvido pelo autor para cálculo de vigas com 2 apoios, biligadas, 

pelo método da viga conjugada (Monforton & Wu, 1963), sujeita a cargas 

concentradas e distribuída, ver Sec. 7.2. 

 

13. COMANDOS DO “AUTOCAD” (2002) 
Empregados na Sec. A.8 (para gerar uma tabela, partindo de uma figura): 

“align” – alinha a figura por meio de giro sobre um dado ponto e ângulo; 

“appload” – carregar um arquivo “AutoLISP” que cria pseudo comandos do CAD; 

“array horizontal” – faz várias cópias da figura selecionada espaçadas horizontalmente; 

“block” – para salvar uma figura e referenciá-la por único nome; 

“insert” – introduz arquivos ou blocos no desenho; 

“layer” – para seleção da camada (nível) de representar a figura no desenho; 

“line” – para traçar uma semirreta entre 2 pontos; 

“raster image” – insere imagem gráfica (“JPEG”, por exemplo); 

“trim fence” – cortar uma figura (linhas) usando outro conjunto de linhas selecionado; 

“undo” – desfaz a ação do comando do “AutoCAD” anterior; 

“zoom” – aproxima ou afasta a imagem gráfica da tela. 
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14. FORMATAÇÃO 
“texto” – citação ou tradução de pesquisadores em publicações (sic); 

texto – termo (ou frase) do autor, inserido nesta tese, não existente ou particular, 

traduções e termos latinos de uso geral (por exemplo, a priori, et al., etc.); 

ABR – abreviaturas de termo (ou siglas) de pesquisadores em publicações.    

ABR – abreviatura inserida nesta tese, não existente ou particular. 

Cap. (Caps.) – indicação de capítulo(s). 

Eq. (Eqs.) – indicação de equação(ões). 

Fig. (Figs.) – indicação de figura(s); 

Sec. (Secs.) – indicação de seção(ões). 

Sub. (Subs.) – indicação de subseção(ões). 

Tab. (Tabs.) – indicação de tabela(s). 

I. – numeração de capítulo, índice I = {1-9, A}. 

I.J – numeração de seção, equações, figuras e tabelas, índice J = {1, 2, 3,...}. 

I.J(a) – partes ou subdivisões de equações, figuras e tabelas; índice a = {a, b, c,...}. 

I.J.K – numeração de Sub., índice K = {1, 2, 3,...}; 

.a – ordenação alfabética de item, índice a = {a, b, c,...};  

.i – numeração romana itálica de alíneas, índice i = {i, ii, iii,...}.  

Autor1 (ano) ou (Autor1, ano) – referência de 1 autor. 

Autor1 & Autor2 (ano) ou (Autor1 & Autor2, ano) – referência de 2 autores. 

Autor1 et al. (ano) ou (Autor1 et al., ano) – referência de 1 autor, dentre mais de 2. 

Referência(s) – adotou-se o sistema americano “Library of Congress” (AISC, 2005), 

colocando o separador universal & (substituindo “and”), com a diagramação: 

      Nome do livro, I
a
. Ed., Editora, Vol. xx, pp. iii-iij, Local. 

 Nome da norma, Sigla/número, Conselho/Grupo, Parte, pp. iii-iij, Local. 

 Nome do trabalho, Tese/Dissertação, Departamento, Universidade, Local. 

        “Nome de artigo”, Nome do jornal, Vol. xx, No. xx, pp. iii-iij. 

        “Nome do trabalho”, Nome do congresso SIGLA, Vol. xx, pp. iii-iij, Local.                   

        “Nome de artigo”, Nome da página, WWW.endereço@eletrônico, Local. 
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1. 1 CONSIDERAÇÕES INICIAIS 

Neste capítulo, faz-se um elo entre o trabalho anterior do autor (Alvarenga, 2005) 

e o atual, uma vez que são passos consecutivos dentro de um mesmo tema da 

Engenharia Estrutural: a estabilidade de portais planos de aço sob o enfoque da Análise 

Avançada. 

No primeiro trabalho avaliaram-se os diversos métodos de análise estrutural 

disponíveis, suas vantagens e desvantagens, bem como a sua relação com o 

dimensionamento envolvendo critérios de resistência e estabilidade. Isso nos remete ao 

estado da arte tratado na próxima seção. A partir daí, introduz-se o que seria um 

caminho direto de análise estrutural e dimensionamento, chegando-se ao conceito da 

Análise Avançada, que é reapresentado na seção posterior de forma sucinta. 

Ambas as pesquisas empregam o método da Zona Plástica, sendo que a anterior 

tratou dos chamados aspectos importantes, pois são exigências mínimas das normas 

para que tais análises estruturais diretas possam cumprir sua finalidade. Também esses 

aspectos são relembrados na quarta seção deste capítulo. 

Depois dessas etapas inicia-se propriamente o este trabalho, com o objetivo 

descrito na quinta seção. Aproximadamente quatro anos atrás, no projeto desta tese, 

existiam propostas e escopo um pouco diferentes do que os ora cumpridos. Cabe 

justificar que essa parcela de perda (ligações de base e excentricidade, por exemplo) foi 

substituída por novas contribuições não previstas ou conhecidas antes. Tais 

contribuições apareceram como consequência natural do desenvolvimento de uma 

formulação nova de um elemento finito (EF) com ligação, das propostas anteriores que 

mereceram cuidados complementares (Integração Iterativa dos Esforços Axiais), bem 

como de outras ideias que surgiram ao longo de todo esse período e das necessidades 

decorrentes da própria pesquisa desenvolvida. 

Na sexta seção, faz-se um retrato das partes desta tese, mostrando sua 

organização, destacando e localizando as contribuições principais deste trabalho, o que 

se torna necessário, dado o tamanho da obra. 

Na última seção, constam as referências, o que se repete ao longo de toda tese, no 

final de cada capítulo. 
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1. 2 ANÁLISE ESTRUTURAL – ESTADO DA ARTE 

Hoje, a análise estrutural pode ser vista como uma ciência, principalmente para a 

construção de estruturas de aço, e que se baseia em quatro pontos fundamentais: 

a.   a Estabilidade – a flambagem pode-se manifestar de forma a comprometer a 

estrutura ou parte da mesma, e precisa ser avaliada para garantir a segurança 

da construção;  

b. a Plasticidade – para melhor auferir as propriedades do aço, destacando a 

dutilidade, que permite a redistribuição de esforços e, portanto, o 

aproveitamento da resistência extra de outras partes das estruturas que 

possuem maior redundância;   

c. as técnicas de modelagem – indicando aqui tanto o Método dos Elementos 

Finitos (MEF) como os demais processos numéricos (estratégia de solução de 

problemas não lineares, comportamentos descritos por curvas σ-ε, P-M-Φ, M-

θ, etc.), que permitem desenvolver análises estruturais mais refinadas; e   

d. a Informática – todo esse desenvolvimento somente foi  possível com o advento 

dos modernos computadores e seu progresso em recursos tecnológicos.  

 

Assim, por meio dessa ciência, é possível projetar (calcular e desenhar) estruturas 

em que se garantam simultaneamente sua estabilidade e sua resistência (segurança), 

aproveitando sua capacidade de suportar maiores cargas (redistribuição de esforços), 

minimizando custos e material (peso, tempo e processos) e empregando-se, para isso, os 

recursos numéricos com a Informática. Essa conjugação de áreas e esforços nas últimas 

décadas possibilitou o surgimento de vários métodos de análise estrutural que podem ser 

adotados em cada projeto, como ilustra a Fig. 1.1. 

As análises podem ser separadas em dois grupos, considerando a estabilidade: 

a.  de primeira ordem –  que não avalia efeitos das modificações da geometria; e  

b.  de segunda ordem – que consideram essas alterações, seja de forma direta ou 

implícita, na própria análise, seja na forma aproximada, pós-análise. 

 

Existem, também, dois grupos do ponto de vista da plasticidade: 

a.  elásticos – que consideram tensões proporcionais às deformações, segundo a 

Lei de Hooke, ignorando a plasticidade; e  

b.  inelásticos – que avaliam o seu efeito nas análises. 
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Figura 1.1  Métodos de análise estrutural. 
 

Em fase anterior ao surgimento dos computadores e mesmo por algum tempo 

depois, a forma de análise mais empregada era a elástica linear (ou de primeira ordem). 

Admitia-se que as deformações seriam suficientemente pequenas, de tal forma que a 

geometria inicial seria confundida com a resultante após a aplicação dos carregamentos. 

Considerava-se que o material se comportasse no regime elástico, ou seja, a resposta da 

análise era linear em esforços e deslocamentos. Essa forma de análise não possibilita a 

avaliação adequada da estabilidade ou da resistência última da estrutura. Por isso, o 

projeto era auxiliado com o emprego de equações de interação empíricas que 

procuravam estimar efeitos secundários sobre os esforços solicitantes, realizando-se 

verificações complementares posteriores às análises. A análise seria refeita sempre que 

detectadas condições incompatíveis nessas equações. 

Como essas equações, dentre outros parâmetros e definições, estavam ligados a 

procedimentos empíricos, é natural que, com o desenvolvimento tecnológico, uma série 

de questionamentos surgisse em relação ao seu emprego e aos resultados produzidos 

com esse tipo de filosofia. Notoriamente, a aproximação da carga de flambagem de uma 

coluna baseando-se no conceito de comprimento equivalente (fator de comprimento de 

flambagem kfl) sofreu ardorosas críticas (Kim & Chen, 1996a-b; Nethercot, 2000). 
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Hoje, não se permite que a análise estrutural ignore os efeitos de segunda ordem, 

que são facilmente constatados quando se incorporam os efeitos das deformações na 

geometria durante o processo de solução. Os efeitos secundários são os seguintes: 

a.  Pδ (P-deltinha) – associado ao acréscimo de momentos, pelo arqueamento das 

barras sujeitas a esforços axiais (efeito da carga P), ilustrado na Fig. 1.2(a);  

b. P∆ (P-delta) – considera o acréscimo de momentos, devido ao deslocamento 

lateral (∆) dos nós das colunas sujeitas a esforços axiais (P) da Fig. 1.2(b); e   

c.  MΦ (M-fi) – relacionado ao acréscimo de momentos provocado pela rotação da 

seção da extremidade da barra oposta ao ponto onde atua esse momento (M). 

Na figura 1.2(c) mostra-se que esse efeito vem do cortante Q (= M/B), que age 

como P, e do deslocamento ∆ associado ao giro Φ (∆ = L tan Φ ≈ L Φ), do que 

P∆ = (L/B)MΦ. Em geral, o vão B é maior que a altura L e o giro Φ é da 

ordem de milirradianos [mrad], por isso é ignorado ou menos expressivo. 

 

As análises elásticas, ditas de primeira ordem, são levadas ao patamar de segunda 

ordem simplificada porque as normas exigem que se incluam correções que levem em 

conta esses efeitos de segunda ordem, seja na forma tradicional com uma série de 

coeficientes de ajustes (Cb, Cm, kfl, Pe), seja na forma de combinar duas análises no 

método B1-B2. Isso quer dizer que se faz uma análise considerando a estrutura travada 

ou indeslocável, da qual aparece um coeficiente de majoração de esforços B1, na 

consideração de estrutura deslocável se determina o coeficiente B2. De tal forma que os 

esforços considerados naquelas verificações complementares são combinações lineares 

dos resultados obtidos por B1 e B2 (AISC LRFD, 1993; ABNT NBR 8800, 1986). 

Consideram-se propriamente elásticos de segunda ordem os processos que: 

a. determinam os coeficientes de comprimento efetivo de flambagem por 

autovalores e os modos associados por autovetores da matriz de rigidez (MR) 

incluindo os efeitos geométricos;  

b.  que usam cargas horizontais fictícias (nocionais) de forma a expor o efeito P-

delta (P∆) da estrutura (Wood et al., 1976);  

c.  que fazem o emprego da MR geométrica Kg construída por métodos numéricos 

(MEF), para obter deslocamentos e esforços; e    

d. que melhoram  a avaliação dos termos de rigidez por meio das funções de 

estabilidade, obtendo resultados mais precisos (Sonmez, 1996). 
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Figura 1.2  Efeitos secundários associados às deformações: 
(a) curvatura no Pδ; (b) galeio lateral no P∆; (c) cortante induzido pelo giro oposto no MΦ. 

 

Os processos (b-c-d) são essencialmente iterativos, enquanto o primeiro (a) é uma 

melhoria nas estimativas de kfl e Pe, ligando-se, ainda, ao processo empírico anterior. 

A plasticidade é introduzida por métodos que avaliam a formação de mecanismos 

e definem, com o uso de teoremas clássicos (Horne, 1979), a maior carga estaticamente 

equilibrada, na qual nenhum ponto da estrutura possui um momento superior ao 

plástico, e a menor carga, que determina o comportamento da estrutura como um 

mecanismo, levando-a ao colapso. Nesse caso, pontos onde atuam o momento máximo 

(chamado momento plástico Mp) passam a comportar-se como rótulas para novos 

acréscimos de carga, e assim são definidas as rótulas plásticas (RP). 

Surge a necessidade, entretanto, de considerar os esforços axiais na formação 

dessas rótulas plásticas. Para isso, define-se a superfície de interação entre esses 

esforços (axial e momento) da mesma seção. Uma vez que a seção permanece elástica 

até se formar a RP, aplica-se o método elástico com rótula plástica (ERP), no qual se 

determina a ordem de aparecimento das RPs (Ziemian et al., 1992). 

Naturalmente, a combinação das duas tendências e das duas áreas da Engenharia 

(Estabilidade e Plasticidade) levou à introdução da plasticidade nos métodos elásticos 

de segunda ordem, ou os efeitos secundários nos métodos do tipo elástico com rótula 

plástica, que passam a uma nova condição. Surge, assim, a análise inelástica de segunda 

ordem, que hoje possui basicamente três abordagens distintas: 

a.   concentrada – dita com rótula plástica, na qual se distribuem nós nas seções 

mais solicitadas da estrutura ou das barras, para ali avaliar a plasticidade, sob 

um comportamento a flexocompressão. Essa abordagem pode ser “refinada” 

(ERP-R), quando controlada por uma superfície de interação e com uma 

degradação suave a partir do início do escoamento, dado pelo módulo tangente 

(Liew et al., 1993);  ou construída numa “seção montada” com partes 
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remanescentes elásticas (EPR-M, Chan & Chui, 2000) ou empregando “cargas 

nocionais” para induzir efeitos secundários (EPR-CN, Eurocode 3, 1992);  

b.  quase rótula plástica (QRP) – na qual se faz uma abordagem de RP mais 

flexível, dentre outras diferenças (Attalla et al., 1994); e    

c.  distribuída – dita com zona plástica (ZP), na qual se avalia a plasticidade ao 

longo de toda a barra, seja empregando as relações momento/axial/curvatura 

(M-N-Φ) do surgimento do método (Chen & Toma, 1994; Barzan & Chiorean, 

1999), ou monitorando subvolumes ditos “fatias” (Alvarez & Birnstiel, 1969; 

Teh & Clarke, 1999). 

 

A primeira abordagem é a que apresenta maiores adeptos, com maior quantidade 

de pesquisadores, trabalhos publicados, etc. A razão primordial é sua simplicidade, 

aliada à sua rapidez na obtenção das respostas. Os avanços técnicos incluem programas 

computacionais para análise em 3D (Ziemian & McGuire, 2001, Kim et al., 2006), 

modelagem de elementos finitos com rótulas plásticas no interior (Chen & Chan, 1995) 

e análises voltadas às normas de estados limites (Kim & Chen, 1999). No Brasil, 

destacam-se vários trabalhos (Santos et al., 2008; Silva, 2009;  e Silveira, 2009). 

O método QRP foi incluído apenas para simbolizar a tendência de unir as duas 

abordagens principais, concentrada e distribuída. Nessa condição, pode-se enquadrar 

também a formulação de Ackroyd (1979). 

Finalmente, a abordagem distribuída foi colocada nessa ordem porque é adotada 

nesta tese. Note que trabalhos com o chamado método ZPI (integração momento, axial e 

curvatura, M-N-Φ) aparecem com Galambos & Ketter (1959), Lu & Kamalvand (1968) 

e Kanchanalai (1977). Esse processo é apresentado com detalhes por Chen & Toma 

(1994) e tem em Chiorean & Barzan (2005) a mais recente técnica. 

O monitoramento da seção por meio de fatias surge com Alvarez & Birnstiel 

(1969), sendo desenvolvido posteriormente também por El-Zanaty et al. (1980), White 

(1985) e Clarke (1994). Recentemente, essa técnica recebeu novas contribuições (Teh & 

Clarke, 1999; Lavall, 1996, Alvarenga, 2005; Almeida, 2006).  

O último método é o mais preciso de todos, já que avalia a plasticidade de forma 

mais detalhada. Todavia, requer maiores recursos computacionais: desde maior área de 

memória, maior rapidez de processador, saídas gráficas, etc., uma vez que o tempo 

gasto na execução dessa tarefa é superior ao que consomem os demais métodos.  
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A cada ano os recursos da informática se tornam mais amplos, e essas demandas, 

apesar de elevadas, não comprometem mais a capacidade dos computadores, o que 

viabiliza a utilização do método da zona plástica (ZP). 

A essa altura, é importante definir o conceito de comportamento estrutural que 

nasce a partir dos diversos métodos apresentados. Para isso mostra-se a Fig. 1.3(a) em 

que um portal simples hipotético é sujeito a um carregamento incremental de fator λ, de 

tal forma que se constrói a sua trajetória de equilíbrio representada na Fig. 1.3(b) de 

forma a caracterizar melhor as respostas de cada método empregado. 

No método elástico de primeira ordem, nenhuma restrição é obtida. No elástico de 

segunda ordem, define-se o fator crítico (λe) que provoca a flambagem elástica. 

No método plástico, encontra-se o fator de formação do mecanismo, e aplicando-

se o elástico com rótula plástica (ERP), se define a carga de colapso plástico (λp).  

Com os métodos da zona plástica (ZP), ou conjugando melhorias (refinamentos) 

ao ERP, se consegue determinar o limite inelástico (λLim), que é o máximo fator de 

carga que a estrutura poderá suportar. Deve-se lembrar a recomendação: “todos os testes 

mostram conclusivamente que os pórticos destravados são prováveis de entrar em 

colapso por instabilidade, antes de se formar o mecanismo plástico, e qualquer análise 

racional ou dimensionamento deve observar isto” (Hajjar et. al., 1997). Nesta tese, trata-

se por fator de colapso (λc) essa condição limite, esteja associada à flambagem inelástica 

ou à formação de mecanismo plástico. 

Tendo mostrado os métodos existentes, na seção seguinte, apresenta-se a Análise 

Avançada, que é um novo caminho a ser percorrido. 

F
at

or
 d

e 
ca

rg
a

crítico

colapso

inelástico

Deslocamento do topo

ZP

ERP

Análise elástica
de 1  ordem

de 2  ordem
Análise elástica

Análise inelástica

a

Análise inelástica
lim   

p

e

a

de 1  ordema

de 2  ordema

H
C

P P

Cx

Cx(a) (b)
 

Figura 1.3  Tipos de resposta das análises estruturais: 
(a) portal simples; (b) trajetórias de equilíbrio. 
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1. 3  O CONCEITO DA ANÁLISE AVANÇADA  

Atingido esse patamar de refinamento, verificou-se, entretanto, que os resultados 

numéricos ainda não reproduziam adequadamente os ensaios experimentais e que havia 

outras considerações a serem incluídas, que interagem seja com a estabilidade, seja com 

a plasticidade das estruturas reais. 

A análise inelástica de segunda ordem ganha novo papel quando se introduzem 

nos modelos essas condições reais. A partir daí, os resultados obtidos passam a 

reproduzir razoavelmente os de laboratório, de tal forma que ficam desnecessárias 

verificações complementares de barras individualmente no plano da análise, já que o 

limite de estabilidade ou de resistência, assim determinado, é muito preciso. Essa nova 

concepção se denominou “Análise Avançada” (ou “Análise Direta”) porque é um 

processo de análise que constitui dimensionamento (Clarke et al., 1992). E esse 

conceito se torna maior à medida que mais características do comportamento real são 

simuladas pelos modelos e introduzidas nas análises (Chen & White, 1993). O termo 

“avançada”, aqui, não se refere a algo moderno ou a uma novidade, mas representa um 

passo adiante em direção ao dimensionamento/projeto da estrutura. 

Na figura 1.1 faz-se uma diagramação dos métodos de análise citados e indica-se a 

inserção da Análise Avançada como um novo recurso na direção do projeto, sem as 

chamadas “verificações complementares” (de estabilidade e resistência). 

São várias as condições naturais cujas influências podem ser consideradas quando 

se realiza a Análise Avançada (Liew et al., 1993). Algumas dessas condições foram 

tratadas no trabalho anterior (Alvarenga, 2005) e denominadas aspectos importantes. 

Elas são atributos que representam condições mínimas exigidas pelas normas, ou seja: 

a.  a curvatura inicial das barras – que está associada ao efeito secundário Pδ, mais 

significativos em estruturas travadas (ou contraventadas);  

b.   o fora de prumo das colunas – que está associado aos efeitos secundários P∆ e 

MΦ, mais graves nas estruturas destravadas (não contraventadas); e    

c.  as tensões residuais – que provocam o surgimento da plasticidade de forma 

antecipada e prolongam a trajetória até o colapso. 

 

Na seção seguinte faz-se um pequeno resumo sobre essas considerações, que são 

intrínsecas às normas no caso da curvatura inicial e das tensões residuais, bem como da 

que vem sendo introduzida como cargas nocionais (P∆) na simulação do fora de prumo. 
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1. 4  ASPECTOS IMPORTANTES 

Nesta seção, procura-se mostrar o que são esses atributos mínimos para a 

realização da Análise Avançada, e que tem maior relevância com o método da Zona 

Plástica (ZP) porque são introduzidos explicitamente no modelo. É essa equivalência 

entre o que se considerou para estabelecer as normas e o que se emprega nas análises 

que tornam desnecessárias as chamadas verificações complementares. Note-se que, no 

caso dos modelos ERP refinados, é a superfície de interação que determina o 

comportamento estrutural. No caso da ZP, esse método é empregado para gabaritar os 

demais, ficando desnecessárias as verificações de interação no escopo da análise. 

Apresenta-se, a seguir, uma sucinta descrição desses atributos. 

 

1.4.1  CURVATURA INICIAL 

A curvatura inicial simula o efeito do resfriamento após a confecção dos perfis, 

sejam laminados, sejam soldados, em que a barra não é perfeitamente reta, mas possui 

uma leve curvatura, que é limitada na fabricação. 

Usualmente, é parametrizada como uma meia-onda senoidal, com a flecha 

máxima δ0 no meio-vão da barra, como é mostrado na Fig. 1.4(a). Alguns pesquisadores 

empregam também a forma parabólica (Kim & Lee, 2002). Em algumas análises, 

verificou-se que o uso do arco de círculo para barras com poucos elementos finitos 

(EFs), também produz bons resultados (Alvarenga, 2005).  

Segundo diversas normas, o usual é adotar a flecha δ0 = L/1000, sendo (L) a altura 

da coluna (entre pisos). Porém, a norma australiana AS 4100 (1990) impõe δ0 ≥ 3 mm, 

enquanto Bjorhovde (1988) recomendou uma flecha menor (L/1500). 

Y

X

=L/10000

Y

0

X

=L/5000

L

(a) (b)

P P

+ +
+

B B

L

0 0

 

Figura 1.4  Imperfeições geométricas das análises estruturais: 
(a) curvatura inicial; (b) fora de prumo. 
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Normalmente, esse efeito é considerado explicitamente apenas nas colunas, pois é 

prática normal (nas fábricas) colocar-se a curvatura inicial como uma contraflecha 

vertical para vigas, melhorando o seu desempenho para suportar pisos. 

Na figura 1.4 ilustra-se o sentido positivo da curvatura inicial, quando na coluna 

da esquerda (com a direção de ordenação dos EFs para cima), tem-se CI (+) para a 

esquerda, e a coluna da direita, com a ordenação para baixo, a CI (+) é para a direita. 

Neste trabalho as barras são subdivididas, em geral, em mais de 6 EFs cada, então, 

considerou-se desnecessário usar a CI circular adotada anteriormente (Alvarenga, 

2005), empregando-se a CI senoidal mesmo. 

 

1.4.2  FORA DE PRUMO 

É uma circunstância atrelada aos limites de tolerância da montagem, das folgas 

dos parafusos e das uniões, bem como do processo construtivo, enfim, aos que têm uma 

tolerância de verticalidade. No Brasil e em outros países limita-se essa tolerância ao 

valor L/600, e por conseqüência adotou-se ∆0 = L/500, como recomendaram Galambos 

et al. (1988). Na Europa, colocou-se ∆0 = L/200, incluindo nisso a falta de aperto de 

parafusos e eventuais excentricidades de montagem (Chen & White, 1993). Como 

ilustrado na Fig. 1.4(b), adotou-se, neste trabalho, o sinal positivo para a direção do eixo 

global x, coincidindo também com a direção dos esforços horizontais positivos. 

De toda forma, modelar essa imperfeição geométrica não é simples. Por isso, 

ainda são adotados métodos empregando cargas nocionais. Todavia, torna-se importante 

sua inclusão nas colunas quando há cargas axiais elevadas em relação às cargas de 

Euler, em estruturas assimétricas e quando existem elevados cortantes e momentos nas 

colunas gerando efeitos conjugados (MΦ) ao P∆ (Galambos et al., 1988). 

 

1.4.3  TENSÕES RESIDUAIS 

As tensões residuais (TR) aparecem com o resfriamento desigual das diversas 

partes dos perfis, seja depois da laminação, seja por causa do corte a maçarico, seja por 

causa da soldagem, dentre outros processos de fabricação geradores.  

Primeiro, as partes mais externas ou expostas se resfriam e se contraem (em 

branco), enquanto as mais protegidas (ou internas) se resfriam devagar, seguindo a Fig. 

1.5(a). Quando, então, tentam contrair-se, são impedidas. As que se contraíram antes 

ficam comprimidas e as últimas ficam com tração, como mostradas na Fig. 1.5(b). 
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       parte já fria           parte ainda quente        TR compressão           TR tração

       i. aba            ii. alma        i. aba            ii. alma

 

Figura 1.5  Tensões residuais (TR): 
(a) resfriamento desigual; (b) contração e geração das tensões; (c) diagrama aproximado. 

 

Essas tensões TRs são autoequilibradas nas seções dos perfis. E existem vários 

modelos que podem ser adotados, como o da Fig. 1.5(c) para os laminados americanos 

mais compactos, onde não ocorrem TRs de compressão na alma (Galambos & Ketter, 

1959), sendo o mais empregado neste trabalho. Seu efeito é provocar o início do 

escoamento antecipado para partes da seção com TRs do mesmo sinal das tensões dos 

esforços e retardar quando os sinais são opostos (Alvarenga & Silveira, 2006a). 

Na seção seguinte, explica-se a relação do atual trabalho de tese com a Análise 

Avançada no contexto de outra imperfeição natural (atributo) a ser considerada 

1. 5  MOTIVAÇÃO E JUSTIFICATIVAS 

Observe-se que em cada estrutura, para cada geometria, podem-se dispor as 

imperfeições geométricas previstas na Análise Avançada de diversas maneiras, quando 

essas imperfeições são consideradas na forma explícita, que é o caso do método aqui 

adotado (da zona plástica). 

E isso pode gerar um número elevado de combinações dessas imperfeições, 

tornando a avaliação da estrutura mais complicada ou trabalhosa.  

Assim, apresentou-se uma proposta para reduzir essa tarefa, baseando-se nos 

trabalhos de Chwalla (1938) ao estudar as barras à flexocompressão, com as curvas de 

deflexão de colunas (Higgins et al., 1971). Nessa antiga concepção, determinava-se a 

curvatura e a deflexão da barra à flexocompressão associada a partir dos esforços 

atuantes. 

 Verificou-se que existe, portanto, uma premissa de comportamento que liga a 

deformada da barra à sua capacidade de carga.  
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Estendeu-se essa premissa na ordem inversa, e procurou-se demonstrar-se que 

seria possível dispor as imperfeições geométricas iniciais que serão governantes, 

baseando-se numa aproximação da deformada inelástica da estrutura sujeita ao mesmo 

carregamento, com a configuração inicial perfeita (Alvarenga, 2005). 

Naturalmente, vários serão os caminhos para se confirmar essa conclusão, como 

também para delimitar casos de sua validade, ou limites de aplicabilidade. E, para o 

emprego no projeto, outras exigências complementares devem ser atendidas. 

No caso do projeto das estruturas em pórticos, as normas, hoje, preveem, 

basicamente, três comportamentos distintos na análise estrutural, associados ao tipo de 

construção que se adota, isto é: 

a.  tipo rígida – similar ao que se fazia anteriormente, considera que as seções da 

coluna e viga interligadas terão a mesma rotação, ou seja, que a seção da viga 

é ligada rigidamente à coluna, terá a mesma rotação daquela, gerando, por 

continuidade, momentos de flexão; 

b.  tipo simples ou rotulada – despreza-se o efeito da ligação da viga à coluna, do 

ponto de vista de esforços de flexão, considerando, assim, que a viga poderá 

girar na ligação, sem transmitir esforço algum dessa natureza à coluna, ou que 

o mesmo é desprezível; e  

c.  tipo semirrígida – admite-se uma rotação relativa entre as seções interligadas 

da coluna e viga, embora haja a participação de esforços de flexão por meio da 

ligação inferiores aos previstos no tipo (a) e superiores, aos do tipo (b). 

 

Seja qual for a análise estrutural desenvolvida (de primeira ou de segunda ordem, 

estática ou dinâmica, planar ou espacial), o projetista deve enquadrar o seu modelo num 

dos tipos de construção anteriores, e, por conseqüência, precisará também ter recursos 

para desenvolver a Análise Avançada com esses tipos de construção. 

A construção rígida, que é a forma mais antiga, tradicional e adotada na maioria 

dos modelos em geral, já foi estudada em diversos trabalhos, por diversos 

pesquisadores.  Também, no estudo dos aspectos importantes, esse tipo de construção 

foi adotado em Alvarenga (2005).  

Entretanto, a conclusão anterior (sobre as imperfeições geométricas iniciais) não 

foi investigada à luz dos outros tipos de construção, que consideram o vínculo entre a 
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coluna e a viga de forma mais próxima da realidade. Agora, procura-se preencher essa 

lacuna e também preparar a base para futuros trabalhos nessa linha de pesquisa. 

Isso é possível porque a teoria atual atende aos princípios e requerimentos da 

Análise Avançada, como a já apresentada (Alvarenga, 2005). Portanto, partindo das 

mesmas considerações, que são genéricas, ou seja, não restringem as condições de 

borda do elemento finito (EF), admite-se, sem demonstração, que, aplicando-se a 

mesma metodologia anterior para desenvolver os EFs com ligação desta tese, cumpram-

se as exigências de continuidade, estabilidade e unicidade de solução (Pimenta, 1986). 

Além disso, deve-se destacar que este trabalho se enquadra em duas linhas de 

pesquisa do Programa de Pós-graduação em Engenharia Civil (PROPEC) do 

/Deciv/Escola de Minas/UFOP, quais sejam: 

a. mecânica computacional – que objetiva a aplicação de métodos numéricos na 

determinação de respostas de sistemas de engenharia; e  

b. comportamento e dimensionamento de estruturas metálicas – que visa estudar 

isoladamente, ou em conjunto, o comportamento das diversas partes de uma 

estrutura de aço. 

 

A primeira linha está inserida em toda a formulação numérica e computacional 

empregada neste trabalho, e a segunda se insere ao verificar-se que a Análise Avançada 

é uma forma de avaliar tanto o comportamento (esforços, deformações, etc.) como 

também de realizar o dimensionamento, sendo por isso chamada de “avançada”. 

Com a inclusão das ligações, a Análise Avançada passa a conter outra fonte de 

comportamento não linear expressivo e que, assim, a torna mais próxima da realidade, 

que é a sua maior justificativa e objetivo. 

Há um sentimento de desafio e realização no desenvolvimento dessa contribuição, 

uma vez que as ligações estão presentes nos diversos temas de pesquisa bem como os 

profissionais requerem maiores informações e técnicas (“know-how”) para o seu 

emprego prático no projeto. Assim, não basta apenas desenvolver-se uma análise 

voltada ao dimensionamento. É necessário acompanhar a tecnologia existente e não 

exigir mais esforço/tempo para a realização do mesmo serviço (projeto). 
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1. 6  OBJETIVOS 

O autor com esta tese tem os seguintes objetivos: 

a.   desenvolver a formulação de um EF com ligação numa extremidade; 

b.  ajustar a Integração Iterativa do Esforço Axial (IIEA), tendo em vista a 

presença dessa ligação (o que exige o seu reestudo);  

c.  avaliar o efeito da plasticidade na seção, considerando o deslocamento do 

centro de gravidade plástico (yCGP), que provoca excentricidade, modifica 

curvaturas, e, também, requer uma forma mais coerente de aproximar as 

propriedades das seções do EF (melhorar as “médias” anteriores);  

d. estudar as ligações, incluindo modelos, diversos tipos de curva momento-

rotação M-θ hoje existentes, propriedades, critérios de escolha (classificação), 

estimativa pela linha de viga, tipos de ligação, etc., com a finalidade de 

desenvolver um material (apostila) para uso acadêmico e consultas;  

e.  estudar as opções, a introdução, a seleção, a determinação de parâmetros e o 

controle dos diversos tipos de curva M-θ, o que leva à proposta de uma nova 

curva, que é simples e de fácil emprego;  

f.  aplicar estratégias para ultrapassagem do ponto limite de carga, permitindo 

comprová-lo e determinar a resistência da estrutura após esse limite. Esse 

procedimento exige modificar o desenvolvimento do processo incremental 

(com um novo conceito) e as partes da ferramenta computacional 

correspondentes, para adaptá-la à concepção “solução predita e correção 

iterativa” (Silveira, 1999). Introdução do controle incremental relativo a um 

deslocamento selecionado (Argyrus, 1964) e, posteriormente, o 

desenvolvimento uma nova proposta de estratégia tratada por controle do 

deslocamento generalizado;  

g.  avaliar a influência da ligação no comportamento de vigas, colunas e portais. A 

partir da formulação numérica do EF com ligação, fazer o estudo das 

condições extremas (engaste e rótula) e, posteriormente, avaliar o efeito da 

variação do índice de semiflexibilidade da ligação ou índice de giro próprio 

da ligação η (eta). Estudo a aplicação dos seus dois valores (local e global) 

bem como o significado como parâmetro da ligação;  

h.  fazer a compatibilização entre a resposta a nível de EF e o comportamento da 

ligação (M-θ) e, consequentemente, o desenvolvimento de três métodos para  
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avaliar a rotação da ligação e, assim, determinar o seu estado e poder fazê-la 

acompanhar uma trajetória de solução coerente;  

i.   empregar as diversas curvas de ligação com os modelos selecionados e obter 

curvas similares pelo novo modelo de curva M-θ proposto aqui.  Dessa forma, 

apresentar alternativa para se obter uma curva aproximada a partir de outra 

conhecida, desse mesmo modelo que foi definido aqui, por uma forma simples 

de analogia;   

j. desenvolver exemplos completos e com dados bem identificados, incluindo o EF 

com ligação que, além da validação da formulação numérica desenvolvida, 

possam servir de banco de provas para outras pesquisas; e   

k. avaliar efetivamente a proposta do teorema da configuração inicial  (Alvarenga, 

2005; & Silveira, 2006b), para estruturas com ligações. Mostrar como dispor 

as imperfeições geométricas e a influência das zonas plásticas e do 

carregamento na deformada inelástica e nas imperfeições iniciais limitadoras. 

Apresentar alternativas e/ou formas mais simples de empregá-lo com 

eficiência. Desenvolver um roteiro e recomendações para o emprego no 

projeto da Análise Avançada incluindo o efeito das ligações. 
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1. 7  ORGANIZAÇÃO 

Nesta seção, são apresentados os nove capítulos que compõem esta tese, 

destacando a localização das partes que representam contribuições originais dentro deste 

conjunto, que é organizado nos seguintes assuntos: 

 a. introdução – que mostra a continuidade do trabalho anterior e seus objetivos, 

situando a Análise Avançada com ligações semirrígidas;  

b.  modelo das ligações – extensa revisão bibliográfica sobre o tema ligações, 

apresentando histórico, parâmetros, classificação, modelos de comportamento, 

a estimativa da linha de viga, tipos de ligação. No final, destaca-se a seção 2.8 

com a proposta de uma nova curva M-θ, chamada RBL;  

c.  formulação geral – adotam-se hipóteses simplificadoras e considerações gerais 

que permitem o desenvolvimento das expressões das matrizes de rigidez  e dos 

esforços solicitantes para o EF com ligação. Destacam-se os itens: 

i. condição de contorno para introduzir a ligação, na subseção 3.3.3; 

ii. o significado do parâmetro η na formulação numérica, da subseção 3.3.7; 

iii. as MR do EF com ligação tratadas nas subseções 3.4.2 e 3.4.3; 

iv. as novas propriedades “médias” adotadas, na subseção 3.4.4; e  

v. as novas considerações da Integração Iterativa do Esforço Axial (IIEA), 

da subseção 3.6.3; 

d.   aspectos computacionais – descreve-se em linhas gerais o conteúdo e as 

considerações gerais dessa ferramenta computacional, sem muita preocupação 

com código ou implementações em si. Um fluxograma ilustra como se 

desenvolve o processamento dos programas e suas funções. Destacam-se como 

acréscimos às etapas anteriores (Alvarenga, 2005 e 2008): 

i. o processo incremental, com a nova proposta de controle de deslocamento 

generalizado da subseção 4.3.2;  

ii. a expansão da Integração Iterativa (IIEA), da seção 4.4 (Alvarenga & 

Silveira, 2008c); e  

iii. controle do comportamento da ligação, da seção 4.5;  

 

e.  elemento finito rígido-rígido  – é a primeira avaliação de resultados dessa 

formulação numérica para o caso particular com η = 0. Dentre os quatro 

exemplos tratados, destaca-se o portal de Chen et a.l (1996) da seção 5.5, pois 
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ali se evidencia melhor as diferenças que justificam a Integração Iterativa 

IIEA;  

f. elemento finito rígido-rótula  –  trata-se de outro caso particular, agora η = 0,5 

(máximo), e que permitiu o estudo das colunas escoras da seção 6.6. Aqui, 

destaca-se o portal de Hajjar et al. (1997), que permitiu algumas publicações 

em congressos internacionais (Alvarenga & Silveira, 2008a-b);  

g.   elemento finito rígido-ligação – trata-se da validação da formulação numérica 

proposta, agora com problemas de ligação propriamente ditos, destacando-se:  

i. casos de vigas simples da seção 7.2, com carga concentrada ou distribuída, 

tendo nas extremidades ligações lineares, bilineares, trilineares, curvas não 

lineares, a curva proposta comparada com a curva experimental da ligação, 

etc.;  

ii. colunas simples da seção 7.3, travadas e destravadas, incluindo estudo de 

convergência e ligações não lineares;  

iii. portal de Chan & Chui (2000) da seção 7.5, que contém a validação de 

todas as contribuições mais importantes, a nível de formulação, desta tese; 

 

h.  Análise Avançada incluindo a ligação  –  este é o capítulo de maior destaque do 

ponto de vista de resultados, no qual se explora o tema principal, com o portal 

de Chen & Zhou (1987) modificado, sob diversas condições de carga e 

imperfeições geométricas, realizando a Análise Avançada. No final, propõe-se, 

ainda, uma forma de se obter, por analogia, uma curva M-θ nova partindo de 

outra curva existente, ambas empregando o modelo RBL;  

i.  considerações finais  –  apresenta as conclusões, os aspectos críticos das 

soluções (falhas, limites, desvios, pontos de controvérsias, desvantagens) e os 

desdobramentos futuros desta tese. Destaque-se a proposta de um roteiro para 

a Análise Avançada da subseção 9.2.5, e o conceito estrutural da seção 9.3, 

levando a um último e marcante exemplo. 

 

Por fim, menciona-se que todos os capítulos possuem a sua própria lista de 

referências correspondentes, inclusive para os apêndices (que complementam algumas 

informações não colocadas diretamente no corpo da tese). No final, apresenta-se uma 

lista completa de todas as referências deste trabalho. 
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2.1  INTRODUÇÃO 

Este capítulo é composto de nove seções e representa um estudo ou revisão 

bibliográfica sobre o tema “ligações”, enfoque principal desta tese. Nesta seção, faz-se a 

apresentação do capítulo, reportam-se alguns aspectos históricos do início da pesquisa 

sobre este tema no mundo, a introdução dessas descobertas nas normas, quais as suas 

possíveis vantagens, a dependência e a validação de modelos por meio de pesquisas 

experimentais. Na seção seguinte, abordam-se os principais parâmetros envolvendo as 

ligações: resistência, rigidez, índice de rigidez relativo e dutilidade. Já na terceira seção, 

mostram-se algumas classificações das ligações e, em seguida, listam-se alguns modelos 

teóricos utilizados para descrever o comportamento delas. Na quinta seção, tem-se uma 

primeira avaliação do comportamento da ligação na viga onde é empregada, por meio 

da chamada linha de viga. Na sexta, faz-se uma breve descrição dos trabalhos de 

pesquisa relacionados a ligações específicas, fornecendo, assim, um material de 

consulta mais direcionado ao projetista ou ao estudante da engenharia estrutural. Um 

estudo abrangendo as ligações usadas nas bases das colunas compõe a sétima seção. Na 

oitava, propõe-se um novo modelo de curva M-θ e, por fim, a última seção contém as 

referências bibliografias. 

 

2.1.1  PRIMÓRDIOS 

Inicialmente, as uniões entre as colunas e as vigas eram executadas por meio de 

ligações com rebites sem haver qualquer preocupação maior com a presença da ligação 

que não fosse sua resistência e sua boa execução. Mas alguns pesquisadores se 

preocuparam não apenas em medir e avaliar o seu comportamento, como também 

determinar formas de estabelecer padrões para o seu dimensionamento e avaliar-lhe a 

segurança. 

Os primeiros experimentos com ligações surgiram em Wilson & Moore (1917) 

realizando o ensaio experimental da flexibilidade de juntas rebitadas. Posteriormente,  

Young (1917, & Dunbar, 1928; & Jackson, 1934), Baker (1934, &  Pipard, 1936) e 

Rathbun (1936) realizaram ensaios para obter as primeiras curvas conhecidas de 

momento-rotação da ligação, chamadas genericamente de M-θ (M-teta). Nasceu daí a 

noção de que o comportamento de ligações não pode ser propriamente considerado 

linear, sua relação com a flecha, a rotação e os momentos nas vigas. 
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Destaca-se Batho & Rowan (1934) que propuseram estimar a resposta da ligação 

pela chamada linha de viga. Em seguida, ocorrem vários ensaios com juntas 

aparafusadas e o primeiro ensaio de juntas soldadas (Hechtman & Johnson, 1947). 

Pode-se indicar adicionalmente a primeira formulação com o método dos 

elementos finitos com ligação de Monforton & Wu (1963) e o primeiro processo 

iterativo empregando ligações de Frye & Morris (1975). 

Como se constata, inúmeros trabalhos, tanto experimentais quanto analíticos, 

foram desenvolvidos desde 1930 até a presente data, indicando claramente a vastidão 

dessa área de pesquisa e as necessidades de informações para bem compreender-se o 

trabalho estrutural dessas partes, de forma que se possa, efetivamente, construir com 

economia e segurança. 

 

2.1.2  RECONHECIMENTO PELAS NORMAS 

No passado, o projetista poderia empregar dois tipos de construção baseados na 

forma como as ligações eram idealizadas:  

a.  rígidas – admitia-se que a viga acompanharia o movimento de giro da coluna, 

de tal forma que o ângulo relativo entre essas peças estruturais não se 

modificaria. Tal condição exige que a coluna seja capaz de absorver os 

momentos transmitidos que possuem valores elevados (de viga para coluna e 

vice-versa). Essa consideração é ilustrada por um portal simples de altura L e 

base B, na Fig. 2.1(a); e  

b.  rotuladas ou simples – aceitava-se que a ligação seria tão flexível que o valor 

do momento absorvido seria desprezível, podendo ocorrer uma rotação relativa 

entre a coluna e a viga de qualquer ordem. Este caso é representado na Fig. 

2.1(b) na qual, dada à forma de construção adotada, torna-se necessária a 

presença de um elemento estabilizador, como uma viga parede, um travamento 

como foi indicado, para a formação de treliças (contraventamentos). 

 

As normas até então procuravam garantir condições de dimensionamento que 

pudessem cumprir com tais aproximações, desprezando o real comportamento das 

ligações. A construção semirrígida era agrupada no caso parcialmente rígido (item b 

anterior) desde 1947 até 1986 (Leon, 2000). Nesse período, teve o seu maior destaque 

na consideração da ligação simples, porém resistente ao vento (Disque, 1964).  



Tese • AR Alvarenga • Cap. 2 Modelos das ligações 

 

25 

 

B

P
1

H
2

P

B

H

P
1

P
2

(a) (b) (c) B

H
1

P P
2

L L L

 

Figura  2. 1  Modelos de portais com construção: 
 (a) rígida; (b) rotulada; (c) semirrígida. 

 

Assim, a ligação era vista apenas como um elo entre as partes estruturais, que não 

produziria efeitos no comportamento avaliado do modelo estrutural. Portanto, 

desprezava-se, em geral, sua presença, tanto como a interação com o conjunto na 

solução e análise do comportamento estrutural. 

Com o surgimento da era do computador e da tecnologia, que se desenvolveu 

contemporaneamente, ficou estabelecido que essas hipóteses básicas de ligação (rígida e 

rótula) não se poderiam cumprir na prática, ou seja: 

a.  qualquer ligação flexível é capaz de resistir algum momento, e isso permite 

que se obtenha algum ganho na condição de flambagem das colunas, por causa 

dessa pequena restrição ao giro, ou seja, um benefício que era desprezado 

(Goverdham, 1984; Nethercot, 1985; Davison et al., 1987); 

b.  as ligações mais próximas da consideração de rótula são os olhais e os pinos, 

ou ligações com um único parafuso ou rebite, que são pouco usuais e 

dispendiosas (custo elevado); 

c.  já a ligação considerada mais rígida pode apresentar somente uma pequena 

rotação relativa entre a coluna e a viga. Com essa hipótese, os esforços 

solicitantes da análise aumentam, tornando a ligação cara e trabalhosa, na 

fabricação e na montagem; 

d. casos de ligações consideradas rígidas, aparafusadas e com enrijecedores de 

coluna, que apresentaram deslocamentos laterais da ordem do dobro do que foi 

previsto na análise convencional elástica, de primeira ordem (Nethercot & 

Zandonini, 1988; Morris & Packer 1987);  



Tese • AR Alvarenga • Cap. 2 Modelos das ligações 

 

26 

e.  as ligações mais próximas das rígidas perfeitas (engastes) seriam as soldadas 

de penetração total e com enrijecedores de coluna (Aoki & Fukumoto, 1983; 

Davison et al., 1987);  

f.  ao não se atingirem esses dois extremos idealizados de comportamento (rótula 

e engaste), deve ser avaliada a influência de um comportamento intermediário 

(Ackroyd & Gerstle, 1982), o que pode possibilitar, também, uma segurança 

maior nos resultados da análise e alguma economia (Nethercot et al., 1988),  

como se mostrará posteriormente. 

  

Além disso, é necessário investigar o que ocorre com a estrutura globalmente, 

pois quando ocorre maior flexibilidade nos nós, os deslocamentos crescem, podendo 

provocar maiores efeitos de segunda ordem (efeitos já mencionados na seção 1.2). 

Essas considerações podem ser mais bem compreendidas acompanhando um 

exemplo de comportamento de uma ligação, ilustrado na Fig. 2.2, na qual são 

representados: (a) a rotação de uma ligação chamada genericamente por θr, o momento 

que esta transmite Mr; e (b) o diagrama que mostra a sua relação.  

Os extremos das duas idealizações anteriores, rígidas e rotuladas, representam os 

eixos: horizontal (rótula) e vertical (engaste) desse diagrama, respectivamente, 

caracterizando, dessa forma, a disparidade entre o que se adotava no modelo estrutural e 

a realidade do que é construído.  

São tratadas por rígidas e flexíveis (ou “rotuladas”) as ligações que se aproximam 

das ideais (ou “perfeitas”), que são os casos extremos: o engaste e a rótula. 

O valor do momento de plastificação da viga Mp indica se a ligação é capaz de 

absorver os esforços de projeto (dimensionamento) e qual será o valor de rotação θp 

correspondente, condição que precisa ser considerada. 

A trajetória de comportamento da ligação, representada pelo diagrama, mostra 

uma relação não linear entre essas grandezas Mr e θr, que é comum a todos os tipos de 

ligação, porém não necessariamente da mesma forma, ou seja: diferentes ligações 

apresentam diferentes trajetórias. Em geral, mesmo ligações similares com grandezas 

geométricas e físicas diferentes, ou uma ligação assimétrica sujeita a momentos de 

sinais opostos, também apresenta trajetórias diferentes (Beedle & Christopher, 1964). 

Batho & Rowan (1934) foram os primeiros a constatar essa diversidade de 

comportamento das ligações, retratado na Fig. 2.3, na qual se representam trajetórias de 
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alguns tipos de ligação, ou curvas M-θ, que serão abordadas com mais detalhes nas 

seções seguintes. Nessa figura, procura-se reproduzir a experimental, na qual as colunas 

e as vigas tiveram seus perfis inalterados, porém modificou-se o tipo de ligação. 

As normas somente começaram a reconhecer a influência desse comportamento 

das ligações posteriormente. Morris & Packer (1987) indicaram as primeiras menções: 

a.  Det Norske Veritas (1977) determina curvas M-θ que podem ser adotadas em 

uniões de tubos para estruturas de plataformas marítimas da Noruega; 

M r

r
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Figura  2. 2  Comportamento da ligação: 
 (a) significado; (b) diagrama M-θθθθ. 
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Figura  2. 3  Diversos diagramas M-θ. 
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b. AISC (1976, 1986) nos Estados Unidos, permite certas considerações de 

rigidez parcial, com base no estabelecido pelo SSRC (1981) (Galambos et al., 

1988), criando uma força-tarefa para desenvolver estudos sobre efeito de 

ligações no dimensionamento; 

c.   no Reino Unido, a norma BS 5950 (1990) indica métodos para incorporar a 

ligação semirrígida, embora anteriormente já houvesse realizado uma revisão e 

padronização do trabalho norueguês (UEGOR, 1985). Posteriormente, algumas 

especificações técnicas foram publicadas dando ênfase ao tema (Owens & 

Cheal, 1989; BCSA, 1995), embora a norma propriamente não defina método 

para avaliar as propriedades da ligação (Anderson & Tahir, 1996); 

d.  a norma canadense CAN3-S16-1 (CSA, 1994) não prevê diretamente a 

construção semirrígida, embora seja requerida a análise dos efeitos de segunda 

ordem, considerando, então, a participação dessa semirrigidez da ligação nas 

estruturas (Xu, 2001).  

 

As versões mais recentes da norma americana (AISC, 2005) e da Europa 

(Eurocode 3, 2000) permitem que a resposta real de uma ligação possa ser considerada 

no cálculo estrutural, embora a maioria dos ensaios tenha sido realizada com ligações 

isoladas (trecho de coluna e viga). Há, portanto, uma preocupação emergente quando se 

adotam esses procedimentos, pois não há garantia que as respostas serão as mesmas 

quando essas ligações fazem parte de um conjunto. Isso pode ser agravado pela 

presença do cortante (normalmente desprezado) e por deformações plásticas do painel. 

Zandonini & Zenon (1996) reportaram que uma série de fatores afeta a rigidez inicial da 

ligação (e a sua medida), dentre eles, a relação entre o cortante e o momento, sendo 

maior a influência para ligações mais rígidas. 

Bjorhovde et al. (1987, 1996) têm mantido congressos periódicos, envolvendo 

pesquisadores na área de ligações em todo mundo, nos quais procuram realizar um 

acervo sobre o tema, indicando o volume elevado de contribuições produzidos.  

Existem vários tipos de ligação a se estudar, vários detalhes que interferem na 

união (parafusos, soldas, furos, gabaritos, espessuras) e sua participação na curva M-θ. 

É necessária a confrontação dos modelos com ensaios experimentais, cujo custo e 

realização incluem outros desafios. A deformação do painel da coluna, bem como os 

efeitos locais nas abas e alma, que são responsáveis pelo comportamento dútil da 
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ligação, pode provocar outros efeitos significativos nas estruturas (Bose & Hughes, 

1995), gerando outras considerações para a análise.  

Assim, embora em diversas áreas da construção de aço – por exemplo, no método 

dos estados-limites – tenha-se atingido um “consenso” e se disponha de formas claras e 

diretas de fazer avaliações adequadas da resistência, da flambagem, etc., o mesmo não 

ocorre com as ligações. Ainda não se dispõe de uma ferramenta, de uma forma direta, 

simples e confiável de introduzir o comportamento das ligações no projeto como se 

deseja e se espera.   

 

2.1.3  VANTAGENS PREVISTAS 

Com as normas de estado-limite e após o “paradoxo do fator k” (Siat-Moy, 1986), 

várias pesquisas se voltaram para o estudo da influência da ligação no 

dimensionamento, em razão do risco iminente de projetos inadequados ou contra a 

segurança. 

As primeiras flagrantes vantagens da consideração dos efeitos das ligações nas 

estruturas apareceram com Sugimoto & Chen (1982), Bjorhovde (1984), Chen & Lui 

(1985). Nesses trabalhos, as colunas teoricamente birrotuladas, travadas com ligações 

de cantoneiras nas extremidades, possuem o coeficiente de comprimento equivalente de 

flambagem kfl reduzido de 1 para 0,820 a 0,935 segundo o plano de maior inércia do 

perfil I (z) e, para 0,625 a 0,848 no plano perpendicular (y) dessa seção. Essas pesquisas 

foram expandidas posteriormente com Lui & Chen (1987), Lui (1988). Destaca-se 

Hellesland & Bjorhovde (1996a-b), que propuseram novos ábacos que determinam o 

coeficiente de comprimento efetivo kfl, levando em conta o efeito das ligações por meio 

dos parâmetros GA e GB. 

Nethercot et al. (1985) comprovaram que o comportamento das ligações flexíveis 

poderia representar um benefício econômico a ser explorado. Barakat & Chen (1990) 

empregaram a rigidez secante para corrigir os valores dos parâmetros B1, B2 e o 

coeficiente de comprimento efetivo kfl, otimizando o dimensionamento. 

Moncarz & Gerstle (1981) e Ackroyd & Gerstle (1982) mostraram que a 

deslocabilidade da estrutura é aumentada pela presença das ligações semirrígidas, 

exigindo um estudo mais cauteloso por parte dos projetistas. 

Liew & Yu (1995) comentaram sobre o uso de ligações presumidamente rígidas 

para prédios de grande porte, nos quais a facilidade de fabricação e de montagem no 
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local, frequentemente, direciona a simplificações no detalhamento. Assim, algumas 

vezes, essas ligações apresentam um forte comportamento não linear. Segundo esses 

pesquisadores, para obter a rigidez requerida, faz-se o reforço de colunas por meio de 

enrijecedores horizontais e, às vezes, até de alma dupla, evitando os efeitos de 

deformações locais.   

Por outro lado, embora de maneira geral as ligações semirrígidas não exijam tanto 

das colunas ou dos processos de fabricação e montagem, elas apresentam 

comportamento altamente não linear e pronunciado efeito no deslocamento lateral das 

estruturas nas quais são empregadas, o que torna a sua adoção no projeto uma tarefa que 

não é tão simples. 

Dessa forma, é necessário combinar partes semirrígidas do edifício com sistemas 

de elevada rigidez ou treliças, responsáveis pela estabilidade de todo o conjunto. À 

medida que o número de andares do edifício cresce, o estado limite de serviço pode vir 

a ser predominante no dimensionamento em relação ao estado último, para garantir o 

conforto humano (Ackroyd, 1979).  

Para prédios de até 10 andares é possível o uso de ligações semirrígidas apenas. 

Daí até 20 andares recomenda-se um sistema de rigidez complementar ou empregar a 

forma quase “rígida” tradicional. A partir de 20 andares, pode ser adotada tanto a 

concepção em tubo ou em treliças. Nesses casos então, a redução de custos não está 

vinculada propriamente ao material ou à ligação, mas aos menores recursos gastos nos 

processos de fabricação e montagem (Liew & Yu, 1995). 

Sobre os custos relacionados com as ligações, foi indicado que sendo o peso de 

uma viga inferior a 520 N/m, a relação de aumento de custo na presença de uma ligação 

flexível é de 25%, porém, se esta for rígida, o aumento é de 70% (CISC, 1983). Já 

quando o peso dessa viga atinge a 2350 N/m, esses limites passam a ser 5% e 43%, 

respectivamente. Xu (1999), por exemplo, adotou os valores médios de 15% e 55% do 

que se deduz uma variação de custo mínima de 40% entre uma opção e a outra. Reduzir 

o custo da parte estrutural em 20% no peso é um ótimo atrativo para a construção, além 

de outros benefícios administrativos (menor quantidade e duração das atividades na 

montagem, menor incidência de acidentes, menor tempo de obra, menores prazos, 

conclusão do empreendimento e retorno financeiro mais rápido, etc.). 
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2.1.4  TIPOS DE LIGAÇÃO 

Além dos diversos tipos de ligação, verifica-se que existe uma gama de 

parâmetros diferentes em cada ligação, inclusive a influência da(s) viga(s) e da coluna 

que participam da ligação. 

Na figura 2.4, indicam-se diversos tipos de ligação, entretanto, isso não significa 

que todos os tipos possíveis estejam representados. Nessa figura estão apenas alguns 

dos tipos mais comuns ou mais fáceis de adotar e construir, diante da atual circunstância 

de tecnologia e materiais. Por exemplo, o custo elevado de cortar e furar os perfis Ts, da 

Figs. 2.4(e-f) transformaram-no em obsoleto em relação à ligação com chapa de topo da 

Figs. 2.4(j-k). Com a nova tendência de empregar colunas em perfis tubulares, alguns 

desses tipos podem ser modificados ou também ficar obsoletos. 

Devem-se verificar os detalhes de cada tipo apresentado (os parafusos, os furos, 

os filetes de solda, as distancias de bordas, as distancias entre furos, as espessuras de 

componentes, etc.), bem como que os parafusos podem ter propriedades mecânicas 

diferentes, ser apertados com pré-tensão, pode ocorrer deslizamento, os furos podem ser 

com broca ou a punção, de forma alongada, etc. Sem falar das soldas que podem ser 

com filetes, com penetração total ou parcial, qual o espaço de cordões, etc. 

Quando se entra no estudo dos detalhes da ligação propriamente, ficam mais 

transparentes as várias diferenças, pois ainda pode haver casos em que, por razões de 

padronização, várias peças tenham a mesma ligação ou seguem um dado gabarito de 

produção em série (larga escala) e são empregadas em perfis (seções) e vigas (condições 

de cálculo) diferentes. 

Portanto, mesmo para um único tipo de ligação, uma enorme gama de variações 

geométricas e físicas existe. Explicando, veja-se a chapa de topo estendida, sobre a qual 

se fizeram inúmeros trabalhos, conforme a espessura de componentes (da chapa e da 

aba da coluna), do diâmetro do parafuso, pretensão e dos esforços atuantes, pode ocorrer 

o chamado efeito de alavanca (“prying”). Caso essa mesma ligação seja construída 

assimétrica, por exemplo, estendida só numa direção, como na Fig. 2.4(j), a resposta 

estrutural da ligação será composta então de duas curvas M-θ: uma para o momento 

último maior, similar ao da Fig. 2.4(k), que provoca tração na parte estendida; e outra, 

com valores de momento último menor, quando se comporta como uma ligação do tipo 

chapa cortada da Fig. 2.4(i), para o momento de sentido oposto (Yu et al., 1998). 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

Elementos :

(m) (n) 

Soldas Parafusos

(o) (p) 

 

Figura  2. 4  Diversos tipos de ligação: 
(a) soldada; (b) chapa de alma lateral; (c) 3 talas soldadas na coluna; (d) 1 tala e 1 suporte; 

(e) 2 perfis Ts; (f) 2 Ts com 2Ls de alma;, (g) chapa de cabeça; (h) chapa de cabeça e 1 suporte; 
(i) chapa cortada; chapa estendida: (j) de 1 lado; (k) de 2 lados; (l) cercada de 4 Ls; 

(m) 4 Ls (2 de alma, 2 de aba); (n) 2 Ls de aba; (o) 2 Ls de alma; (p) 2 Ls alma e 1 L suporte. 
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SoldasElementos : Parafusos

(a) (b) (c) (d) 

 

Figura  2. 5  Tipos especiais de ligação: 
chapa estendida com (a) reforço superior, (b) reforço inferior,  

(c) T aparafusado na alma; (d) árvore de Natal com 4 talas externas. 
 

Observando a quantidade de exemplos simples de ligação na Fig. 2.4, imagina-se 

a complexidade que surge para os casos ilustrados na Fig. 2.5, com alguns tipos 

especiais de ligação que raramente são estudados ou avaliados, embora sejam recursos 

empregados pelos projetistas, em circunstância especial. Ou seja, o projetista continua 

desamparado na análise de vários tipos de ligação e para essas condições especiais, que 

não se pode impedir a priori que apareçam no projeto. 

 

2.1.5  PESQUISA EXPERIMENTAL 

Antes de se tratar dos modelos empregados para aproximar o comportamento da 

ligação, é necessário citar toda a vasta pesquisa experimental que foi produzida ao longo 

de várias décadas, sobre a qual se fazem hoje diversos trabalhos de aproximações ou 

calibragens de modelos, e que continua sendo desenvolvida em todo o mundo. 

Para se avaliar o esforço de realizar tais ensaios experimentais, podem-se citar os 

seguintes requerimentos:  

a.  o aparato de laboratório (máquinas de ensaio, macacos hidráulicos, medidores, 

ferramental, etc.);  

b.  os equipamentos para transporte, movimentação, fabricação, montagem e 

proteção; 

c.  o material ensaiado, que deve reproduzir condições de amostragem equilibrada 

(materiais com propriedades similares aos de mercado, lote de confecção ou 

produção, características geométricas e físicas com valores médios com 

mínimas variações no cômputo de todas as peças ensaiadas);  
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d.  a mão de obra especializada, que reproduza as condições normais de 

fabricação e montagem, representando uma avaliação média do trabalho 

operário do local onde se produzem as estruturas, sempre enquadrada numa 

determinada qualidade, que deve superar a mínima; 

e.  a experiência prévia dos pesquisadores. Isso permite a construção de modelos 

de ensaios, cujos resultados possam aferir as grandezas significativas do 

estudo com precisão, inclusive na parte de colocação dos medidores, sistemas 

de leitura, tempo de medições após a aplicação de passos de carga, bem como 

em avaliar a validade de um ensaio, quando os resultados produzidos 

demonstram acidentes ou imprecisões na sua execução; e  

f.  o tempo e os recursos financeiros. Para a amostragem ser representativa, deve-

se gabaritar os resultados, fazer comparações, a avaliação do processo, exame 

de corpos de prova, a calibragem do aparato e dos medidores antes do ensaio, 

o acompanhamento durante significativo tempo do ensaio, a armazenagem das 

informações por diversos meios (eletrônico, filmes, fotos, medições), etc. 

Tudo isso requer considerável tempo dentro do laboratório e representa 

elevado custo, já que há uma escala e planejamento de utilização dos recursos 

do laboratório para as suas diversas finalidades. 

 

São muitos os aspectos a se avaliar nos detalhes de uma ligação, o que foge do 

intuito deste trabalho, mas que ressalta a importância de dados e resultados 

experimentais, como forma principal de gabaritar as diversas formulações ou modelos 

existentes e, também, entender os diversos comportamentos apresentados. Esse trabalho 

conjugado laboratorial-analítico é que tem permitido atingir modelos mais coerentes de 

ligação, como o das “componentes” (Faella et al., 2000). 

Goverdham (1984) reuniu experimentos a partir de 1950, incluindo algumas 

tentativas empíricas para estabelecer relações entre os dados de momento e rotação. 

Esses experimentos envolvem, principalmente, as ligações com cantoneiras, com chapa: 

simples de alma, a de cabeça e a de topo estendida. [Ver Figs. 2.4(m, n, o, b, g & k); 

respectivamente]. 

Já Nethercot (1985) selecionou 70 experimentos, dentre os quase 700 disponíveis, 

estabelecendo equações empíricas para esses dados. Os tipos de ligação abordados são 

os mesmos de Goverdham, acrescentando-se: cercadas com 4 cantoneiras e de 2 perfis 
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T, com ou sem 2 cantoneiras de alma. correspondendo às Figs. 2.4(l, e-f). 

Os trabalhos de Goverdham (1984) foram estendidos por Kishi & Chen (1990), 

reunindo tanto ligações com rebites como com parafusos e soldadas, realizadas no 

período de 1936 a 1986. Os resultados de ensaios foram comparados com aproximações 

propostas por outros pesquisadores (Frye & Morris, 1975; Chen & Lui, 1985, e Kishi & 

Chen, 1987). 

Neste século, o comitê do Eurocode 3, editores do Anexo J, bem como outros 

grupos de pesquisa europeus, tem desenvolvido uma série de ensaios experimentais 

(Weynand, 1992) e estudos analíticos baseados no método das “componentes”, 

dispondo de um grande material de pesquisa já consolidado (Faella et al., 2000). Alguns 

pesquisadores têm também estudado o efeito das cargas axiais nas colunas modificando 

o comportamento das ligações (Guisse & Jaspart, 1996).  

Desde 2005, o Eurocode 3 (2000) traz novas revisões ou complementos, 

abrangendo uma série de áreas e apresentado desenvolvimento marcante nesse tema de 

ligações, em relação às outras normas, mesmo à americana. Algumas normas, como a 

BS 5950 (1990) e o AISC (2005) fornecem alguma ajuda ao projetista, fornecendo 

algumas ligações padronizadas (totalmente detalhadas) recomendadas para o projeto. 

Outra parte crítica de toda essa pesquisa experimental reside no fato dos ensaios 

serem, em sua maioria, realizados com perfis laminados leves ou de peso médio, 

requerendo extrapolações quando se requer empregar outros perfis mais pesados, ou 

também ligações que usam outros tipos de seção – por exemplo, as tubulares. Além 

disso, cada ligação possui resistência, rigidez e características rotacionais, enfim, 

próprias e diferentes, que dependem de detalhes cuja avaliação por meio de ensaios é 

improvável, por causa do alto custo e do tempo envolvidos (Patel & Chen, 1984). 

Até aqui, falou-se apenas das ligações entre peças de aço. Porém, não se pode 

esquecer o outro ramo de pesquisa que envolve o concreto nas estruturas mistas. Assim 

como há as vigas mistas (em que a laje de concreto participa como uma aba superior), 

há as colunas mistas (em que os perfis I de aço são revestidos pelo concreto, ou os tubo 

de aço preenchidos de concreto), bem como as ligações mistas (Queiroz et al., 2002). 

Essas ligações envolvem pilares e vigas que podem também ser mistas, de aço ou de 

concreto. Resulta que até a nomenclatura difere, o termo “colunas” da metálica é 

substituído por “pilares”, adotado nos outros ramos. Este assunto está fora do escopo 

desta tese. 
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Por causa dos terremotos de Northridge em 1994 (FEMA, 2000) e Kobe, em 

1995, foram realizadas forças-tarefas de pesquisa nos EUA para o estudo de ligações 

sob condições dinâmicas (Galambos, 2000) e, posteriormente, com o ataque terrorista 

ao Word Trade Center (Astaneh-Asl, 2003) foi dada ênfase às condições de incêndio. 

Já na Europa, o desenvolvimento da tecnologia das construções mistas, concreto-

aço, tem sido preponderante, levando às pesquisas voltadas para as ligações mistas 

(Bjorhovde et al., 1996). Assim, as pesquisas com relação às ligações simples, curvas 

M-θ sob cargas monotônicas, foram colocadas em segundo plano nos principais centros 

de pesquisa e algumas ligações não receberam até agora contribuições do mesmo porte 

das já extensamente ensaiadas de forma experimental. 

A definição de curvas M-θ ajustadas a dados experimentais, como no SCDB 

“Steel Connection Data Bank” (Chen et al., 1996; Abdalla & Chen, 1995) são eficientes 

para a análise de pórticos, mas não indicam nenhuma informação sobre o 

comportamento da ligação (suas deformações e colapso), quanto à variação de 

parâmetros, não permitindo uma otimização pelo projetista (Shi et al., 1996). Uma 

melhoria é o estudo combinado de equações teóricas com aproximações empíricas, 

proposto por Kishi & Chen (1987). Há dez anos, estimavam-se 300 ensaios utilizáveis, 

dentre 800 realizados (Bjorhovde et al., 1996); atualmente esse número é muito maior. 

Por outro lado, procedimentos estabelecidos pelo Eurocode 3 (1992), Anexo J, 

permitem a verificação da ligação, mas apenas o emprego da rigidez secante não é 

adequado para a análise estrutural inelástica de segunda ordem, ou a avançada (Shi et 

al., 1996).  

Já a definição das curvas M-θ adotando o método das “componentes” parece ter 

um caminho bastante produtivo, como se observa pelo JMRC “Joint Moment Rotation 

Curve” (Faella et al., 2000), cujo emprego na prática ainda precisa ser avaliado. É um 

procedimento que pode ser automatizado, tem certo respaldo experimental, mas precisa 

ser introduzido na prática dos escritórios. 

Outro caminho a ser seguido é o do estudo da ligação com modelos 

computacionais tridimensionais, que exige recursos nem sempre disponíveis. Significa, 

assim, que o projetista poderá ficar ainda na situação de ter:  

a. dados sobre várias ligações, que não são adequadas às suas necessidades;  

b. ter a definição de procedimentos para o dimensionamento de diversos tipos; 
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c. recomendações ou estimativas; mas requerendo informações adicionais 

específicas para realizar o seu projeto, e não haver forma de obtê-las de 

maneira simples.  

 

Isso, sem dúvida, representa um desafio a ser vencido no dia a dia do projeto 

estrutural englobando ligações semirrígidas; portanto, trata-se de uma das justificativas 

deste trabalho e de seu desdobramento numa possível linha de pesquisa. 

Na próxima seção, são indicados os principais parâmetros de uma ligação, em 

seguida são mostrados os tipos de modelo existentes. 
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2.2 PARÂMETROS DAS LIGAÇÕES 

Como mencionado, as ligações podem ter seu comportamento determinado por 

meio das curvas M-θ, que apresentam diversos tipos de forma, compreendidos entre o 

que se considera “infinitamente rígido”, ou seja, o ângulo relativo entre a viga e a 

coluna naquele ponto de união não se altera ao longo de todo o processo de cálculo; e o 

que se denomina “rótula ideal”, na qual se pode ocorrer qualquer modificação do ângulo 

relativo sem que surja qualquer momento fletor. Esses dois extremos (engaste e rótula) 

representam, na realidade, os eixos do diagrama M-θ, que não podem ser reproduzidos 

factualmente. 

Para se escolher o tipo de ligação mais adequado a cada situação, é necessário 

conhecer bem o comportamento das ligações, de onde surge uma série de conceitos que 

serão agora introduzidos (Eurocode 3, 1992; BCSA, 1995). 

 

2.2.1 PONTOS CARACTERÍSTICOS 

Os pontos característicos são valores do gráfico M-θ utilizados para classificar o 

comportamento e determinar a influência da ligação no sistema estrutural. 

Na figura 2.6, representa-se, de forma simplificada, um diagrama hipotético de 

ligação obtido em ensaio sob carregamento mono tônico até a ruptura e que contém, às 

vezes, um ou mais trechos de descarregamentos intermediários (dentre outras 

diferenças). De acordo com esse diagrama, definem-se as grandezas básicas: 

Mu

e u

A

U

M

m

M r

-0 -0 -0

Mm

Me

Descarregamento 

Carregamento  

kiR Rki

D monotônico

elástico

Amolecimento  

0- r  

Figura  2. 6  Pontos da curva de ligação. 
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a. momento máximo (Mm) – é o maior momento que a ligação é capaz de 

suportar, antes do colapso, relacionado também ao conceito de resistência e à 

capacidade da ligação, (ponto M na Fig. 2.6); 

b.  rotação do momento máximo (θm) – é a rotação correspondente ao momento 

máximo, sendo que se a ligação não atingir essa rotação num dado 

carregamento, tal momento não ocorrerá, e assim, a ligação transferirá um 

momento menor, sob uma rotação menor. O valor 20 mrad é recomendado 

para a resistência nominal (Deierlein, 1992); 

c.  momento último (Mu) – é o momento que a ligação apresenta seu colapso, 

(ponto U na Fig. 2.6), o qual pode ser igual ou menor que o máximo Mm, 

dependendo da ligação. Na maioria dos casos, os valores de Mu e θu são 

confundidos com Mm e θm, ou seja, os pontos M e U coincidem. Em geral, 

para efeito de projeto, essa coincidência é imposta (ponto M = U); e  

d.  rotação última (θu) – é a rotação associada ao momento último Mu, a qual ao 

ser atingida, ou superada, na etapa de análise estrutural, tem-se o colapso da 

ligação. Um valor estimado para vigas com a relação Lv/d ≤ 30 é dado por: 

[ ]
a

a

2y

a

a
yu

L
  F 3E159851

L
   F 00080θ

cm

kN
ksi

∆
+





−≈

∆
+≈ ,,  (2.1) 

sendo ∆a o deslocamento lateral do andar, La a altura do piso inferior ao andar 

da viga onde a ligação está, Lv o vão da viga e (d) a altura da seção. Para uma 

viga simples, desprezando a movimentação entre pisos (∆a≈ 0) e aço comum 

(ASTM A 36, Fy ≈ 25 kN/cm2), obtém-se θu ≈ 28,8 mrad. Portanto, é usual 

limitar essa rotação em 30 mrad (Christopher & Bjorhovde, 1999).  

 

Outro ponto importante na Fig. 2.6 é o (A) de limite do regime elástico, em que se 

supõe que o momento elástico aparente Me esteja relacionado à chamada rotação 

elástica θe, empregado em análises sob condições de serviço. 

Determinados os pontos característicos da ligação pelo diagrama M-θ, deve-se 

avaliar tanto o seu comportamento conjugado ao modelo estrutural quanto a sua 

utilização em uma dada condição de projeto, estudando suas propriedades. Para isso, 

nas subseções seguintes são avaliadas as quatro propriedades básicas de uma ligação: 

a.  a resistência – que avalia a possibilidade de ocorrer o momento plástico da viga 

(Mp) em região anexa à ligação; 
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b. a rigidez da ligação – na qual se avalia a curva M-θ da ligação de forma a 

poder corresponder a uma expectativa de trabalho estrutural (mais próximo do 

rígido ou do flexível);  

c.  a rigidez relativa – da ligação em relação à viga, caracterizada por um índice de 

rigidez ou de flexibilidade; e  

d. a dutilidade – que avalia o grau de rotação que poderá ser obtido. 

 

2.2.2 RESISTÊNCIA DA LIGAÇÃO 

A resistência é uma característica que define se a ligação pode ou não transmitir 

um momento fletor correspondente ao limite de resistência da viga a que pertence, 

avaliado usualmente como o momento plástico da viga (Mp). 

Acompanhando a Fig. 2.7, notam-se várias curvas de ligação (marcadas de A à D) 

e regiões com hachuras que delimitam as classes de resistência das ligações (veja no 

apêndice A.2 as adotadas pelas normas), conforme:  

a.  de resistência plena – como mostra a curva (A), caso o momento máximo Mm 

supere em 20% o de resistência da viga (Mm > 1,2 Mp), pode-se formar uma 

rótula plástica (RP) na viga em região adjacente à ligação e fazer a análise 

empregando um método inelástico; 

b.  resistente – quando o valor de Mm superar Mp, mas não em 20%, como a curva 

(B). Nesse caso, se a curva supera o ponto P correspondente a rotação plástica 

θp da RP da viga, a ligação é que será a própria RP. Essa rotação é obtida pela 

análise estrutural, ou estimada como θp ≈ 20 mrad (Leon, 1999); 

c.  parcialmente resistente ou de resistência parcial – quando o momento máximo 

da ligação supera a 60% de Mp (mas não atinge 100%, ou seja, não pode 

formar RP na viga), representado pela curva (C); 

d.  de pequena resistência ou “rotulada” – quando a resistência é inferior a 25% de 

Mp, como visto na curva (D); e  finalmente, 

e.  não estrutural – se não ocorrer nenhum dos casos anteriores, a ligação se torna 

inadequada ao uso, ou seja, não deve ser empregada naquela condição. 

 

Quando a ligação possui momento máximo (Mm) inferior ao momento plástico da 

viga (Mp) não se formará a RP próxima da ligação na viga. Porém, a ligação pode se 

comportar como uma RP cujo Mp será Mu, exigindo-se então que seja dútil. 
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M  /Mr

r

C

A
120

p

[%]

100

 25

D

B

Resistente

Resistência plena 

p

Resistência parcial

Pouca resistência

 60

P

0- -0  

Figura  2. 7  Resistência da ligação. 
 

Além disso, após a análise plástica, se o mecanismo de colapso obtido inclui a 

seção da ligação e a curva M-θ supera MP, mas não atinge à rotação θP correspondente 

(o ponto P), a RP vai se formar ou na viga, ou na coluna (e não na ligação). 

 

2.2.3 RIGIDEZ DA LIGAÇÃO 

A rigidez é fundamental para se definir o comportamento da ligação. A rigidez 

afeta diretamente os resultados obtidos na análise estrutural, já que sua variação com o 

ângulo de rotação é tão complexa como o próprio diagrama M-θ. 

 Na figura 2.8, identificam-se quatro medidas dessa grandeza, a saber: 

MA

A u

Rki

kpR

ktR

Rks

A
U

B

m

M r

-0 -0 -0

Mm

0-r
 

Figura  2. 8  Rigidez da ligação. 
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a.  rigidez tangente (Rkt) – é a rigidez da ligação instantânea, obtida como a 

tangente a curva M-θ no ponto considerado (ponto A, por exemplo). Pode ser 

avaliada analiticamente, quando se empregam equações matemáticas para 

definir as curvas M-θ (funções de Mr ou de θr), que permitem estabelecer de 

forma direta Rkt como ∂Mr/∂θr (avaliados no ponto A). Essa rigidez deve ser 

obtida de forma numérica, quando as curvas aproximação M-θ não permitem 

obter uma expressão direta da derivada. Isso é feito por meio de uma secante 

ao ponto considerado, cuja extensão entre os pontos da curva seja bem 

pequena, de forma a confundir-se com a tangente; 

b.  rigidez inicial (Rki) – é a rigidez da ligação no início da carga (Mr ≈ 0). Como 

algumas ligações apresentam deslizamento no início da curva M-θ, decorrentes 

das folgas e do atrito, impedindo a melhor aferição de Rki, é comum aproximá-

la experimentalmente, como a média das rigidezes obtidas num dado instante, 

com o descarregamento “elástico” e recarga da ligação (trajetória que leva ao 

ponto D, na Fig. 2.6). Em geral, esse processo é considerado elástico e, assim, 

supõe-se que a rigidez não se altera ao longo do percurso. Na maioria das 

vezes, a rigidez inicial é o valor máximo apresentado pela ligação. Mas há 

exceções, como os casos particulares de ligações do tipo:  

i– chapa de alma, chapa de cabeça e com 2 cantoneiras de alma [Figs. 2.4(b, 

g & o), respectivamente], quando após um platô, com rigidez quase nula, 

dada a deformação excessiva da ligação, ocorre o contato entre a aba da viga 

e a face da coluna, visto na Fig. 2.9(b), propiciando rigidez elevada local, 

que pode superar a inicial dessas ligações (Faella et al., 2000). Essas curvas 

M-θ [ver Fig. 2.9(a)] são ajustadas considerando que Mu ≈ Mcn, bem como 

θcn ≤ θm ≤ 30 mrad, que corresponde ao contato (θcn, Mcn, antes de Rkt tornar 

a crescer) ou sua projeção (Bjorhovde et al., 1990);  

ii– chapa estendida [Figs. 2.4(j-k), respectivamente], quando o efeito de 

alavanca pode provocar uma rigidez maior que a inicial, logo após uma 

pequena rotação (aumentando o contato), ou deslizamento (SCDB, Abdalla 

& Chen, 1995);  

c.  rigidez última (Rku) – também denominada plástica (Rkp), é o valor da rigidez 

da ligação próxima ao seu colapso. Em algumas ligações, esse valor pode ser 

negativo ou zero, o que do ponto de vista estrutural não tem sentido. Por isso, 
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algumas curvas são consideradas apenas no trecho ascendente. Nesse caso, 

faz-se a interrupção do diagrama M-θ, para efeito de análise, naquele ponto de 

início da trajetória descendente (B da Fig. 2.8). Assim, os trechos pontilhados 

das Figs. 2.6 e 2.8 são desprezados, correspondendo ao valor θrlim, que é então 

considerado como θru. Pode-se aproximar Rku como a rigidez secante obtida 

com θ = 20 mrad, embora não se prove que tal resultado seja conservador 

(Leon, 1999); e  

d.  rigidez secante (Rks) – é obtida pela semirreta que liga a origem a um ponto da 

curva M-θ (ponto A na Fig. 2.8, por exemplo), correspondendo ao momento 

para dada situação de projeto, de valor menor que o obtido ao se seguir a 

trajetória. Essa rigidez é adotada por algumas normas (Eurocode 3, 1992). Para 

condições de serviço, recomenda-se o valor de rigidez determinado na curva 

M-θ com θ = 2,5 mrad (Leon, 1999). 

Em geral, adota-se Mm = Mu. Para a ligação flexível da Fig. 2.9(a) despreza-se a 

parte (C-M) de crescimento pós-contato (θcn), prolongando-se a curva a anterior (C-U). 

 Uma vez conhecidas essas rigidezes, pode-se definir também a rotação de 

referência (θ0) que é a rotação requerida para se atingir o momento máximo Mm, caso a 

rigidez fosse constante e igual à rigidez inicial Rki, isto é: 

ki

m
0 R

M
=θ  (2.2)
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M r
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Figura  2. 9  Rotação de referência θ0 e de contato θcn. 
(a) curva M-θ da ligação flexível; (b) rotação de contato. 
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Muitas vezes essa rotação costuma ser próxima da que refere-se ao limite elástico, 

(θ0 ≈ θe) e que para ângulos θr ≤ θ0, o comportamento da ligação é linear. Por fim, essa 

grandeza é empregada também em algumas expressões aproximadas de M-θ para tornar 

a rotação adimensional: r = θr / θ0. 

2.2.4  ÍNDICE DE RIGIDEZ (OU DE FLEXIBILIDADE) DA LIGAÇÃO 

Independentemente da curva momento-rotação da ligação selecionada, a rigidez 

da viga também é necessária para descrever o comportamento rotacional do conjunto no 

modelo estrutural.  

A viga tende a acompanhar a rotação de extremidade de forma proporcional ao 

momento que ali atua, no regime elástico, passando ao regime não linear com a 

plasticidade. Já a ligação tem o seu comportamento não linear dado pelo diagrama M-θ, 

porém é necessário considerar que tais rotações (da ligação e da viga) se somam na 

avaliação do comportamento estrutural, daí a necessidade de um parâmetro comum. 

Como se mostra posteriormente existem várias formas que os pesquisadores 

encontraram para descrever essa relação entre a viga e a ligação. 

Convencionalmente, admite-se que a viga possua a rigidez cEIZ/Lv, sendo E o 

módulo de elasticidade do material, IZ a sua inércia à rotação em relação ao eixo 

perpendicular ao plano de carga da viga e Lv o seu vão. Dannemann (1963) discute as 

expressões apresentadas por Monforton & Wu (1963) e que são hoje empregadas por 

diversos pesquisadores, indicando c = 3 para a rigidez mínima.  Para a rigidez máxima, 

proposta por Hickerson (1937), adota-se c = 4. 

Para descrever essa relação de rigidezes da viga e da ligação, tem-se o “índice de 

rigidez nodal” (g) expresso por: 

vk

z

LR

I E
g  =  (2.3) 

que pode ser nulo (g = 0), quando a ligação for rígida perfeita (tratada doravante por 

“engaste”), ou seja, uma união de rigidez infinita (Rk → ∞, θr = 0) e o valor “infinito” (g 

→ ∞) quando a ligação for rótula. 

Lightfoot & LeMesurier (1974) empregaram a rigidez relativa da ligação definida 

por λr = 1/(4g), o que produz também valores “infinitos”, quando g = 0. 

Um índice de emprego muito comum é o chamado “índice de fixação” γ, proposto 

por Monforton & Wu (1963) segundo Xu & Grierson (1993), adotando o valor c = 3, na 

expressão: 
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gc1

1
γc

.+
=  (2.4) 

O índice de fixação (γ3, obtido com c = 3), é o mais citado. Nos trabalhos de: 

Romstad & Subramanian (1970), Yu & Shanmugam (1986), Ho & Chan (1992), o 

mesmo nome é empregado, porém adotando c = 4 (γ4). Os últimos apresentaram um 

“fator de rigidez da ligação” µr relacionado à rigidez da viga, conforme: 









=









−
=
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γ
R r

4

4
k  (2.5) 

 Astaneh-Asl (1999) definiu a “flexibilidade nodal” (mA = 1/g) atrelado à relação 

entre Mu (ligação) e Mp (viga). Albermani & Kitipornchai (1992) chama esse mesmo 

parâmetro de índex de rigidez do nó (1/βk) escrevendo o índice de fixação como: 









==

+
=

g

1

 EI

LR
β   e   

β41

1
γ k

k
k

4
/

 (2.6a-b) 

que são formas similares da mesma relação. 

Como se verá no capítulo 3, nesta tese apresenta-se uma nova grandeza chamada 

índice de semiflexibilidade nodal η, definida pela relação: 

  
2

γ-1
 

g41

g2
η 4=

+
=  (2.7a-b) 

Na tabela 2.1 se fornecem os valores de alguns desses parâmetros de ligação já 

apresentados para os dois casos extremos (engaste e rótula). 

Em razão das suas propriedades (inércia e vão, por exemplo), a viga modifica o 

comportamento da ligação.  

 

Tabela 2.1  Índices de avaliação da rigidez da ligação e viga. 

Condição g (1,2,3) γ3
 (4) 

βk 
=1/g(2) 

η 

(Eq.) 
Rk 

(2.3) (2.4) (2.6b) (2.7) 
Mu /Mp

(2) 

Engaste ∞ 0 (0,001) 1 ≥ 18 0,0 ≥ 1,0 
Rótula 0 ∞ (10) 0 ≤ 0,5 0,5 ≤ 0,2 

Notas: 1) Ackroyd & Gerstle (1982) propuseram g ≤ 0,05 para rígido e g ≥ 1 para flexível;  
2) Astaneh-Asl (1999) recomendou também g ≤ 0,056 para rígido e  g ≥ 2 para flexível;  

3) Kishi et al. (1987) indicaram os valores entre parêntesis; 4) Chan & Chui, 2000; entre outros; 
5) AISC (2005) adotaram g ≤ 0,05 para rígido e g ≥ 0,5 para flexível. 
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Tabela 2.2  Influência da relação ligação × viga na rigidez nodal. 

(a) Variando a seção da viga e inércia (Iz): 
 com Rk = 677500 kNcm/rad e L = 400 cm 

WF 6 x 20 
Iz = 1727 cm4 

W 8 x 21 (3) 
Iz = 3134 cm4 

WF 14 x 22 
Iz = 8282 cm4 

g  (1) η  (2) g η g η 
0,1275 0,1688 0,2313 0,2403 0,6112 0,3549 

(b) Variando o vão L: 
com W 8 x 21 (Iz = 3134 cm4) e Rk = 677500 kNcm/rad 

L = 200 cm L = 400 cm  (3) L = 600 cm 
g η g η g η 

0,4626 0,3246 0,2313 0,2403 0,1542 0,1907 
(c) Variando a rigidez da ligação Rk [kNcm/rad]: 

com W 8 x 21 (Iz = 3134 cm4) e L = 400 cm 
Rk = 677500  (3)  Rk = 3176500 Rk = 6140000 
g η g η g η 

0,2313 0,2403 0,0493 0,0824 0,0255 0,0463 
Notas: 1) g = (EIz)/(RkL); 2) η = (2g)/(1+4g); 3) do ensaio III-6 (█); e 4) E= 20000 kN/cm2. 
 

Assim, a mesma ligação de 4 Ls [ver Fig. 2.4(m)], que foi ensaiada por 

Azizinamini et al. (1985), ligada a uma viga WF 8 x 21 (modelo III-6 do SCDB, Chen 

et al., 1996), pode ter uma avaliação e comportamento diversos, dependendo do vão e 

da seção da viga a qual foi ligada como elucidase na Tab. 2.2. 

Note-se que, modificando a seção original de WF 8 x 21 para outras de peso 

próximo, porém inércias (Iz) diferentes, ou alterando-se o vão (L), tem o efeito de variar 

a rigidez do conjunto viga-ligação, avaliado pela rigidez nodal (g) ou pela 

semiflexibilidade (η). Inércias menores ou vão maiores reduzem a rigidez nodal e a 

semiflexibilidade, sendo válido o inverso. A mesma ligação, entretanto, pode apresentar 

diferentes valores de rigidez inicial (Rki) com pequenas modificações de detalhes, o que 

também acarreta substancial mudança nos parâmetros das ligações, variando desde o 

semirrígido até o quase rígido. Na tabela 2.2, por exemplo, modificou-se a espessura da 

cantoneira da ligação de 8 para 19 e 38 mm, respectivamente. 

Esses parâmetros podem ainda ser utilizados para estabelecer relações entre as 

rotações da viga-ligação e a rotação da coluna. Por exemplo, McCormick, em 1974, 

(Nethercot, 1985), apresentou uma relação entre o momento Mc na coluna (extremo da 

ligação) e o momento Mf de uma união engastada (com ligação perfeitamente rígida) 

em uma extremidade e rótula na outra, ou seja: 

 
KKKK1

M
M

jvcv

f
c

++
=  (2.8a)

 

na qual: 
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v
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j

c

c
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v
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EIγ2
K    

L

EI12
K    

L

EI3
K ===  (2.8b-c-d)

 

com os subscritos (v) para viga e (c) para a coluna, onde ocorre a ligação, sendo o valor 

de γ2 obtido fazendo c = 2 na Eq. 2.4.  

Para efeito de cargas de utilização (não fatoradas), Ackroyd & Gerstle (1982) 

indicaram que a ligação pode ser avaliada como rígida quando 0,05 ≤ 3γ3 (c = 3) e 

flexível se 3γ3  ≥ 2. Além disso, as rotações avaliadas sob condições de serviço devem 

respeitar o limite de galeio (“sway”, ∆≤ L/400) e, por consequência, θs ≤ 2,5 mrad 

(Stelmack et al., 1986). 

Leon (1999) optou por avaliar o índice g com a rigidez secante (Rk = Rks) para 

condições de serviço, sendo a ligação rotulada quando g ≥ 18 e rígida se g ≤ 2. Para 

condições de estados últimos, entretanto, explicou que limites fixos não podem ser 

estabelecidos, pois isso depende da combinação de cargas que for aplicada. Uma 

variação de até 5% (entre os resultados obtidos pelo engaste tradicional e pela ligação) 

indica que tal ligação se comporta rigidamente (Eurocode 3, 1992).  

Nethercot (2000) indica que as ligações serão rígidas se, no mínimo, βk ≥ 12,4 e 

comportar-se-ão próximas às engastadas quando βk ≥ 70 (os métodos tradicionais de 

análise podem ser empregados, neste caso). Já o comportamento como rótula ocorre 

para: 0,29 ≤ βk ≤ 0,31. 

 

2.2.5 DUTILIDADE 

A dutilidade é uma característica especial do aço que provoca a redistribuição de 

esforços em estruturas redundantes na análise plástica, permitindo que uma reserva de 

resistência adicional da estrutura possa ser aproveitada. 

Essa reserva ocorre porque no regime plástico algumas seções conseguem 

absorver rotações sem que no local apareçam acréscimos de esforços. Nos pontos da 

estrutura que apresentam esse comportamento, são idealizadas as chamadas rótulas 

plásticas (RP). 

No cálculo plástico, procura-se determinar a formação do mecanismo de colapso e 

qual o menor fator de carga para que isso possa ocorrer, de forma a se estabelecer a 

segurança do sistema estrutural. Num nó de encontro entre viga e coluna, tem-se um 

local provável de formação da RP. Porém, como em geral as colunas recebem cargas 

verticais elevadas e também sofrem o risco da instabilidade, prefere-se que tais rótulas 

plásticas se formem nas vigas, em local adjacente às colunas.  
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Por outro lado, a própria rotação da ligação, ou o seu colapso, pode ocorrer em 

valores de rotações menores que os previstos para a seção onde se supõe formar a RP na 

viga. Isso indica que poderá haver um fator de carga menor do que o definido pelo 

mecanismo plástico, conforme o projeto, sob o qual a estrutura entrará em colapso. 

Assim, deseja-se que a ligação na construção rígida, ou próximo dessa 

consideração, tenha suficiente dutilidade para resistir momentos da ordem de Mp, de 

forma que tal rotação na formação da RP na viga ocorra na seção adjacente, sem que a 

ligação sofra colapso (ou perda de resistência).  

Uma vantagem do método das “componentes” é identificar, para cada ligação 

estudada, quais as partes de comportamento frágil e as que propiciam comportamento 

dútil (Faella et al., 2000). Essa característica está relacionada às partes da ligação 

compostas de chapas e perfis, que sofrem deformações plásticas, mas não formarão 

mecanismos locais de colapso, tampouco apresentarão instabilidade, nas condições 

limites (falando agora da plasticidade no âmbito das partes componentes da ligação).  

Contrariamente, outros elementos como as soldas e os parafusos, os últimos 

quando em tensões elevadas, tendem a ser frágeis (Bose & Hughes, 1991). Assim, 

algumas ligações propiciam que os materiais com tendências à fragilidade se rompam 

antecipadamente a maiores deformações, o que significa baixa dutilidade. Portanto, não 

é dútil a ligação mostrada pela curva (A) do diagrama M-θ da Fig. 2.10. 
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Figura  2. 10 Dutilidade da ligação. 
 

 



Tese • AR Alvarenga • Cap. 2 Modelos das ligações 

 

49 

Quando a ligação consegue atingir uma rotação da mesma grandeza da rotação 

plástica (θp), o que vai garantir a formação teórica da rótula plástica (RP) na viga, 

próximo da ligação, considera-se que esta ligação é dútil, como a curva (B), próxima ao 

ponto P da Fig. 2.10. Se, além disso, o valor de momento que a ligação suporta nessa 

rotação supera o momento plástico da viga, como já visto na subseção 2.2.2, a ligação é 

dita “capaz”, como é o caso da curva (C) na Fig. 2.10. 

No projeto plástico, torna-se necessário verificar se as ligações próximas às RP 

dos mecanismos de colapso são dúteis e resistentes, de forma a garantir essa hipótese de 

cálculo. Note-se que a curva (A) é resistente, mas não dútil, enquanto a curva (B) é 

dútil, mas não resistente. Somente a curva (C) atende às duas exigências. 

Supõe-se, dessa forma, que essa ligação permite a formação de RP na extremidade 

da viga, antes que ocorra o seu colapso, seja por resistência, seja por fragilidade. 

A dutilidade também participa dos problemas estruturais sem análise plástica, 

como nas ligações mais flexíveis. Tais uniões exigem grande dutilidade, pois, se a 

rigidez é baixa, a rotação tende a ser elevada (Christopher & Bjorhovde, 1999), o que 

leva a deslocamentos de maior ordem.  Nessa consideração, supõe-se que as rotações 

podem atingir 40 mrad, embora ensaios experimentais com vigas simplesmente 

apoiadas e momentos no meio-vão da ordem de 99,9% de Mp tenha-se encontrado 

rotações inferiores a 30 mrad (Astaneh-Asl et al., 1989). 

Já nas ligações mais rígidas, de maneira geral, procura-se:  

a. evitar a fragilidade dos parafusos, optando por diâmetros maiores (substituir 

no projeto o parafuso dimensionado como M20 pelo M24, por exemplo); 

b. reduzir a tração efetiva dos parafusos (limitada a 70% da sua resistência), no 

caso da pré-tensão; e também, 

c. optar pelas espessuras de chapas que sejam compactas.  

 

Entretanto, ao se ganhar em dutilidade, perde-se em resistência ou rigidez (Bose & 

Hughes, 1995). Já a compaticidade dos componentes (seções ou chapas) influi tanto na 

flambagem lateral e/ou por torção como nos efeitos locais, comprometendo, também, a 

resistência ou a dutilidade (Kemp & Dekker, 1991). 

A dutilidade somente pode ser avaliada de forma absoluta, no caso dos pórticos de 

travamento (especialmente a momentos) em que θp ≥ 30 mrad, ou nos casos 

intermediários θp ≥ 20 mrad, em áreas sísmicas (SAC-AISC, 1997). Popov et al. (1993) 
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propuseram 15 mrad como um valor mínimo, baseados no terremoto de Northridge. Já 

Nader & Astaneh-Asl (1992) indicaram 30 mrad, valor adotado pelo FEMA (1995, 

1997). Nos demais casos, não há como estabelecer esse limite de valores. 

Mas, como mencionado, esse comportamento também é relativo. Assim, poder-se-

ia dizer que a ligação é dútil se supera θp = 6 θe, sendo θe a rotação de início de 

escoamento da ligação (limite elástico). Entretanto, é bastante complicado estabelecer 

esse valor θe para cada ligação e sua condição de trabalho, dadas as particulares 

características dúteis pós-limite que apresentam (Leon, 1999), como se delineia na Fig. 

2.11: 

 
 a.  o endurecimento sob tensão (“strain hardening”); 

 b.  o amolecimento (“strain softening”);  e, 

 c. a degradação (“degrading”), que é associada à flambagem local, trinca e 

deslizamento. 

 

A classificação de ligação de Bjorhovde et al. (1990), a ser apresentada na 

próxima seção, introduz uma linha limite que auxilia na previsão da dutilidade mínima 

requerida para a ligação, em nível de estimativa. A avaliação da dutilidade, porém, na 

forma de capacidade de rotação e da sua influência, em relação às demais propriedades 

da ligação, ainda é um campo de pesquisa a ser desenvolvido (Gioncu & Petcu, 1997). 
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Figura  2. 11 Comportamento pós-limite. 
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2.3 CLASSIFICAÇÃO DAS LIGAÇÕES 

 É importante indicar que o Eurocode 3 (1992) associa a forma de análise 

estrutural ao tipo de modelo de ligação. Verificações de serviço, sob cargas nominais, 

podem ser realizadas pela análise elástica de primeira ou segunda ordem, com modelos 

de ligações lineares. Todavia, na verificação da condição de carga limite, supõe-se pelo 

menos o emprego de um modelo bilinear para as ligações e a realização de um cálculo 

plástico ou inelástico. Para as ligações serem consideradas rígidas ou rotuladas, podem-

se adotar as orientações da Tab. 2.3 (Ackroyd & Gerstle, 1982). 

 
Tabela 2.3  Estimativas para considerar a ligação rígida ou flexível numa análise. 

Estado  
limite 

Método  
de 2ª 

ordem 
Ligação Rk  

[kNm/rad] 
g  

(Eq. 2.3) 
η 

(Eq. 2.7) 

Serviço elástico rígida 5,65E4 a 1,13E5 (1) 0,05 a 0,1 0,083 a 0,143 
rígida 1,13E5 a 5,65E6 (2) 0,02 a 0,1 0,037 a 0,143 

Último 
plástico ou 
inelástico rótula ≤ 4,52E5 (3) > 2 >  4/9 

Notas: Para a ligação rígida, supõe-se os tipos: 1) aparafusada, ou, 2) soldada; 3)flexível só ligação 
aparafusada; 4) valores EIz/Lv típicos em prédios variam entre 5,65 × 103 a 1,13 × 104 kNm/rad. 

 

Outra questão muito importante, tanto na resistência quanto na rigidez, é a 

participação do painel (a região anexa à ligação) da coluna nas deformações da ligação 

analisada. A ligação é classificada como enrijecida quando o painel da coluna a que se 

liga a viga possui adequado conjunto de enrijecedores, como apresentado nas Figs. 2.4 

(a, c-d-e-f, j-k & m-n). Esses enrijecedores são, normalmente, chapas com a mesma 

dimensão das abas das vigas e espessuras maiores ou iguais às das abas das vigas. 

Ligações com enrijecedores são tipicamente rígidas, nas quais a dutilidade tende a 

ser menor. Nasce daí o moderno conceito VSR – Viga de Seção Reduzida (“Reduced 

Beam Section – RBS”; Kim & Engelhardt, 2007), na qual se reduz de propósito as 

dimensões da seção, em um ponto adjacente à ligação, onde se prevê a formação de uma 

RP, aliviando a ligação e as condições de cálculo do restante da estrutura. 

O objetivo ao enrijecer-se a coluna é reduzir as deformações transversais das abas 

da coluna, de forma que sejam desprezíveis. Essas deformações são decorrentes da 

transformação do momento em um binário e da ação local dessas forças.  

Além disso, há que considerar, também, as deformações do cortante, relacionadas 

à forma geométrica retangular desse painel, que tende a se modificar para um trapézio 
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ou paralelogramo. Procura-se, também, impedir essa deformação por meio de 

enrijecedores inclinados a 45 graus, por exemplo.  

Assim, supõe-se que a curva M-θ da ligação dita enrijecida se refira a uma 

deformação específica da ligação, sem incluir efeitos na coluna. O mesmo não se pode 

dizer quando não há enrijecedores de coluna, ou seja, a curva M-θ pode incluir 

implicitamente: efeitos de painel de coluna, flexão das abas, etc. Por exemplo, as curvas 

com o método das “componentes”, nas quais esses efeitos podem ser conjugados aos 

mais intrínsecos à ligação. Esse método pode levar em conta inclusive as 

excentricidades, os efeitos do cortante e do axial, etc., nas curvas produzidas. 

Quando não são inseridos os enrijecedores de coluna [ver Figs. 2.4 (b, g, i & o)], a 

ligação é dita não enrijecida, embora não seja prescrito que, nos casos quando os 

enrijecedores forem insuficientes (ou seja, não atendam às condições de 

dimensionamento aplicáveis) tais ligações enquadrem-se no grupo das enrijecidas.  

De igual forma, é complicado dizer que a ligação pode ser enrijecida pelo fato da 

coluna ser suficientemente compacta para os esforços ali transmitidos e não possuir 

enrijecedores, ou os sejam estes parciais. Há, ainda, casos em que os efeitos locais são 

combatidos sem enrijecer a ligação [ver Figs. 2.4(h & p)], bem como nas condições da 

Fig. 2.4(l) em que o enrijecimento pode ocorrer se os Ls tiverem dada espessura e forem 

soldados à alma da coluna, supondo que a coluna seja de seção I.  

Essa discussão mostra a complexidade da elaboração de uma classificação de 

ligações. A abrangência dos termos (“rígida, semirrígida e flexível”), o significado que 

traduzem (por exemplo, rígida: resistir um momento superior ao plástico da viga) e as 

exigências decorrentes para que o termo e o significado correspondam, de fato, à 

ligação selecionada (para se considerar rígida a coluna que recebe a ligação tem de 

possuir enrijecedores que absorvam esforços não inferiores a ..., etc.), permite que se 

incorra com facilidade em algum tipo de consideração que extrapole limites ou leve a 

mau julgamentos, exigindo, assim, cuidados especiais do projetista na sua utilização.  

Como a própria concepção da classificação segue critérios não tão simples de 

serem expressos, uma vez que o comportamento das ligações dado pela curva M-θ 

também depende da viga e da coluna na qual a ligação é realizada, dentre outros 

aspectos, procurou-se inicialmente classificar, identificando comportamentos similares 

dessas curvas M-θ incluindo a viga. 



Tese • AR Alvarenga • Cap. 2 Modelos das ligações 

 

53 

A ideia dessas classificações é fazer uma estimativa preliminar do comportamento 

da ligação pelo projetista, de forma a permitir  sua seleção para uma dada condição de 

projeto e verificação posterior mediante a análise estrutural.  

Descrevem-se nas próximas subseções algumas classificações: 

a.  Bjorhovde et al. (1990);  

b. Eurocode 3 (1992);  

c.  Hasan et al. (1998); e  

d. outras possibilidades de classificação. 

 
2.3.1 CLASSIFICAÇÃO DE BJORHOVDE ET AL. (1990) 

Acompanhando o representado na figura 2.12, verifica-se que a classificação é 

feita pelo enquadramento da curva M-θ em três regiões: ligação flexível (com pequeno 

momento último, < 20% Mp, hachura à esquerda), ligação rígida (com momento último 

superiores a  Mp, hachura à direita) e a região semirrígida (intermediária entre as 

anteriores, sem hachura), modificando-se apenas os limites dessas regiões. 

Esse diagrama é similar ao M-θ tradicional, porém é adimensional, sendo o 

momento da ligação (Mr) expresso em relação ao momento plástico (Mp) da viga a que 

está ligada, enquanto a rotação da ligação (θr) é relacionada a uma rotação estimada (θb), 

que é dada por: 

 

M  /Mr

r

B

C
p

[%]

100

 20
A

504 20

 70

[%]/ b

Ligação rígida

Ligação flexível

-0 -0
120 270

Linha de dutilidade

 

Figura  2. 12 Classificação da ligação segundo Bjorhovde et al. (1990). 
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( )d5EI

M

z

p

b =θ  (2.9)
 

O termo no denominador aparece da aproximação da altura estimada da seção da 

viga I pela relação Lv ≈ 20d e da rigidez à flexão da viga (com c = 4), ou seja: 

4 EIz/ Lv ≈ 4 EIz/ (20d ) =  EIz/ (5d )  (2.10)
 

São estabelecidos os seguintes limites:  

a.  ligação flexível (ou rotulada) – corresponde às condições: Mm ≤ 20% Mp e 

reduz-se linearmente com a inclinação 20% de θr/ θb para Mp.  Por exemplo, na 

Fig. 2.12, a curva M-θ (A) corresponde a uma ligação flexível; 

b.  ligação rígida – a curva deve ter momento máximo superior a 70% de Mp e 

deve superar, também, a linha com inclinação 4% de θr/ θb para Mp, nos 

momentos inferiores a 70% . Na figura 2.12, a curva (C) será rígida; e  

c.  ligação semirrígida – na região intermediária aos limites já estabelecidos, por 

exemplo, a curva (B) na Fig. 2.12. 

 

Como se verifica, pela presença da altura da seção (d) na rotação estimada, essa 

classificação é mais útil para a etapa preliminar (pré-dimensionamento). 

Essa classificação estabelece uma chamada linha de dutilidade (representada à 

direita na Fig. 2.12), que une os pontos (θr/θb, Mr/Mp): (270%,0) a (120%, 100%). As 

curvas M-θ cujo valor de (θu/ θb, Mu/Mp) ultrapassam essa linha, correspondem às 

ligações que se comportam de forma dútil. 

As vantagens em relação à classificação do Eurocode 3 (1992) são: independe que 

a estrutura seja travada ou não, avalia a dutilidade da ligação e emprega valores 

adimensionais para avaliar a rigidez e a resistência. Já a norma europeia requer apenas 

que se cumpram requerimentos de rigidez (Rk) e resistência (Mu), sendo a dutilidade 

avaliada pela etapa de análise estrutural. Na realidade, a curva do Eurocode 3 nasce 

desse primeiro modelo, sendo uma adaptação para verificação do dimensionamento. 

 
2.3.2 CLASSIFICAÇÃO DO EUROCODE 3 (1992) 

Esta classificação é um ajuste da anterior, feita pelos comitês europeus, seguindo 

a Fig. 2.13, na qual se indicam duas representações. A primeira se refere aos pórticos 

destravados (não contraventados ou deslocáveis) e a segunda está relacionada aos 

pórticos travados (contraventados ou indeslocáveis).  
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Nessa classificação dos pórticos, os termos entre parênteses são denominações 

diferentes adotadas na norma brasileira (NBR 8800, 2007) e na americana (AISC, 

2005), respectivamente. Pode-se ver uma explicação melhor desses termos no apêndice 

A.3, incluindo uma classificação da estrutura pela deslocabilidade lateral. Esses 

conceitos estão presentes tanto na utilização dos comprimentos efetivos de flambagem 

kfl [manuseio dos ábacos de Julian & Lawrence (1959)] quanto na definição de fatores 

de amplificação B1 e B2. E estão, também, relacionados aos efeitos amplificadores de 

momentos secundários já mostrados [Figs. 1.2(a-b) e 1.4(a-b)]: 

a. efeito P-δ (P-deltinha) e a curvatura inicial (CI) das barras, mais grave nas 

estruturas travadas; e   

b. efeito P-∆ (P-delta), relacionado ao deslocamento lateral e ao fora de prumo 

(FP), que é preponderante para as estruturas mais deslocáveis (B2 > 1,5). 

 

Agora o parâmetro adimensional adotado é a chamada rotação de referencia (θc), 

definida por (como θ0 da Eq. 2.2, com Mm= Mp e Rki = EIz/Lv): 

vz

p
c LEI

M
=θ  (2.11)

 

Os limites dessa classificação são: 

a.  ligação flexível – compreende momentos inferiores a 25% Mp, para rotações 

relativas θr/ θc superiores a 50%, e decresce deste ponto linearmente até 0. As 

curvas M-θ da Fig. 2.13 marcadas com (A) são consideradas flexíveis, mesmo 

tendo um trecho inicial semirrígido; 

b.  ligação rígida – os limites são definidos por três segmentos de reta nos gráficos 

da Fig. 2.13, conforme a estrutura seja deslocável, aplicando-se a Tab. 2.4, 

sendo que a ligação rígida deve apresentar momento último Mu superior ao Mp 

da viga, quando a relação θr / θc superar o limite indicado na linha inferior da 

Tab. 2.4. No caso da Fig. 2.13, as curvas marcadas com (C) serão rígidas; e  

c.  ligação semirrígida – da mesma forma que na classificação anterior, a região 

intermediária, que contém as curvas M-θ marcadas com (B) na Fig. 2.13. 

 

Tabela 2.4 Limites da ligação rígida no Eurocode 3 (1992) 

Mr < (a) Pórtico destravado (b) Pórtico travado 
2/3 Mp θr / θc <   4% p/  Mp θr / θc < 12,5% p/  Mp 

Mp θr / θc < 12% p/  Mp θr / θc < 20%   p/  Mp 
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Figura  2. 13 Classificação da ligação segundo Eurocode 3 (1992): 
(a) pórtico destravado; (b) pórtico travado. 

 
Tabela 2.5 Valores mínimos dos parâmetros de rigidez da ligação. 

(a) Pórtico destravado (b) Pórtico travado Ligação 
βk g η βk g η 

Rígida 25,0 0,04 2/29  8,0 0,125 1/6 
Rótula   0,5 2,00 4/17  0,5 2,000 4/17 
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Tabela 2.6  Comprimento característico L/d e resistência requerida. 

Flexibilidade L/d Resistência M/Mp Modelo  
Rótula Rígido Rótula Rígido 

Bjorhovde et al. (1990) 10 a 15 1 a 2 (1) 0,15 a 0,2 ≥ 0,7 
Eurocode 3 (1992) 40 (2) 0,25 ≥ 1,0 

Notas: 1) com efeito do painel L/d = 2, sem efeito L/d = 1; 2) travado L/d = 2,5 e destravado L/d = 0,8. 
 

Quanto à rigidez da ligação, pode-se escrever uma relação com a rigidez da viga 

similar ao índice de rigidez, de acordo com: 

v

z

v

z
kk

L

EI

g

1

L

EI
R

















=β=  (2.12)
 

sendo βk definido aproximadamente pela Tab. 2.5. Essa classificação é voltada para uma 

verificação de dimensionamento. Comparando-se com o chamado comprimento 

característico L/d, pode-se construir a Tab. 2.6. 

 
 

2.3.3 CLASSIFICAÇÃO DE HASAN ET AL. (1998) 

Essa nova classificação foi idealizada no intuito de superar algumas deficiências 

das anteriores, quais sejam:  

a.  classificar a rigidez da ligação com base na rigidez da viga ligada e, agora, essa 

rigidez fica independente; 

b. as curvas de ligação M-θ são geralmente não lineares, enquanto os limites 

anteriores eram lineares, possibilitando algumas dúvidas; e  

c.  a forma abrupta de modificação da curva M-θ em algumas ligações, gerando, 

também, ambiguidade de interpretação ao projetista. 

 

Essa classificação é representada na Fig. 2.14 e emprega a Eq. (2.31) do modelo 

potencial de 3 parâmetros (Kishi & Chen, 1987), que será apresentada na seção 2.4.  

Para as curvas limites, considera-se a rigidez da ligação Rki = 357,4 kNcm /mrad 

para o limite ligação flexível e Rki = 11302,5 kNcm/mrad para a rígida; emprega-se, 

também, o expoente de forma da curva C1 = 1 em todos os casos. As semirretas 

correspondentes a 25% e 100% de Mp são assíntotas das curvas limites dessas regiões. 

De forma similar aos casos anteriores, observa-se, na Fig. 2.14, que a curva M-θ 

marcada com (A) é classificada em flexível ou rotulada, a marcada com (B) é 

semirrígida e a marcada com (C) é dita rígida. 
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Figura  2. 14 Classificação da ligação segundo Hasan et al. (1998). 
 

Repare-se, também, que é mais fácil empregar essa classificação dada a forma dos 

limites adotados, já que as curvas M-θ (A-B-C) são as mesmas representadas nos 

diagramas das classificações anteriores (Figs. 2.12 e 2.13, respectivamente). 

 

2.3.4 OUTRAS POSSIBILIDADES DE CLASSIFICAÇÕES 

Alguns pesquisadores, visando melhorar a forma tradicional de dimensionamento, 

empregaram ajustes no coeficiente de comprimento efetivo de flambagem kfl para levar 

em conta o efeito da ligação (Kishi et al., 1998; Hellesland & Bjorhovde, 1996a-b). 

Faella et al. (1994) fizeram uma análise simplificada partindo de um subconjunto (em 

forma de H deitado), para pórticos destravados, incluindo quatro vigas ligadas à coluna 

analisada, duas em cada extremidade e de cada lado, para determinar kfl (similar aos 

estudos de Hajjar et al., 1997). 

Goto & Miyashita (1998) avaliaram os limites da consideração entre as ligações 

tratadas por rígida e semirrígida, por meio da análise de subconjuntos da estrutura, o que 

também gerou uma forma de classificação mais objetiva sobre quais ligações seriam 

efetivamente rígidas ou não.  

Nethercot et al. (1998) alertaram que não se deve classificar uma ligação como 

rígida tão-somente por sua curva M-θ, e que é importante avaliar o seu desempenho 

quanto à resistência e à dutilidade também, o que justifica as seções anteriores. 
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Outros pesquisadores propuseram classificações que não consideraram o 

comprimento da viga (Lv), mas que não permitem uma rápida avaliação de uso, no caso 

de um caso específico [(Bijlaard & Steenhuis, 1991; Tschemmernegg & Huter, 1993) 

segundo Faella et al., 2000; Bjorhovde et al., 1990; e Nethercot et al., 1998]. 

Entretanto Tschemmernegg & Queiroz (1996) alertaram que não é possível 

propriamente se representar as deformações da ligação, incluindo o painel (com 

cisalhamento e flexão, em um ou ambos os lados), apenas com uma mola rotacional na 

extremidade da viga. Ressaltando, ainda, a presença da excentricidade e o centro 

instantâneo de rotação da ligação que não coincidem com o nó formado pela viga e 

coluna, no qual se supõe a mola rotacional. 

Isso torna mais complexo a classificação e o estudo da ligação. Acompanhando 

outros pesquisadores (Faella et al., 2000), porém, admite-se que num dado patamar de 

simplificações as curvas M-θ podem incluir informações sobre os comportamentos 

determinados a partir de modelos mais refinados (pelo método das “componentes” ou 

numéricos, por exemplo). Propõe-se que com essas curvas respostas satisfatórias serão 

obtidas dentro dos limites usuais da engenharia. 
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2.4 MODELOS DE CURVAS MOMENTO-ROTAÇÃO 

Sabendo das condições antes mencionadas, os pesquisadores têm procurado além 

de realizar os experimentos, apresentar modelos simples que permitam descrever o 

comportamento das ligações avaliado basicamente pela curva M-θ, cujo conhecimento é 

fundamental para qualquer análise estrutural. 

Existem diversos modelos para as curvas M-θ que estão relacionados aos três 

tipos de processo empregado na sua obtenção, ou seja: 

a. matemáticos – adotam algum tipo de expressão matemática básica. Procura-se 

determinar os parâmetros dessa expressão com base nas características 

geométricas e físicas, para reproduzir aproximadamente os resultados 

fornecidos pelos ensaios experimentais. Esses parâmetros são calibrados por 

meio de regressões, de correlações, de avaliações estatísticas, para que as 

equações finais sejam obtidas; 

b. analíticos – procuram determinar o comportamento esperado com base na 

análise estrutural da própria ligação, dos seus elementos componentes e dos 

parâmetros de projeto relacionados (propriedades, características e dimensões), 

para se chegar à curva desejada; e  

c. conjugados – são os modelos que conjugam os dois processos anteriores: uma 

equação de curva ajustada aos dados obtidos por expressões analíticas ou por 

modelos de simulação computacional. 

 

Os processos matemáticos são mais simples, antigos, conhecidos e, por isso, os 

mais utilizados. Procuram relacionar diretamente, entre si, as grandezas envolvidas: 

momento, rotação e rigidez.  

Os processos analíticos surgem com a tentativa de explicar comportamentos como 

o efeito de alavanca, determinar os mecanismos de plasticidade das chapas e 

cantoneiras, etc., seja determinando as grandezas anteriores (momento, rotação e 

rigidez), seja de forma empírica por meio dos resultados de ensaios experimentais. Em 

etapa posterior, esses métodos evoluíram para uma série de trabalhos em que os 

pesquisadores optaram por processos conjugados. 

Pode-se, ainda, classificar os modelos das curvas momento-rotação com relação à 

fonte de dados empregada: 
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a. empíricos – a definição dos parâmetros das curvas ou expressões aproximadas 

é realizada por meio de regressões que minimizam diferenças numéricas, 

empregando um conjunto de experimentos selecionado; 

b. analíticos – cujos dados utilizados para gerar os parâmetros provêm de uma 

análise de esforços, tensões, deformações, equilíbrio e considerações de 

compatibilidade, usuais na resistência dos materiais e na plasticidade, 

baseando-se nos comportamentos indicados por ensaios experimentais; 

c. mecânicos – a parte analítica anterior é subdividida num conjunto de 

“componentes” e atribui-se a cada componente uma mola. A combinação 

dessas molas, que vão trabalhar em associações diversas, em série ou paralelo, 

conjuntamente, vai permitir avaliar o comportamento final da ligação;  

d. numéricos – indicam que os dados são obtidos pela modelagem de cada 

ligação empregando-se a técnica de elementos finitos em 2D ou 3D, incluindo 

todas as partes da ligação e suas propriedades; e  

e. experimentais – a base de dados, os resultados de ensaio experimental. 

 

Os modelos empíricos apareceram associados aos processos matemáticos de 

maneira geral e possuem, assim, laços históricos comuns. No final deste capítulo, 

apresenta-se uma proposta de curva M-θ também de modelo matemático-empírico.  

Os processos analíticos são os que empregam modelos mais detalhados de estudo, 

como o método das “componentes” ou métodos numéricos. Essas curvas de ligação 

podem ser obtidas diretamente, sem exigir o emprego de expressões matemáticas. 

Algumas vezes os processos analíticos são associados a valores tabelados ou a 

aproximações empíricas posteriores. 

Nomeando alguns modelos puramente analíticos, tem-se: Youssef-Agha et al. 

(1989) para ligação com 2Ls de aba da Fig. 2.4(n) e Shi et al. (1996) para chapa de topo 

estendida da Fig. 2.4(j). Como processos conjugados aos modelos analíticos podem-se 

citar: Chen et al. (1996) e Yee & Melchers (1986), dentre outros.  

Os modelos mecânicos são adotados pelo Eurocode 3 (1997), havendo vários 

trabalhos publicados com o método das “componentes” (Faella et al., 2000). 

Alguns processos conjugados englobam trabalhos que empregaram a simulação 

numérica de ligações (Krisnamurthy  et al., 1979; Tarpy & Cardinal, 1981; Ghassemieh 

et al., 1983; Bahaari & Sherbourne, 1994; etc.) e também o método das “componentes” 
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do Eurocode 3 (1992) e seu Anexo J (Briquet et al., 1994).  

Deve-se indicar que diversos fatores (as variações de detalhes, da qualidade do 

trabalho de fabricação e dos materiais, a plasticidade, o escorregamento parafuso-furo, 

efeitos locais de furos, entalhe, solda e borda, etc.) contribuíram para que os modelos 

analíticos não tenham conseguido maior sucesso (Morris et al., 1995). 

Tendo em vista os limites desta tese, serão abordados apenas alguns métodos 

matemáticos com processos empíricos, que, além de serem mais conhecidos, possuem 

maior emprego na prática, pelo menos por enquanto. Esses modelos são apresentados de 

maneira sucinta nas próximas subseções, sendo dada ênfase (detalhes) aos que são 

empregados no corpo deste trabalho.   

O método das “componentes” é pouco empregado, assim como os de ensaios 

experimentais ou modelos numéricos (MEF) nos exemplos desta tese. Porém, tais 

curvas podem ser introduzidas numa análise estrutural, similar às aqui desenvolvidas, 

por meio de uma tabela de valores, ou seja, na forma aproximada multilinear, que será 

apresentada na subseção 2.4.1. 

Nos processos ditos matemáticos, a forma da curva M-θ é definida com base na 

expressão adotada e pode ser agrupada nos seguintes modelos: 

a. com trechos lineares (lineares mesmo, bi, tri, multilineares); 

b. polinomiais, incluindo os de gabarito de curva B-cúbicos; 

c. potenciais; 

d. exponenciais; e  

e. outros tipos (novas tendências). 

 

2.4.1 MODELOS COM TRECHOS LINEARES 

Os mais antigos e conhecidos modelos de ligação são os lineares, como 

representado na Fig. 2.15, que aparecem com Batho (1931), Baker (1934) e Rathbun 

(1936) com a concepção de rigidez inicial constante Rki (elástica). Posteriormente, 

foram empregados também por Monforton & Wu (1963), Arbabi (1982), Kawashima & 

Fujimoto (1984) e apareceram, também, em estudos de vibração de pórticos 

semirrígidos (Yau & Chan, 1994).  

A representação linear é expressa por: 

rkr θRM =  (2.13)
 

em que Rk = Rki (inicial) ou Rk = Rks (secante), como ilustrado na Fig. 2.15. 
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Considerados muito simples (requer pouca informação), os modelos lineares são 

adotados, em geral, para estudo do estado limite de serviço, sob considerações elásticas 

e empregando cargas não fatoradas. Nessas condições, supõe-se atingir rotações 

pequenas, de forma que os resultados produzidos serão aceitáveis (Gerstle, 1988). Pode-

se empregar a rigidez secante, embora não se possa aquilatar o nível de desvios 

resultante (diferenças decorrentes de tal simplificação). É Recomendável verificar se a 

rotação máxima então obtida na análise não supera a prevista para a curva no ponto 

(Lindsey et al., 1985), refazendo-se o cálculo em caso contrário. 

Modelos bilineares apareceram em Lothers (1951), Lewitt et al. (1966), 

Lionberger (1967, & Weaver, 1969), continua com Romstad & Subramanian (1970), 

Johnson & Law (1981), Maxwell et al. (1981), Tarpi & Cardinal (1981), Melchers & 

Kaur (1982), Sivakumaram (1988) e Youssef-Agha et al. (1989). Esses pesquisadores 

aproximaram, inicialmente, a curva com dois segmentos retos de inclinações distintas.  

Posteriormente, o modelo bilinear foi adotado pelo Eurocode 3 (1992), que 

emprega a rigidez inicial até o momento atingir o valor igual a Mu, seguindo com esse 

valor até a rotação de colapso (Chen & Lui, 1983; Cook & Gerstle, 1987). Em algumas 

situações, como no caso de se avaliar o estado limite de serviço, a norma europeia 

recomenda adotar a rigidez secante no primeiro trecho, como se elucida na Fig. 2.15.  

Dentre os modelos com trechos lineares podem-se citar os trilineares (Moncarz & 

Gerstle, 1981; Vinnakota, 1982; Sugimoto & Chen, 1982; Razzaq, 1983; Stelmack et 

al., 1986; e Gerstle, 1988) e os multilineares, adotados por Poggi & Zandonini (1987). 

De fato, todo ensaio experimental, em certo grau de medição, fornece um modelo 

de comportamento próximo ao multilinear, o que justifica ter essa possibilidade em 

qualquer programa computacional sobre o tema, como se ilustra na Fig. 2.16. Nessa 

figura, delineia-se um modelo pentalinear, que poderia ser adotado com boa precisão. 

Entretanto, hoje, há recursos para se obter a curva experimental com tantos 

pontos, que se pode considerar como se fosse um traçado contínuo, em que a diferença 

entre o arco e o segmento linear é indistinta. Pode-se escrever, então, por intervalos: 

( )
( )
( )ab

ab
kab

aarkabr

θθ
MM

R

com  ,MθθRM

−

−
=

+−=

 (2.14a-b)
 

na qual a rigidez Rkab, constante no intervalo θa ≤ θr ≤ θb, é a secante à curva que liga os 

dois pontos extremos do intervalo e obriga-se que (em valor absoluto): Ma ≤ Mr ≤ Mb, 

de forma geral, para garantir que (Rkab) seja sempre positiva. 
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Figura  2. 15 Modelos mais simples de curva M-θ. 
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Figura  2. 16 Curva M-θ com modelo multilinear. 
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2.4.2 MODELOS POLINOMIAIS 

A utilização de modelos com curvas não lineares está vinculada a estudos de 

estabilidade, em que se requer o histórico do carregamento, cujo processo de análise é 

incremental e com passos pequenos de forma a minimizar os desvios. 

O primeiro trabalho a empregar uma expressão não linear para a curva M-θ, com 

padronização de parâmetros para a reprodução de resultados confiáveis, foi o de 

Sommer (1969). Foi adotado um polinômio calibrado com valores experimentais para a 

ligação com chapa de cabeça [ver Fig. 2.4(g)]. Esse modelo se tornou conhecido e 

popular a partir dos sete tipos de ligação estudados no trabalho de Frye & Morris 

(1975), havendo comentários de Picard et al. (1976), recebendo a colaboração, também, 

de Altman et al. (1982), dentre outros. 

Segundo Sommer (1969), a ideia básica era selecionar alguns parâmetros da 

ligação por meio de um estudo de correlação que calibrasse os resultados numéricos, 

produzidos pelas fórmulas, com os valores correspondentes obtidos através de ensaios 

experimentais. Nesse modelo, a rotação da ligação θr é um polinômio do quinto grau:  

( ) ( ) ( )[ ] ( ) ( ) ( ) 5 
m3

3 
m2m1

 3a1i

1i2
mirr xxx xM CCCC ++==θ ∑

=

−  (2.15)
 

do aqui chamado momento modificado xm = (KmMr), produto de uma constante (Km), 

que é função (f) dos parâmetros selecionados mostrados na Fig. 2.17, e do momento Mr 

que atua na ligação; as grandezas C1, C2 e C3 são as constantes de ajuste de curva 

calibradas com os ensaios de forma a atingir um percentil de desvio máximo de 10%. 

Os valores correspondentes da expressão da função (f) que define Km e dos 

coeficientes do polinômio Ci são indicados na Tab. 2.7. Os valores originais dessa 

tabela foram determinados em unidades americanas (dimensões em polegadas [in] e 

momentos em quilo-libra polegada [kip in]). Na tabela 2.8, apresenta-se um fator de 

conversão Ck quando se empregam as unidades do Sistema Internacional (SI), 

(dimensões em centímetros [cm] e momentos em [kNcm]), de forma que se obtém 

diretamente: 

SIkm    KCK =  (2.16)
 

Os parâmetros indicados na Tab. 2.7 e na Fig. 2.17 foram selecionados segundo 

um critério de correlação pela técnica dos mínimos quadrados, que ajustou de forma 

mais significativa as curvas obtidas pelo modelo às curvas experimentais, conforme: 
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Figura  2. 17 Parâmetros adotados nas equações de Km (Frye & Morris, 1975). 
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Figura 2.17 (cont.) Parâmetros adotados nas funções Km (Frye & Morris, 1975): 
(a)1 L de alma; (b) 2 Ls de alma; (c) 2 Ls de aba; (d) 4 Ls de alma e aba; chapa de topo estendida: 

(e) com enrijecedor, (f) sem enrijecedor; (g) 2 perfis T; (h) chapa de cabeça; e (i) 4 Ls cercando. 
 

Tabela 2.7 Função Km e coeficientes do polinômio de Frye & Morris (1975). 

No Tipo (1) Km = f (parâmetros) C1 C2 C3 
1 1 L na alma ha

-2,4 ta
-1,81 ga

0,15 4,28 E-03 1,45 E-09 1,51 E-16 

2 2 Ls na alma ha
-2,4 ta

-1,81 ga
0,15 3,66 E-04 1,15 E-06 4,57 E-08 

3 2 Ls no flange d-1,5 tc
-0,5 ba

-0,7 db
-1,1 8,46 E-04 1,01 E-04 1,24 E-08 

4 4 Ls alma e flange (2,3)   d-1,287tc
-1,128ta

-0,415ba
-0,694 gb

1,35 2,23 E-05 1,85 E-08 3,19 E-12 

5 Ch. estendida s/ enrij. dg
-2,4 tp

-0,4 db
-1,5 1,83 E-03 -1,04 E-04 6,38 E-06 

6 Ch. estendida c/ enrij. dg
-2,4 tp

-0,6 1,79 E-03 1,76 E-04 2,04 E-04 

7 2 perfis Ts d-1,5 tt
-0,5 bt

-0,7 db
-1,1 2,10 E-04 6,20 E-06 -7,60 E-09 

8 Ch. de cabeça (4) hp
-2,3 tp

-1,6 a0,5 ga
1,6 5,10 E-05 6,20 E-10 2,40 E-13 

9 4 Ls cercando (5)   aL
0,9553 tc

-0,7338 (b/bTb)
1,051 1,04 E-05 -1,62 E-11 4,62 E-16 

Notas: 1) Para dimensões em polegadas [in] e momentos expressos em kip.in (Chen & Toma, 1994); 
2) Altmann et al. (1982), sendo gb = (gL - db/2); 3) valores comprovados experimentalmente por  

Radziminski & Azizinamini (1987); 4) Sommer (1969), segundo  Kennedy (1969);  
5) Pickard et al. (1976) para colunas tubulares (Chen & Lui, 2000). 

 
Tabela 2.8 Fatores de conversão Ck para o SI. 

No Fig. 2.16 Tipo - Cn (2,54)-Cn Ck 
1 (a) 1 L na alma 4,060 44,018 3,894 
2 (b) 2 Ls na alma 4,060 44,018 3,894 
3 (c) 2 Ls no flange 4,200 50,154 4,437 
4 (d) 4 Ls na alma e flange 2,174   7,588 0,671 
5 (e) Ch. estendida s/ enrij. 4,300 55,054 4,871 
6 (f) Ch. estendida c/ enrij. 3,000 16,387 1,450 
7 (g) 2 perfis Ts 3,800 34,544 3,056 
8 (h) Ch. de cabeça 2,800 13,600 1,203 
9 (i) 4 Ls cercando  -0,221    0,814 0,072 

Notas: 1) O valor KSI, com dimensões em cm, deve ser multiplicado por Ck, para se obter Km = Ck KSI, 
2) n corresponde a soma dos expoentes da expressão de Km [in], em geral negativo. 

 

a. na cantoneira –  dimensões: aL = aba, ha = extensão vertical, ga = gabarito de 

furos; ba = extensão horizontal; espessuras: ta = para L de alma, tc = L de aba, 

[obs. gabarito da cantoneira: gL = aL – pL (aba – borda)]; 
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b. na viga I – dimensões: d = altura, b = aba; espessuras: a = da alma, t =  das 

abas (note que estes símbolos são os mesmos adotados em toda a tese);  

c. espessuras – tp = da chapa de topo ou de cabeça, tt = da aba dos Ts; 

d. outros: bt = largura do T, hp = altura da chapa de cabeça, dg = gabarito entre 

furos para chapa estendida, db = diâmetro dos parafusos; gb = gabarito liquido 

(gL – db/2); bTb = largura do tubo. 

 

Conforme Chen & Lui (2000), foram desenvolvidas curvas similares para ligações 

cercadas por 4 Ls da Fig. 2.17(i) por Picard et al. (1976), com 4 Ls da Fig. 2.17(d)  

(dois na alma e um em cada aba) por Altmann et al. (1982) e para chapa de cabeça da 

Fig. 2.17(h), originalmente por Kennedy (1969), como citado em Goverdham (1984). 

A rigidez da ligação pode ser encontrada pela derivada ∂M/∂θ da Eq. (2.15), isto é  

(Chan &  Chui, 2000): 

( )
( ) ( )[ ]4 

m3
2 

m21m

rkt
x5x3 

1
MR

CCCK ++
=  (2.17)

 

 Em vários textos científicos nos quais esse modelo é apresentado, constata-se uma 

série de divergências de valores cuja causa pode ser tanto falha de edição quanto alguma 

correção ou ajuste, realizado posteriormente por outros autores (Alvarenga, 2010). 

 Assim, para o projetista aplicar esse modelo com segurança, é necessário conhecer 

quais são os valores das constantes dessa tabela corretos. 

Cita-se que a grande vantagem da curva de Frye & Morris (1975) é a facilidade de 

se determinar Km com base nos parâmetros, que permite uma boa flexibilidade no 

modelo com ajustes rápidos, e conseguir uma boa aproximação dos resultados de 

laboratório, com diferenças máximas reportadas de 11% (Kennedy, 1969).  

Desenvolveu-se aqui um programa computacional para traçar essas curvas, 

comparando-se os resultados obtidos com os valores do banco de dados experimentais 

que constam do SCDB (Chen et al., 1996). Comprovou-se que a reprodução de 

resultados era fiel. Porém, quando esse programa foi aplicado na obtenção de novas 

respostas (fora dos experimentais), verificou-se a necessidade de definir melhor quais 

eram os limites de validade e alguns resultados não se mostraram coerentes também 

(Alvarenga, 2010). Cabe ressaltar que essas curvas têm a precisão indicada apenas para 

rotações inferiores a 10 mrad, o que limita seu emprego a análises sob condições de 
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serviço. Assim surgem dúvidas sobre em que situação prática seria confiável adotar esse 

modelo, com quais parâmetros e qual o domínio de validade.  

Outra desvantagem desse modelo ocorre na obtenção da rigidez por meio de 

momentos com valores muito próximos, o que torna também o processo numérico 

pesado e instável. A alternativa é que a rigidez pode ser definida, também, pelo uso de 

uma secante num intervalo pequeno (99,9% a 100,1% de dado Mr, por exemplo), como 

foi realizado em alguns estudos prévios ainda não publicados. 

A determinação de um momento relativo a uma dada rotação (solução inversa) 

exige um processo de tentativas (iteração), como a técnica biseção de Newton.  

O comportamento senoidal dos polinômios (curvas na forma de S deitado) pode 

produzir artificialmente o surgimento de rigidez negativa, o que torna seu emprego em 

processos iterativos, como os deste trabalho, extremamente complicados (Jones et al., 

1982; Azizinamini & Radiziminski, 1988). Note-se que os polinômios adotados 

inicialmente por Jones et al. (1982) eram completos (Nethercot et al., 1987), ou seja, 

havia termos de expoente par, o que justificaria a afirmativa anterior. Porém, nos de 

Frye & Morris (1975), os expoentes são todos ímpares e, assim, não apareceram termos 

de rigidez negativa nos estudos realizados (Alvarenga, 2010). 

Sobre o último comentário informa-se que, empregando os dados fornecidos pelo 

SCDB (Chen et al., 1996) e os da Tab. 2.7, obteve-se rigidez positiva em todos os 

exemplos desse modelo. Entretanto, houve casos em que apareceu rigidez negativa de 

ligações tanto nos valores experimentais como no resultado de outras formulações 

(exponencial e de potência), o que seria interessante estudar mais profundamente, no 

futuro. 

Outro caso de modelo polinomial por trechos é o do gabarito de curva B cúbica. 

Basicamente, é a mesma ideia de uma curva obtida por uma série de trechos lineares, 

sendo que, neste caso, as curvas são subdivididas numa série de trechos, a cada três 

pontos, em que se aproximam as curvaturas e tangentes usando polinômios do terceiro 

grau (Hayes, 1974). Define-se um sistema de equações determinando-se os valores 

compatíveis das constantes de cada trecho a todo o conjunto de dados experimental 

(Cox, 1972).  

Essa curva pode ser descrita pela expressão: 

( ) ( ) ( )( )
33

1j
rjrrjrj2

3

0i

i
ri1rkr MMMMMM ∑∑

==

−−+=θ HCC  (2.18)
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na qual H é a função passo de Heavyside (Abramowitz & Stegun, 1972), ou seja: 





<

≥
=

0  x quando 0,

      0;  x  se 1
(x)

,
H  (2.19a-b) 

Esse processo, que foi empregado por Jones et al. (1982) e permite uma boa 

reprodução de curvas, na qual a rigidez pode ser obtida de forma precisa, mas gera 

muitos dados (constantes C1i e C2j), requer um processo numérico especial iterativo e é 

específico para cada ensaio, o que torna muito particular sua aplicação.  

 

2.4.3 MODELOS POTENCIAIS 

Essa designação engloba vários modelos e expressões. A primeira função 

potencial foi proposta por Batho & Lash em 1936 (Chan & Chui, 2000). Depois, 

Krishnamurthy et al. (1979), com um trabalho estatístico avaliando a influência de uma 

série de parâmetros da ligação, definiram, por ajuste de curva, as constantes C1 e C2 da 

expressão básica:  

( ) 2

r1rr MMθ C
C=  (2.20) 

O parâmetro (C1) dessa curva de ligação tem de ser positivo (> 0), e não se obtém 

a rigidez inicial a partir de Rki = (∂M/∂θ)M=0, exceto se for imposto C2 =1, quando se 

torna uma equação linear, já vista antes. Além disso, recomenda-se que C2 > 1. Os 

valores de C2 foram obtidos por correlação de vários parâmetros adimensionais, 

relativos às propriedades e à geometria da seção.  

Nesse caso, a rigidez da ligação é dada por: 

( ) ( )1
r21

rkt 2M

1
MR

−
=

C
CC

 (2.21) 

Krisnamurthy et al. (1979) determinaram o valor C2 = 1,58 para ligação com 

chapa de topo estendida da Fig. 2.4(j). Posteriormente, Kukreti et al. (1987) 

encontraram C2 = 0,737 para chapa cortada vista na Fig. 2.4(i), com uma linha simples 

de parafusos; e para a ligação estendida reforçada com 8 parafusos, ilustrada na Fig. 

2.5(a), Kukreti et al. (1990) obtiveram C2 = 1,913. 

Entretanto, as respostas obtidas com essa fórmula (Eq. 2.20) só apresentaram um 

bom comportamento no trecho inicial da trajetória, o que justifica a adoção de outros 

modelos potenciais. 

O Anexo J do Eurocode 3 (1997) adota uma curva com dois trechos lineares e um 

trecho de transição potencial, como indicado na Fig. 2.18, sendo aplicadas:  
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a. para ligações rígidas tipo soldada, com chapa estendida e com 4Ls, que são 

representadas na Figs. 2.4(a, j-k & m) (Faella et al., 2000); ou,  

b. com 2 Ls de aba, visto na Fig. 2.4(n). Pode-se, por simplicidade, recair nos 

modelos trilineares anteriores também. 

 

Nos trechos lineares, adota-se a rigidez inicial Rki até o início do escoamento, 

definido por Me ≈ 2 Ms/3, e no trecho após a maior plasticidade (Mr > Ms), a rigidez 

plástica Rkp. A transição não linear, para Me ≤ Mr ≤ Ms, é dada pela curva potencial: 

e

s

r

rki
r

M2
M3

θR
M

C









=  

(2.22) 

com o ângulo θe ≤ θr ≤ θs = Ms / Rks, acompanhando os valores da Tab. 2.9. 

O Eurocode 3 (1992) permite outra simplificação para um diagrama bilinear, 

sendo, nesse caso, a rigidez secante definida por:  

a. para ligação viga-coluna Rks2 = Rki/2 [ver Figs. 2.4(a, j-k, m-n)];  

b. de 2Ls de aba, da Fig. 2.4(n), quando será Rks2 = Rki/3,5; e  

c. para outros tipos de ligação: Rks2 = Rki/3 (Briquet et al., 1994). 

Mu
U

Modelo potencial

Modelo trilinear

0u-

M r

Me

sM

RkykiR

ksR

Rkp

simplificado

-0e -0s

Rigidez secante

- r0  

Figura  2. 18  Modelo não linear do Anexo J do Eurocode 3 (1997). 

  

Tabela 2.9 Relações de rigidez do Anexo J do Eurocode 3 (1997). 
Item Fig. 2.4 Tipo Ce Rks Rky 

1 a-j-k-m rígidas 2,7 Rki/3,0 Rki/7,0     
2 n 2 Ls na aba 3,1 Rki/3,5 Rki/8,5 
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Uma variação da abordagem anterior foi realizada por Al-Bermani (1994) e Zhu 

et al. (1995), chamada linha de contorno com 4 parâmetros, sendo diferente apenas na 

curva de transição, na qual a rigidez é definida por: 

( )kpki
es

er
kikt RR

MM

MM
RR −

−

−
+=  (2.23) 

que é válida para Me ≤ Mr ≤ Ms, fazendo-se em seguida Mr = Me + ΣdMrt, em que então 

se tem dMrt = Rkdθ. 

Passando agora aos modelos potenciais mais completos que surgiram com os 

trabalhos de Goldberg & Richard (1963), Colson & Louveau (1983) apresentaram um 

modelo potencial de 3 parâmetros, adotando: 

[ ] urki

r
r

1MM1 R

M
C

−
=θ  (2.24) 

no qual Mu se torna uma assintota, e C1 define a forma da curva.  

Definindo a rotação adimensional r = θr/θ0 e o momento adimensional m = Mr / 

Mu, tomando-se θ0 = Mu / Rki, pode-se reescrever Eq. (2.24) como: 

[ ] 1m1 

m
r

C
−

=  (2.25) 

na qual o coeficiente C1 determina a forma da curva. À medida que C1 cresce, a curva 

fica limitada entre as semirretas m = r ≤ 1 e m = 1, como ilustrado na Fig. 2.19. 

A rigidez da ligação definida por ∂M/∂θ é dada pela expressão: 

[ ]
( )[ ] ur1

2 

urki
r

1

1

MM11 

MM1 R
C

C

C −+

−
=θ  (2.26) 

De forma similar, Pilvin (1983), segundo Faella et al. (2000), apresentou a 

expressão adimensional: 

( )( )







−−
+=

m112

m
1 mr

1C
 (2.27) 

que representa uma curva que tem como assíntotas: m =1 e a semirreta m/r = 1, sendo 

muito parecida com a da Fig. 2.19. 

Richard & Abbott (1975) apresentaram um modelo potencial de quatro 

parâmetros, que expressa o momento como função da rotação pela fórmula: 
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( )

( )
( ) rkp1

0

rkpki

rkpki
r θ R  

M

θ  RR
1

θ  RR
M

1
1

+













 −
+

−
=

C
C

 
(2.28) 

sendo C1 o parâmetro de ajuste de curva, M0 o momento de referência, Rki e Rkp a 

rigidez inicial e a plástica. O momento nominal máximo, nesse caso, é determinado por 

Mm = M0 +Rkp θrd, tomando-se θrd = 20 mrad, como sugere o AISC (Liu et al., 2008). 

Aplicando r = θr/θ0 e m = Mr/M0, tomando-se M0 = (Rkp – Rki) θ0, pode-se tornar 

adimensional a Eq. 2.28, chegando à expressão: 

( )( ) r
r1

r
m 21 11

C
CC

+
+

=  (2.29) 

na qual C2 = Rkp/(Rki –Rkp). Assim, pode-se entender o sentido dos parâmetros C1 e C2 

dessa expressão, acompanhando a Fig. 2.20, em que o expoente C1 varia de 1 a 20 (∞), 

enquanto se fixou C2 = 0,1. Observa-se que C2 determina a inclinação limite superior, 

enquanto (C1+C2) define o valor de (m) no qual a trajetória se modifica de Rki para Rkp 

(neste exemplo, para r = 1 tem-se m = 1+0,1 = 1,1). E quanto maior for o valor de C1, 

mais a curva se aproximará da forma bilinear da assíntota. 

A rigidez é obtida diretamente pela expressão (∂M/∂θ): 

( )[ ] ( ) kp1
0r

ki
kt R

  θθ1

R
R

111
+

+
=

+ CCC
 (2.30) 

Azizinamini et al. (1985) empregaram essa equação para estudar ligações com 4 

Ls [Fig. 2.4(m)], Driscoll (1987) com 2Ls de aba [Fig. 2.4(n)], enquanto Kukreti (1987) 

construiu um modelo com EFs para gabaritar respostas de ensaios computacionais de 

ligações para chapa estendida de topo [Fig. 2.4(j)] e Kishi & Chen (1987) para ligações 

de cantoneiras em geral [Figs. 2.4(m-n-o)]. 

Esse modelo, posteriormente, originou o proposto por Kishi & Chen (1987), ao se 

fazer diretamente Rkp = 0 nas fórmulas anteriores, ou seja: 

( )[ ] ( )11 1
0r

rki
r   θθ1

θR
M

CC+
=  (2.31) 

no qual o ângulo de referência é definido agora por θ0 = Mu/Rki. 
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Figura  2. 19  Modelo de Colson & Louveau (1983). 
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Figura  2. 20  Modelo de Richard & Abbott (1975). 

  

Como visto, o parâmetro C1 define a forma da curva, sendo que, quando este 

cresce arbitrariamente, a curva tende a se confundir com o modelo bilinear, com a 

inclinação inicial Rki. A diferença é que, com o parâmetro linear (Rkp) de Richard & 

Abbott (1975), a curva tem uma forma que permite atingir o momento último Mu.  
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Já no modelo de Kishi & Chen (1987), o momento Mu é a assintota alcançada 

aproximadamente apenas quando C1 > 2, (não sendo atingido, em caso contrário).  

Pode-se igualmente obter a forma adimensional dessa curva Eq. 2.31, que é 

representada na Fig. 2.21, tomando-se m = Mr/Mu e r = θr/θ0, isto é: 

( )[ ] ( )11 1  r1

r
m

CC+
=  (2.32) 

A vantagem desse modelo é manter as mesmas características do anterior para 

ligações que não possuem acréscimo de rigidez na plasticidade nem decréscimo de 

rigidez. No amolecimento, que ocorre quando Rkp é negativo, aplicar a equação de 

Richard & Abbott (1975) propicia melhores resultados ou representação, como se 

comprova, por exemplo, em Almusallam & Richard (1993). 

Sua a rigidez é definida pela equação (∂M/∂θ):  

( )[ ] ( ) 111 1
0r

ki
kt

  θθ1

R
R

CCC ++
=  (2.33) 

Os modelos de Richard & Abbott (1975) e de Kishi & Chen (1987) são boas 

alternativas para projeto pelas seguintes características: simplicidade da expressão M-θ, 

a rigidez é geralmente positiva, o traçado é suave, além disso, esses modelos conseguem 

aproximar muito bem diversas curvas produzidas em laboratório. 

Para os tipos de ligação analisados, na Tab. 2.10, mostra-se os valores estimados 

do expoente C1, que é fixo até o valor X = log10 (θ0) ≤ Xlim e varia linearmente conforme 

a expressão à direita na tabela, quando X supera este limite (Xlim). Por exemplo, no item 

3 (4Ls na alma e aba), adota-se o expoente C1 = 0,827; quando log10 θ0 ≤ -2,538; ou 

bem, θ0 < 2,897 mrad.  Em caso contrário, calcula-se C1 = (5,483 log10 θ0 +14,745). 

Supondo que θ0 = 3,2 mrad (log10 3,2 = -2,495) então C1 = 5,483(-2,495) +14,745 = 

1,0657. Esses valores foram obtidos por meio de correlação estatística sobre os dados 

experimentais, que constaram nas tabelas do SCDB (Chen et al., 1996). Algumas 

diferenças foram encontradas na Tab. 2.10 de outros autores (Alvarenga, 2010). 

As desvantagens desse modelo constituem os eventuais desvios em relação às 

ligações verdadeiras, impedindo uma possível otimização dessas e a não expansão 

desses dados para os outros tipos de ligação. Deve ser indicado também que esses 

valores foram obtidos com o modelo analítico (não numérico, ou seja, sem MEF) e que 

não consideraram no desenvolvimento das equações as deformações na coluna. 
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Complementando os modelos potenciais, Ang & Morris (1984) tentaram refazer o 

trabalho de Frye & Morris (1975), substituindo a curva polinomial destes pesquisadores, 

pela função de Ramberg & Osgood (1943), gerando a expressão: 
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na qual reaparece o momento modificado xm = KmMr, função f de outros parâmetros, 

mostrada na Tab. 2.11; sendo C1 um parâmetro de forma da curva, cujo efeito pode ser 

observado na Fig. 2.22. A forma adimensional da Eq. 2.34b, será: 

( )[ ]11m1mr −+= C  (2.35) 

sendo m = Mr / M0, com M0 correspondendo a um ponto de referencia (M0, θ0), não 

necessariamente Mu. Essa equação foi usada para aproximar ligações flexíveis e adotada 

também por Shi & Atluri (1989). 

 

Tabela 2.10  Expoente C1 da curva de potência de Kishi & Chen (1987). 

Item Tipo  Figura Xlim
 (1) X ≤ Xlim X > Xlim 

1 1 L na alma (2) 2.16(a) -3,073 0,695 0,520 X +2,291 
2 2 Ls na alma (2) 2.16(b) -2,582 0,573 1,322 X +3,952 

3 2 Ls na aba (2) 2.16(c) -2,880 0,302 2,003 X +6,070 

4 4 Ls na alma e aba (2) 2.16(d) -2,538 0,827 5,483 X+14,745 

5 Ch. estendida 2 lados s/ enrij. (3, 4) 2.16(e) -2,810 1,216 1,730 X +6,077 
6 Ch. estendida 2 lados c/ enrij. (3, 4) 2.16(f) -2,000 1,357 1,832 X +5,021 

7 Ch. estendida lado trac. s/ enrij. (3, 4) 2.4(j) s/ enr. -2,360 1,982 1,021 X +4,392 
8 Ch. estendida lado trac. c/ enrij. (3, 4) 2.4(j) -2,480 2,655 0,896 X +4,877 

9 Ch. cortada s/ enrij. (3, 4) 2.4(i) -2,120 1,569 1,230 X +4,177 
10 Ch. cortada c/ enrij. (3, 4) 2.4(i) c/ enr. -2,810 1,033 1,657 X +5,689 

Notas: 1) com X=log 10 (θ0); 2) Kishi & Chen (1987); 3) Goto & Myashita (1998);  
 4) com enrijecedores de coluna (c/ enrij.) e sem enrijecedores (s/ enrij.), respectivamente. 

 
 

Tabela 2.11 Função Km e coeficientes de Ang & Morris (1984). 

No Tipo (7)  Km = f (parâmetros) (1) θ0 [rad] KmM0 C1 
1 1 L na alma (2) ha

-2,09 ta
-1,64 ga

2,06 1,03×10-2 32,75 3,93 

2 2 Ls na alma (3) ha
-2,2 ta

0,08 ga
-0,28 3,98×10-3 0,63 4,94 

3 2 Ls no flange (4) d-1,06 tc
-0,54 ba

0,85 db
-1,28 5,17×10-3 745,94 5,61 

4 Ch. de cabeça (5) hp
-2,51 tp

-1,54 a-0,45 ga
2,12 7,04×10-3 186,77 4,32 

5 4 Ls cercando (6, 8) (b/bTb)
 1,06 tc

-0,85 aL
-0,059  4,58×10-5 753,26 5,98 

Notas: 1) Válidos para dimensões em polegadas [in] e momentos em kip.in (Chan & Chui, 2000). 
 Ensaios por: 2) Lipson (1968); 3) Batho & Rowan (1934) e Lewitt et al. (1966); 4) Sommer (1969), 

conforme Kennedy (1969); 5) Beaulieu & Giruoux (1974); 6) Brun & Pickard (1976) ; 
7) adota os parâmetros de Frye & Morris (1975), ver Fig. 2.17; 8) ver Chen & Lui (2000). 
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Figura  2. 21  Modelo de Kishi & Chen (1987). 
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Figura  2. 22  Modelo de Ang & Morris (1984).  

 

Attiogbe & Morris (1991) testaram aproximações das curvas de laboratório, 

aplicando a técnica dos mínimos quadrados, com melhores resultados para as curvas de 

Richard & Abbott (1975) do que para as de Ramberg & Osgood (1943).  

Os modelos potenciais apresentam boas perspectivas para se tornarem mais 

aplicados hoje, substituindo com vantagens os lineares e polinomiais.  

O modelo de Dong (1994), citado por Morris et al. (1995), por exemplo, pode 

substituir com vantagens o de Frye & Morris (1975). A desvantagem tem sido a 
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definição da rigidez inicial, ou da rigidez plástica, nem sempre coerentes com os 

resultados experimentais e a falta de dados para outros tipos de ligação. 

 

2.4.4 MODELOS EXPONENCIAIS 

Outra tentativa para representar a curva M-θ foi apresentada por Lui & Chen 

(1986, 1988), que fornecem bons resultados desde que na ligação não se manifeste o 

encruamento. A curva proposta por esses pesquisadores é dada por: 
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na qual se tem um somatório de constantes de momento Cj com decaimento exponencial 

relacionado a um passo constante de rotação  Ca, um momento de referencia M0 e uma 

rigidez plástica final Rkp. Portanto, são requeridos (n+3) parâmetros, o que 

contrabalança a boa precisão obtida. A rigidez é dada pela expressão (∂M/∂θ): 
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sendo a rigidez inicial obtida fazendo-se |θr| = 0 na Eq. 2.37, o que resulta: 
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= C
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 (2.38) 

que é também indicada na Tab. 2.12. Kishi & Chen (1987) substituíram, posteriormente, 

o termo Rkp |θr| da Eq. (2.36) por uma expressão que acomoda uma parcela linear, 

conforme: 

 

Tabela 2.12 Parâmetros da curva exponencial de Lui & Chen (1988). 

Para-
metros 

1L de alma 
Richard et al.  

(1980) 

2Ls de aba 
Azizinamini et al. 

(1985) 

Chapa cortada 
Ostraender  

(1970)  

Ch. estendida 
Johnston & Walpole 

(1981) 
Fig. 2.4(o) 2.4(n) 2.4(i) 2.4(k) 
Rkp   0,47104 ×102   0,43169 ×103   0,96415 ×103  0,41193 ×103 
Ca    0,51167 ×10-3    0,31425 ×10-3    0,31783 ×10-3    0,67083 ×10-3 
C1 -0,43300 ×102 -0,34515 ×103 -0,25038 ×103 -0,67824 ×103 
C2  0,12139 ×104  0,52345 ×104  0,50736 ×104   0,27084 ×104 
C3 -0,58583 ×104 -0,26762 ×105 -0,30396 ×105 -0,21389 ×105 
C4  0,12971 ×105  0,61920 ×105  0,75338 ×105  0,78563 ×105 
C5 -0,13374 ×105 -0,65114 ×105 -0,82873 ×105 -0,99740 ×105 
C6  0,52224 ×104  0,25506 ×105  0,33927 ×105  0,43042 ×105 
Rki 0,48000 ×105  0,95219 ×105 0,11000 ×106 0,30800 ×106 

Nota: 1) Nesses casos: M0 = 0, n = 6 constantes Cj, ou seja, j = 6. 
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( ) ( )[ ]∑
=

−−=
n

1j
jrjrLjrkp θθθθCθR H  (2.39) 

resultando na rigidez plástica dada por: 

( )[ ]∑
=

−=
n

1j
jrLjkp θθCR H  (2.40) 

na qual H é a função passo de Heavyside, já apresentada. 

Apesar da aparente complexidade, essas equações podem ser incorporadas a 

programas computacionais facilmente (Chen & Toma, 1994). 

Um dos primeiros modelos analíticos e exponencial foi proposto por Yee & 

Melchers (1986), que procuraram estabelecer uma curva que possuísse parâmetros com 

certa coerência, identificando a relação entre os termos envolvidos. Esses pesquisadores 

apresentaram a equação: 
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sendo C1 uma constante de ajuste, que controla a inclinação da curva. Já a rigidez da 

ligação é calculada, então, pela expressão: 
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Essa curva possui a rigidez inicial Rki na origem e à medida que θr cresce, 

aproxima-se da reta M = M0 +Rkp θr, na qual M0 representa o momento plástico da 

ligação, e Rkp a rigidez no endurecimento à tensão. Não é simples, porém, ajustar C1, 

que é dimensional, correspondendo a uma variação de rigidez angular (C1 = Rka / θa). 

Definindo m = Mr / M0, r =  θr / θ0 e κp= Rkp / Rki, pode-se escrever a forma 

adimensional da Eq.2.41 pela expressão: 

( )[ ] rr 1r 1m p1p κ++κ−−−= *
Cexp  (2.43) 

na qual o novo parâmetro de forma C1
* é dado por: 

aki
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C
C
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Pode-se ver o comportamento dessa curva na Fig. 2.23, em que se fixou κp = 0,1 e 

variaram-se os valores de C1
*. Note que é possível se empregar valores de κp nulos ou 

negativos (simulando o amolecimento). A semirreta (m = 1 +0,1 r) é assíntota superior, 
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já a semirreta (m = r ≤ 1) é tangente para C1
* = 1, fica à esquerda da curva se C1

* < 1 e à 

direita quando C1
* > 1. 

Os valores de C1 recomendados para a ligação de chapa de topo estendida, 

representada na Fig. 2.4(j), são mostrados na Tab. 2.13. 

Com o emprego da curva de Wu & Chen (1990), cuja base é logarítmica, houve 

melhores resultados na modelagem (Lee & Moon, 2002) de ligações com 2Ls de alma 

da Fig. 2.4(o) do que com as fórmulas analíticas e curvas de Kishi & Chen (1987). Essa 

curva M-θ é estabelecida pela expressão: 
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na qual C1 e M0 são parâmetros de forma, C2 é o expoente, e os demais parâmetros já 

foram definidos (inclusive a rotação de referencia θ0). Na figura 2.24, ilustra-se o efeito 

da variação da constante de forma C1 [similarmente ao que fez Faella et al., (2000) para 

outras ligações] quando se faz o expoente C2 da Eq. (2.45) valer 1. 

A rigidez desse modelo de ligação é calculada por: 
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porém, não se obtém o valor de Rki quando θ = 0 (Lee & Moon, 2002). 

Chisalla (1999) propõe um novo modelo da análise paramétrica para ligações com 

duas cantoneiras (2L de alma ou 2L de aba), com alguns parâmetros empíricos, 

aplicando a expressão exponencial:  
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Como se pode observar, a apresentação de tantos modelos de curvas M-θ com a 

abordagem matemática não indica um final, mas a ampla gama de representações 

possíveis e ainda em desenvolvimento, o que permite que sejam propostos outros 

modelos ou melhorados os existentes. 
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Figura  2. 23  Modelo de Yee & Melchers (1986). 

 
Tabela 2.13 Parâmetro C1 da curva exponencial de Yee & Melchers (1986). 

Detalhe da ligação C1 [kipin]  C1 [kNcm] (1) 
Coluna enrijecida e ligação com parafusos apertados 0,0   0,00 
Coluna enrijecida e ligação com parafusos pré-tensionados 3,5 39,56 
Coluna não enrijecida 1,5 16,95 
Notas: 1)1 kip in = 11,30 kNcm;2) detalhes complementares em Faella et al. (2000). 
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Figura  2. 24  Modelo de Wu & Chen (1990). 
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2.4.5 CONFRONTANDO ALGUNS MODELOS 

Apenas para ilustrar algumas diferenças entre os diversos modelos estudados e os 

ensaios experimentais, na Fig. 2.25 reproduz-se um dos vários exemplos do SCDB 

(Kishi & Chen, 1990) no qual os três modelos matemáticos que têm maior aplicação 

podem ser comparados: o polinomial, o potencial e o exponencial. 

Desses modelos, o exponencial é que apresenta o resultado melhor para essa 

ligação rebitada de Rathbun (1936) [ver 2Ls de alma da Fig. 2.4(o)] e o polinomial é o 

mais distinto.  

Embora apenas um exemplo não seja conclusivo, outros casos constantes no 

SCDB (Kishi & Chen, 1990) comprovaram que o comportamento geral encontrado foi 

aproximadamente o mesmo constatado nessa figura (Alvarenga, 2010). 

Comparando outros modelos não matemáticos com os experimentais, pode-se 

citar o trabalho de Shi et al. (1996), que tentaram determinar relações analíticas entre M 

e θ para obter pontos da curva sem se preocuparem em obter uma expressão matemática 

formal para a curva da ligação. Mas existem discrepâncias não apenas nas trajetórias 

obtidos pelas curvas M-θ analíticas, como no valor da rigidez inicial e sua leve variação 

ao longo da trajetória supostamente elástica. 

Essas diferenças afetam a velocidade de convergência para o ponto de equilíbrio, 

dependendo da curva ou do modelo adotado (Dumas et al., 2004). 
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Figura  2. 25  Confrontação de modelos. 
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Note-se que esse ponto de equilíbrio é estimado pela interseção da curva da 

ligação com a linha de viga, como será mostrado na seção seguinte. Assim, se a curva 

da ligação não é bem calibrada, tanto o ponto estimado fica mais distante da realidade 

experimental, quanto da solução final, comprometendo sua validade. 

Rauscher & Gerstle (1992) examinaram, em ensaios de laboratório, 48 espécimes, 

considerados teoricamente idênticos, que produziram curvas M-θ com elevados desvios 

em relação ao padrão esperado. Isso se deveu a uma série de detalhes, que estão ligados 

de forma intrínseca à construção propriamente, como:  

a. anomalia de material (confecção e fabricação); 

b. mão de obra (fabricação e montagem); 

c. folgas e aperto (montagem); e  

d. procedimentos e qualidades (geral).  

 

Além disso, essas ligações estão nas abas das colunas (ou seja, são excêntricas), o 

que tem tanto a interferência do efeito do painel da coluna – já indicado – como, 

também do centro instantâneo de rotação de algumas, que não está no eixo da viga [por 

exemplo, no centro da aba inferior para a chapa de topo estendida da Fig. 2.4(j)]. São 

diferenças inevitáveis que aparecem em decorrência dos modelos simplificados de 

ligação (Tschemmernegg & Queiroz, 1996). 

É importante salientar que, aparentemente, a maior acurância na curva M-θ não 

altera significativamente o ponto limite de carga (Poggi & Zandonini, 1987). 

Tendo visto os diversos modelos de ligação, na próxima seção, inicia-se o estudo 

propriamente dito da influência da ligação.  
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2.5 LINHA DE VIGA 

Essa ideia foi inicialmente desenvolvida por Batho & Rowan (1934) no sentido de 

compatibilizar o comportamento da viga e da ligação, sendo a seguir reproduzida. 

De acordo com a Fig. 2.26(a), para uma carga uniformemente distribuída na viga 

(q), o momento fletor Mv nos apoios da viga de vão Lv, biengastada, (ligações rígidas 

perfeitas, que não apresentam nenhuma rotação) é dado por: 

12

qL
M

2
v

v =  (2.48) 

Como esse momento é o máximo que ocorre na viga, conclui-se que, no seu 

dimensionamento, este será o momento plástico (Mp) requerido, ou seja, Mv = Mp. 

Por outro lado, supondo que a ligação da viga não tenha condições de absorver 

nenhum momento, situação tratada na Fig.2.26(b), comportando-se, assim, como 

birrotulada, a rotação na extremidade será: 

v

3
v

v

EI24

qL
=θ  (2.49) 

Entretanto, com a presença da ligação, elucidada na Fig. 2.26(c), os valores do 

momento no apoio (Mr) e da rotação da extremidade (θr) passam pelo equilíbrio da 

ligação, o que modifica o momento máximo no meio-vão (Mc), alterando os esforços na 

viga, sua flecha e o seu dimensionamento (agora, Mr ≤ Mc ≈ Mp). 

Supondo-se, então, que o comportamento da viga possa ser descrito, do ponto de 

vista de solicitação, da forma linear, pela relação entre a rotação da extremidade com o 

momento que ali atua, têm-se os dois pontos (M-θ) que representam e definem a linha 

de viga (“beam line”), a saber: (0, Mv) e (θv, 0). 

Esses pontos estão indicados na linha inclinada [em traço e ponto (-·-)] do 

diagrama M-θ, da Fig. 2.27, que representa, assim, o estado de comportamento da viga 

com relação às suas condições de extremidade. A inclinação dessa semirreta é definida 

por -Mv/θv = -2 EIz/Lv (metade da rigidez elástica da viga). 

Finalmente, pode-se determinar a situação de trabalho da ligação sob a carga q 

conhecendo-se a curva M-θ da ligação (na Fig. 2.27), e determinando a interseção desta 

com a linha de viga antes definida. A interseção definida pelo ponto de trabalho (A) é 

uma condição de compatibilidade entre a ligação e a viga, que corresponderá ao 

momento de extremidade MA e à rotação θA. 
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Figura  2. 26  Efeito da ligação na viga com carga uniformemente distribuída q  
Condição: (a) biengastada; (b) birrotulada; (c) com biligação semirrígida, 

(d) convenção matemática (+) positivo, sobre o eixo (����), e (-) negativo, abaixo (����). 
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Figura  2. 27  Linha de viga (Batho & Rowan, 1934). 

 

Kotlyar (1996) apresenta soluções similares para outros carregamentos da viga. 

Conhecido o momento no apoio MA, pode-se encontrar o momento no meio-vão 

MC, que será dado por: 

A

2
v

C M
8

L q
M −=  (2.50) 

Com os valores conhecidos de MA e MC, a viga e a ligação podem ser otimizados, 

de forma que Mp (viga) ≥ máximo (MA, MC). 

 A rotação da extremidade pode ser calculada pela derivada da equação da elástica 

(Nethercot, 1985), em geral, não superando 30 mrad do ponto de vista prático: 

[ ]mrad30estimada      
EI24

qL

EI2

LM

v

3
v

v

vA
A ≤−=θ  (2.51) 
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Mas, considerando que θr = Ms/Rks (rigidez secante), definindo mA = MA/(qLv
2) e 

mC = MC/(qLv
2) e fazendo θr = θA, pode-se escrever então: 

( )
( )

( )
 

g2124

g61
m  

8

1
m       

g2112

1
m ACA

+

+
=−=

+
=  (2.52a,b) 

em que ambos os valores são dependentes do fator de fixação (g) definido na Eq. 2.3. 

Gerschwindner (1991) verificou a variação de mA e mC com (g) apenas para 

valores inferiores a 1. O fator de fixação pode variar de 0 a infinito (∞), porém esses 

valores extremos podem gerar anomalias numéricas em aplicações. 

Expressando (g) em relação à semiflexibilidade nodal η [Eq. 2.7(a)] como: 

( )η−

η
=

212
  g  (2.53) 

e substituindo nas Eqs. 2.52(a-b) obtêm-se então: 

( )
( )

( )
( )η−

η+
=

η−

η−
=

124

1
  m       

112

21
m CA  (2.54a,b) 

Com o que se desenha a Fig. 2.28, relacionando diretamente mA e mC com η. 

Avaliando agora do ponto de vista de dimensionamento, a viga biengastada é a 

que dimensiona a seção mais leve, porém o momento máximo ocorre na extremidade, o 

que penaliza a ligação (quanto mais rígida a ligação, maior o seu custo). Note-se que 

existem vários valores de momento de apoio (mA) que reduzem o momento mC, 

lembrando que o maior desses dimensiona a viga, e o maior mA define a ligação. Existe 

um ponto em que os coeficientes mA e mC  trocam de valor entre si, em relação à 

condição biengastada: com η = 1/3 (g = 1/2, Rk = 2 EIv/Lv), quando mA = 1/24 = 4,16% 

e mC = 1/12 = 8,33%. Isso significa usar a mesma viga dimensionada para a ligação 

biengastada, porém com o maior momento no meio-vão, e na ligação atuará metade do 

esforço, ou seja, terá um custo menor. Portanto, a região onde η ≤ 1/3 é a parte mais 

econômica para o dimensionamento. Pode-se destacar outro ponto interessante η = 1/5 = 

20% (g = 2/9, Rk = 4,5 EIv/Lv) no qual os coeficientes se igualam: mA = mC = 6,25%.  

Para completar o dimensionamento, deve-se verificar, também, o estado de 

serviço, ou seja, avaliar a deformação através da flecha vertical (δyv), expressa como: 

360

L

EI384

qL5

EI8

LM
y v

v

4
v

v

2
vA

v ≤−=δ  (2.55) 

a partir da qual se determinará um perfil mais econômico do que o obtido para as 

condições extremas rótula e engaste iniciais. 
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Figura  2. 28  Coeficientes de momento (Gerschwindner, 1991). 

 

 Segundo Simões (1996), o custo de uma viga IPE (laminado europeu) cresce 20% 

com uma ligação simples e atinge 60% quando essa se torna rígida (com parafusos e 

soldas). Assim, esse pesquisador apresentou uma estimativa de custo, baseando-se no 

peso nominal da viga (Pv) como:  

Cliga Pv =  Cliga wvLv  =  (1,2 +0,4γ3) wvLv (2.56) 

na qual wv é o peso linear da sua seção, e o fator de custo da ligação (Cliga) é uma 

proporção direta com o índice de fixação γ3, Cliga = (1,2 +0,4γ3). 

Constrói-se a Tab. 2.14 empregando-se as Eqs. 2.53, 2.54 e 2.56 para estudar 

melhor o dimensionamento da viga da Fig. 2.26(c). Tomando como referência o peso 

obtido pelo dimensionamento do biengaste (fator de custo Cviga = 100%), a ligação é a 

mais cara (fator de custo Cliga = 160%), chegando ao fator de custo total Ctot = Cviga × 

Cliga = 160%. Já a birrotulada, se a ligação é a mais barata (120%), o peso resultante do 

dimensionamento (proporcional ao momento plástico), seria (125%); e o total reduz-se 

com 6,25% de economia. Na opção semirrígida com a mesma seção da engastada (Cliga 

=100%), mas uma ligação barata (Cviga =135%) obtém-se uma boa economia (18,5%) 

(Gerschwindner, 1991).  

Entretanto, existe a seguinte alternativa, ainda não explorada, no caso semirrígido. 

Adotam-se coeficientes de momentos iguais (mA = mC = 6,25) e embora a ligação tenha 

um custo maior que a média (Cliga = 144%), o dimensionamento reduz (Cviga = 90%), 

com o que se encontra o fator de custo total (Ctot ≈ 130%), uma economia de 18,75%. 



Tese • AR Alvarenga • Cap. 2 Modelos das ligações 

 

88 

Essa questão econômica, sem mencionar outras vantagens, justifica a maior 

divulgação do emprego da ligação semirrígida. 

Outra questão é quando essa viga com ligação participa de um portal, supondo-se 

num primeiro instante, que só atuem cargas verticais na viga. Após ter sido atingido o 

ponto A, por ambas as ligações da viga de portal, é aplicada uma carga horizontal H 

(por exemplo, de vento) como representado na Fig. 2.29 (Sourochnikoff, 1949). 

A ligação à direita ficará mais carregada, com um acréscimo dθ, de modo que a 

rotação será θD = θA + dθ, atinge o ponto D e a rigidez final será menor que a inicial, 

indicando maiores deformações dessa ligação, com o que MD = MA +Rkt dθ (pequeno 

acréscimo) ≈ MA (Christopher & Bjorhovde, 1999). 

Já para ligação do lado esquerdo, que entra em processo de descarregamento 

elástico (Popov & Pinkney, 1969), a sua rigidez é Rki (próxima do máximo) e o 

momento no ponto E torna-se bem menor: ME = MA – Rki dθ. 

 

Tabela 2.14 Avaliação de custo da viga com ligação. 

Momentos Índices de flexibilidade Fator de custos Condição 
mA [%] mC [%] η g βk 

(1) Cliga Cviga Ctot 
(2) 

Biengaste 8,33  4,16 0,00 0 ∞ 1,60 1,00 1,600 

Birrótula 0,00 12,50 0,50 ∞ 0 1,20 1,25 1,500 

6,25  6,25 0,20 0,16 6 1,44 0,90 1,296 Bisemirrí-
gida 4,16  8,33 0,33 0,50 2 1,35 1,00 1,350 

Notas: 1) Coef. de rigidez relativa da ligação: βk = (RkLv)/(EIv) = 1/g, ou seja, Rk = βk EIv / Lv, 
2) Fator de custo total Ctot = custo da viga Cviga × custo da ligação Cliga.. 
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Figura  2. 29  Ligação ao vento (Disque, 1964). 
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Ou seja, enquanto a ligação em D tende a se comportar quase como uma rótula, a 

da esquerda se comportar com a  rigidez máxima elástica. Esse duplo comportamento, 

que favorece alguns casos de dimensionamento (por exemplo, com ligações ao corte 

puro), como propôs Disque (1964) para ligações simples, desde que as vigas e colunas 

fossem capazes de resistir adequadamente – no regime elástico – aos esforços de vento. 

Esse fenômeno foi chamado de ligação ao vento (“wind connection”). 

Para terminar esta parte, mostra-se outro emprego da linha de viga, que é auxiliar 

no pré-dimensionamento de ligações de vigas em pórticos deslocáveis. Seguindo o 

estudo de Nethercot (1985, 2000), que se baseia nas ideias de Sourochnikoff (1949), 

verificou-se que uma boa tentativa (pré-dimensionamento) é usar a estimativa inicial do 

ponto A (θA, MA) da linha de viga, para se chegar ao equilíbrio mais rapidamente. Mas, 

no caso das estruturas deslocáveis, mesmo conhecendo esse ponto (A), o processo 

computacional pode ser demorado. 

Assim, foi sugerido que se corrigissem os pontos da curva da ligação isolada, M-θ 

da Fig. 2.30, somando os valores de momento-rotação da análise de segunda ordem 

linear elástica das colunas (marcada como “Col.”) considerando as ligações das vigas 

como engastadas (rígidas perfeitas), obtendo-se a curva de momento da ligação 

considerando a deslocabilidade da coluna (M-θ + Col.). 

Portanto, o ponto A deixa de ser solução, sendo agora a solução o ponto S, que 

corresponde ao ponto B da curva M-θ original, que é dθ menor que θS, sendo essa 

variação correspondente a movimentação de coluna, ponto C; todos relacionados ao 

mesmo momento do ponto solução S (θS, MS). Ou seja, na curva M-θ original o ponto B 

de provável equilíbrio seria encontrado por θB = θS – dθ. 

Outra forma de utilizar a linha de viga é trabalhar com a rigidez secante da 

ligação, como se ilustra na Fig. 2.31. O valor de rigidez determinado pelo ponto A 

(interseção da linha de viga e da curva ligação) é usado na análise elástica de segunda 

ordem, obtendo-se como solução o ponto B (MB, θB), que determina na curva M-θ o 

ponto C e o momento MC, e com ele a nova rigidez secante Rk2. Segundo Al-Salloum & 

Almusallam (1995), esse processo permite a convergência com (4-6) tentativas, o que 

poderia ser facilmente incorporado num programa computacional. 

Outros estudos (rememorando os trabalhos de Batho) também aplicam a linha de 

viga (Carskaddan et al., 1984; Brown, 1986), inclusive adotando equações de curvas 

aproximadas parabólicas para estimar o comportamento dos pórticos (Estrin, 1992). 
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Tendo visto o comportamento simplificado da ligação por meio da estimativa de 

linha de viga, um resumo das ligações adotadas nesta tese é feito na seção seguinte. 

Coluna do portal

C

Ligação e coluna

SSM  

-0S
-0d

d0-

Col.

-0-M  

-0-   +Col.M  Curva da ligação

v

Linha de viga

A

A

M  A

M  p

0-0-0-

B

M  r

r  

Figura  2. 30  Efeito da coluna (Nethercot, 1985 e 2000). 
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Figura  2. 31  Aproximando o efeito da coluna (Nethercot, 1985 e 2000). 
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2.6 TIPOS DE LIGAÇÃO ANALISADOS 

Nesta seção faz-se apenas uma descrição de alguns dentre os diversos de tipos de 

ligação disponíveis, indicando suas deformações principais e as pesquisas referentes 

mais importantes. Alguns desses tipos, adotados na tese de forma indireta (curvas M-θ), 

são ligações mais comuns, a saber (ver Fig. 2.4): 

a. soldadas – Fig. 2.4(a); 

b. com 2 perfis Ts – Figs. 2.4(e-f); 

c. com chapa estendida de topo – Figs. 2.4(j-k);  

d. com chapa cortada ou de cabeça – Figs. 2.4(g, i); 

e. com cantoneiras – Figs. 2.4(m, n, o); e  

f. rótulas de fato. 

 

As pesquisas mais recentes sobre essas ligações serão indicadas num trabalho 

complementar, na forma de um relatório interno posterior (Alvarenga, 2010). Agora são 

ressaltados rapidamente alguns pontos importantes que as caracterizam. Aspectos 

analíticos de forma a obter curvas M-θ pelo método das “componentes” foram 

detalhados por Faella et al. (2000). 

 

2.6.1  Ligações soldadas 

É a ligação do tipo rígida, ou a mais rígida. Algumas atingem a rigidez inicial da 

ordem de 6,78 107 kNm/rad (Ackroyd & Gerstle, 1982). Na realidade, as soldas não 

apresentam deformações significativas e sua ruptura é do tipo frágil. Além disso, há 

alguma melhoria na resistência quando o esforço atua perpendicularmente ao filete 

(deformações em média entre 5-9% da deformação da peça ligada), e o contrário, se 

longitudinal ao cordão (deformações crescem para 12-16%), como reconheceu o AISC 

(Inwankin, 1997), com destaque aos estudos de Witteveen et al. (1982). 

 Assim, a rotação dessa ligação ocorre em função de deformações nas próprias 

partes componentes da união (viga e coluna), como ilustrado na Fig. 2.32. Uma parte 

importante reside nos rasgos, chanfros, peças de apoio e preparação para a soldagem. 

É comum a existência de enrijecedores, tendo em vista que os esforços locais 

tendem a crescer, e com isso, procura-se reforçar a coluna, evitando o efeito de 

esmagamento do painel e distorções por cisalhamento (Yardimci et al., 1996).  
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El-Ghazaly (1995) estudou o comportamento momento-rotação de ligações 

simétricas em colunas, incluindo a flambagem de painel, e avaliou a influência da altura 

da viga. Englehardt & Husain (1993) fizeram ensaios experimentais dinâmicos em 

ligações com talas soldadas e alma aparafusada. El-Tawil (2000) verificou o efeito 

dessas uniões no painel de colunas. Barson & Pellegrino (2002) estudaram as causas da 

ruptura dessas soldas no terremoto de Northridge (1994). Goel et al. (2000) 

apresentaram um modelo com chapas verticais e horizontais que soldam indiretamente 

as abas da viga na coluna, num apoio tipo cruciforme, numa analogia às construções 

com treliças. Dubina & Stratan (2002) realizaram ensaios avaliando a performance, a 

influência da forma de soldagem, a resistência do aço depositado e custos.  

 

2.6.2  Ligações com perfis Ts 

Essa ligação com (tocos, “stubs”) Ts [vista na Figs. 2.4(e-f)] é a aparafusada mais 

rígida, com Rk > 113 MN/rad (Ackroyd, 1979), porém, atualmente, seu emprego é 

reduzido. A razão está na quantidade de operações de furação envolvidas, nas abas e 

alma dos 2 Ts e na viga em ambas as abas, o que resulta também mais operações de 

colocação e aperto de parafusos na montagem, com a consequente elevação do custo, 

por isso foi substituída, no uso em geral, pela de chapa de topo estendida. Todavia, no 

início da construção de aço, aqui e também fora do Brasil, aproximavam-se os 

comportamentos da última ligação, por meio dos ensaios de perfis Ts dessa ligação. 

Assim, as pesquisas de ambos os tipos estiveram unidas por vários trabalhos. 

Sendo uma ligação de característica rígida, o projetista preocupar-se-á com vários 

detalhes. Ocorrem elevados efeitos locais na coluna (flexão e flambagem local das abas, 

cisalhamento e flambagem da alma) e a possível necessidade de enrijecedores. O painel 

da coluna tende a sofrer tensões e deformações elevadas, efeitos de alavanca, 

deformação e ruptura de parafusos, incluindo a ruptura na seção líquida da alma no 

corpo do T que se liga à aba tracionada da viga, como ilustrado na Fig. 2.33. Além 

disso, os mesmos estados críticos, vistos na ligação anterior, participam aqui também. 

Beedle & Christopher (1964) avaliaram experimentalmente a rigidez de ligações 

de vigas soldadas de topo, com 2 perfis Ts ou chapa estendida aparafusada ou rebitada, 

demonstrando a capacidade de atingirem o momento plástico da viga.  

Douty & McGuire (1965) foram os primeiros a fazer ensaios e propor fórmulas de 

dimensionamento aproximadas, baseadas em seus ensaios.  
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Figura  2. 32  Deformação da ligação soldada. 
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3

 

Figura  2. 33  Deformação da ligação com perfis Ts. 

 

Fórmulas elastoplásticas foram posteriormente apresentadas também por Struick 

& de Back (1969) usando os ensaios experimentais de Schutz (1959). De Back & 

Zotemeijer (1972) determinam três mecanismos possíveis de falha na aba aparafusada 

na coluna, avaliando o efeito da variação da espessura dos Ts, agora colocados com as 

almas dispostas em perpendicular, como se mostra nas Figs. 2.34(a-b). Deve-se 

esclarecer que uma boa parte da pesquisa experimental tratada nesta subseção, prende-

se ao estudo do comportamento desses 2 Ts à tração. Então, ao aplicar a força de tração 

(T), a deflexão da aba do perfil T vai encontrar apoio, ou seja, contato na outra parte 

(coluna), o que gera um esforço adicional (Qp), de flexão local, conhecido como efeito 

de alavanca representado na Fig. 2.34(c). Em vários trabalhos estudou-se a mecânica 

desse comportamento, propondo modelos e formas de avaliação. 

Agerskov (1976) propôs o estado limite para a ligação com 2 perfis Ts baseado na 

situação que ocorrer primeiro: a separação entre as partes ou aparecimento de tensões de 

escoamento na aba (ou na chapa estendida).  
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Nair et al. (1974) estudaram o efeito de alavanca variando as dimensões 

geométricas dos Ts, para parafusos ASTM A 325 ou ASTM A 490, e propuseram 

equações semiempíricas para avaliar este efeito. Zotemeijer (1974) fez ensaios com Ts 

reforçados, de forma a provocar deformações plásticas nos Ts que representavam as 

colunas, determinando mecanismos de colapso, com base nos quais desenvolveu as 

equações para este estado limite. 

Packer (1975) variou a pré-tensão dos parafusos, disposição e enrijecimento dos 

Ts das colunas propondo equações alternativas para os casos de coluna não enrijecida. 

Packer & Morris (1977) também fizeram sugestões complementares ao trabalho de De 

Back & Zotemeijer (1972). 

Graham (1993) fez a avaliação de 2 perfis Ts simétricos, variando a espessura e a 

pré-tensão. Esse pesquisador mostrou a influência do encruamento no limite de 

deformação das chapas ligadas, sugerindo uma equação para determinar o efeito de 

alavanca na ruptura dos parafusos.  

Esses estudos com 2 perfis T serviram para abalizar tanto essas ligações quanto as 

de chapa estendida, tratadas na subseção seguinte. Posteriormente, verificou-se a 

necessidade de estudos com a configuração da chapa de topo completa, separando-se 

então as conclusões e os trabalhos feitos até então com os 2 perfis Ts (Graham, 1993). 

Acompanhando a representação da Fig. 2.34(d), verifica-se que a aba mais 

espessa quase não se deforma, e assim, o efeito de alavanca não se manifesta, sendo 

comum nesses casos a ruptura dos parafusos, chamada “frágil”. A aba é dita semirrígida 

[ver Fig. 2.34(e)] quando se deforma e aparece a força (Qp) com valores médios [15-

20% da carga do parafuso, (T/2)]. Já a aba flexível da Fig. 2.34(f) é a que mais se 

deforma, provoca um efeito de alavanca maior, podendo atingir 30% da carga do 

parafuso ou mais (Swanson, 2002). Todos esses mecanismos dependem, também, das 

condições geométricas: distâncias de borda, extensão do perfil T, furo e parafuso, etc. O 

modelo de Struick & De Back (1969) foi o que apresentou fidelidade maior aos ensaios 

experimentais (Swanson, 2002). 

É frequente o emprego desse modelo de comportamento dos Ts para outras 

análises de ligações similares (Faella et al., 2000), mesmo com alguma distorção. 

Alguns benefícios são desprezados (Shi et al., 1996) e adota-se uma interpretação 

rigorosa do comportamento das partes flexionadas que compõem a ligação. Alguns 

pesquisadores, entretanto, questionam a existência do efeito de alavanca em parafusos 
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pré-tensionados e o efeito de punção decorrente, que está atuando antes da solicitação 

estrutural (efeito das cargas) (discussão de Khrisnamurthy com Sherbourne, 1996). 

Swanson & Leon (2000) fizeram ensaios experimentais de Ts, Gebbeken et al. 

(1999) realizaram estudos numéricos, Piluso et al. (2001) definiram a carga última de 

perfis Ts com o método das “componentes” e Coelho et al. (2004b) fizeram estudos 

com ligações empregando Ts soldados. 

Por fim, Gantes & Lemonis (2003) estudaram por meio de modelos numéricos, o 

efeito das dimensões, aperto e comprimento dos parafusos nessas ligações. 

 

2.6.3 LIGAÇÕES COM CHAPA ESTENDIDA 

Trata-se do tipo de ligação mais atribuído à construção rígida hoje em dia. 

Devem-se destacar, entretanto, algumas variações. Emprega-se a chapa estendida para o 

lado superior para momentos de continuidade (negativos). Quando ocorrem inversões 

de momento, entretanto, a chapa é estendida para os dois lados. Nas figuras 2.4(j-k), 

respectivamente, ilustram-se essas diferenças. 

O início de sua pesquisa se mistura à do tipo anterior, requerendo cuidados 

similares do projetista, porém algumas diferenças devem ser ressaltadas. Enquanto no 

caso dos Ts as abas com furações e a alma dos Ts representam partes mais sensíveis da 

ligação, na chapa estendida, como se representa na Fig. 2.35, os efeitos concentradores 

das soldas e as tensões residuais decorrentes da soldagem permitem um comportamento 

mais frágil em presença de momentos elevados. 

Johnson et al. (1959) verificaram a alta capacidade de rotação e produção de 

rótulas plásticas para ligações com parafusos de alta resistência. Sherbourne (1961) 

avaliou que a capacidade de rotação é determinada pela deformação plástica da chapa. 

A definição da espessura dessa chapa para projeto foi proposta em trabalhos de Mann 

(1968), bem como de Surtes & Mann (1970).  

Bailey (1970) também determinou equações que consideram o efeito do 

escorregamento. Já Zoutemeijer (1974) realizou ensaios em pórticos de tamanho real 

com essas ligações. Packer (1975) verificou o efeito da espessura do flange da coluna, 

sendo posteriormente analisada a influência dos enrijecedores. Um sumário para projeto 

em estados limite foi apresentado por Packer & Morris (1977). 
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(a)

(d) 

T T

(b)

(e) (f) 

(c) T/2+Q

Q

T/2

p
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Figura  2. 34  Ensaio de Ts à tração. 
(a) perfil T isolado; (b) montagem para ensaio; (c) efeito de alavanca Qp;  

T com aba: (d) rígida; (d) semirrígida; (e) flexível. 

1

2

3

 

Deformação por compressão, flambagem 
local da aba da viga, dobramento da cha-
pa e flexão da aba da coluna

Escoamento a flexotração da chapa es-
tendida com efeito de alavanca e punção

dos parafusos e flexão aba da coluna

2

1

Deformação por cisalhamento e efeito

de painel, que tende a ser mais grave
nas ligações de um só lado da coluna.

3

Deformação por compressão, flambagem 
local da aba da viga, dobramento da cha-
pa e flexão da aba da coluna

Escoamento a flexotração da chapa es-
tendida com efeito de alavanca e punção

dos parafusos e flexão aba da coluna

2

1

Deformação por cisalhamento e efeito

de painel, que tende a ser mais grave
nas ligações de um só lado da coluna.

3

Escoamento a flexotração da chapa es-
tendida com efeito de alavanca e punção

dos parafusos e flexão aba da coluna

2

1

Deformação por cisalhamento e efeito

de painel, que tende a ser mais grave
nas ligações de um só lado da coluna.

3

 

Figura  2. 35  Deformação da ligação com chapa estendida. 

 

 

Bahia et al. (1981) avaliaram colunas não enrijecidas e Graham (1993), o cortante 

combinado nos parafusos, dimensionando a ligação pela flexão da aba da coluna. Yee e 

Melchers (1986) desenvolveram um modelo próprio de curva M-θ, incluindo o efeito 

dos parafusos na determinação dos seguintes parâmetros dessa ligação: momento 

último, rigidez inicial e plástica. Jenkins et al. (1986) mostraram que o parafuso interno 

pode absorver mais carga que o externo, dependendo da flexibilidade da chapa. 

Goverdham (1988) fez um estudo sobre curvas M-θ de ligações com chapa de 

topo estendida ou cortada, comparando resultados experimentais e analíticos. 
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Bahaari & Sherbourne (1994, 1996 e 2000) fizeram diversas simulações 

numéricas de chapas estendidas e usaram fórmulas paramétricas com o modelo de 

Richard & Abbott (1975). Coelho et al. (2004a) realizaram o ensaio experimental da 

ligação com chapa de topo soldada sem penetração total. 

Foley & Vinnakota (1995) empregaram o modelo de Kishi & Chen (1987) e 

determinaram parâmetros para a obtenção das curvas M-θ dessa ligação. Bursi & 

Jaspart (1997), Troup et al. (1998) e Nemati et al. (2000) empregaram o método das 

“componentes” ou o MEF, para posteriormente, por regressão, apresentarem seus 

resultados. 

Mofid et al. (2001) desenvolveram estudo analítico para avaliar o comportamento  

da ligação considerando efeitos de placa e de membrana em solução fechada, no regime 

elástico. 

Lima et al. (2004) estudaram o efeito do axial na curva M-θ para essa ligação 

usando experimentos e o método das “componentes”; já Maggi et al. (2005) 

empregaram o MEF, abalizado por ensaios experimentais para chapa estendida de um 

só lado (assimétrica). 

Destacam-se vários ensaios experimentais para este tipo de ligação: Jenkins et al. 

(1986), Tsai & Popov (1990), Aggarwal (1994), Adey et al. (1998), Yorgun & 

Bayramoglu (2001) (dentre outros citados por Mofid et al., 2005), que têm sido 

empregados para o desenvolvimento do método das “componentes”. 

Além disso, o EUROCODE (2002) traz, junto com o BCSA (1995), uma série 

ligações padronizadas para projeto contendo tabelas com detalhes e esforços de 

dimensionamento compatíveis, além de um roteiro para obter-se a curva M-θ 

empregando o método das “componentes” (Faella et al., 2000). 

 

2.6.4 LIGAÇÕES COM CHAPA CORTADA E CHAPA DE CABEÇA 

A ligação com chapa cortada tem um comportamento intermediário, ou seja, não é 

tão rígida como a de chapa estendida, nem tão flexível como a de chapa de cabeça. De 

toda forma, a espessura da chapa e o efeito de alavanca devem ser observados na sua 

análise, dentre outros aspectos. 

As deformações desta ligação, mostradas na Fig. 2.36(a), imitam as já indicadas 

na parte interna da viga para a chapa estendida, porém com um comportamento mais 

leve para a coluna, como ocorre também para outras uniões de comportamento similar. 
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Já a ligação com chapa de cabeça, indicada na Fig. 2.36(b), é flexível e seu 

comportamento é semelhante ao de 2 cantoneiras de alma, (Owens & Moore, 1992). 

O trabalho experimental de Kennedy (1969) possibilitou a compreensão do 

comportamento da chapa de cabeça com alguns estudos analíticos e forneceu dados para 

o modelo polinomial de Sommer (1969; Kennedy, 1969). 

Recentemente, Broderick & Thomson (2005) fizeram estudos experimentais da 

ligação de chapa cortada avaliando sua rigidez e sua dutilidade quando submetida a 

carregamento cíclico. Schuab (1998), dentre outros, citado por Albommali et al. (2003), 

também apresentaram trabalhos sobre o tema, incluindo ligações contendo uma ou duas 

linhas de parafusos tracionados.  

 Albomaali et al. (2005) apresentaram duas curvas M-θ, uma com a equação de 

Ramberg & Osgood (1943) e outra com a de Kishi & Chen (1987), desenvolvidas com 

base nos resultados obtidos por uma modelagem numérica da ligação, calibrada com 

resultados experimentais. 

 

2.6.5 LIGAÇÕES COM CANTONEIRAS  

A ligação com cantoneiras de alma foi o primeiro tipo de ligação a ser avaliado 

experimentalmente (Batho & Rowan, 1934) e é classificada como flexível na maioria 

das aplicações (ou como “rotulada”).  

Seu aparecimento coincidiu com a construção metálica usando rebites, os quais, 

em sequência, foram substituídos gradativamente por parafusos comuns e em seguida 

pelos parafusos de alta resistência. Munse et al. (1959) comprovaram que a resistência 

das cantoneiras de alma crescia quando se substituía rebites por parafusos de alta 

resistência. Na mesma época, surgiram as opções de 2 Ls de aba, e também as ligações 

com 3 Ls ou com 4 Ls. Johnson & Green (1940) estudaram ligações com 2 Ls de alma 

ou 2 Ls de aba soldadas nas colunas ou soldadas na viga. 

Deve-se mencionar, entre as deformações desenhadas na Fig. 2.37(a) para os 2 Ls 

de alma, a que acontece na aba de cada cantoneira, com a formação de duas linhas 

(charneiras) plásticas, que a faz abrir, permitindo um afastamento maior da face da aba 

superior da viga, bem como uma aproximação da aba inferior, que muitas vezes colide 

com a coluna. Tal contato, indicado na Fig. 2.9, faz surgir um acréscimo de resistência e 

rigidez, como já mencionado, que se recomenda ignorar.  
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Esse fenômeno é comum a outras ligações de alma como a chapa lateral da Fig. 2.4(b) e 

a chapa de cabeça da Fig. 2.4(g), merecendo o mesmo cuidado. 

O projetista deve ter cautelas adicionais com os efeitos de rasgamento, 

esmagamento dos furos, ruptura de parafusos ao esforço combinado (flexão e corte),  

alguns efeitos secundários na alma (em caso de recortes da aba da viga) e, 

principalmente, na própria aba da cantoneira.   

Lipson (1968) fez o estudo de tala de alma e cantoneira de alma com parafusos, 

comprovando sua maior rigidez com parafusos de alta resistência (em vez de usar 

rebites). Comprovou, também, a grande não linearidade dessas ligações e as rotações da 

ordem de 50 mrad, consideradas elevadas. 

 

1

2
(b) (a) 

2

1

 

Deformação por compressão, flambagem
da aba da viga, enrugamento da alma da

viga, dobramento da chapa de ligação e
flexão da aba da coluna

Escoamento a flexotração da chapa de
ligação com efeitos locais na aba e na 

alma da viga e flexão aba da coluna

2

1

 

Figura  2. 36  Deformação das ligações semirrígidas:  

(a) chapa cortada rente; (b) chapa de cabeça. 
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Tração do L, dobramento, esmagamento
de furos, efeito de perna, flexotração da
aba da viga e ovalizalição de furos, fle-
xão local da aba da coluna.

Escoamento a flexão da cantoneira, ras-

gamento da alma, esmagamento de furos
dobramento e flexão do L e da alma.
Contato da aba inferior com  a coluna.

2

1

Deformação por compressão e efeito
de painel, flexão da aba, compressão na
alma da coluna..

3

Tração do L, dobramento, esmagamento
de furos, efeito de perna, flexotração da
aba da viga e ovalizalição de furos, fle-
xão local da aba da coluna.

Escoamento a flexão da cantoneira, ras-

gamento da alma, esmagamento de furos
dobramento e flexão do L e da alma.
Contato da aba inferior com  a coluna.

2

1

Deformação por compressão e efeito
de painel, flexão da aba, compressão na
alma da coluna..

3

Escoamento a flexão da cantoneira, ras-

gamento da alma, esmagamento de furos
dobramento e flexão do L e da alma.
Contato da aba inferior com  a coluna.

2

1

Deformação por compressão e efeito
de painel, flexão da aba, compressão na
alma da coluna..

3

 

Figura  2. 37  Deformação das ligações de cantoneiras:  

(a) cantoneiras de alma; (b) cantoneiras de aba. 
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A consequência do recorte nas abas das vigas, nas ligações com 2Ls de alma, foi 

verificada por Birkmoe & Gilmor (1978) que demonstraram o risco de rasgamento da 

alma próximo ao parafuso mais externo. 

Richard et al. (1980) estudaram o efeito da chapa soldada na coluna e aparafusada 

na viga da Fig. 2.4(b), cujo comportamento se aproxima, também, do caso de 2Ls de 

alma, quando estes são soldados à coluna. De Falco & Marino (1966), conforme 

Sugimoto & Chen (1982), sugeriram alguns valores médios da rigidez inicial para 

projeto baseando-se no número de parafusos (para 2 Ls de alma) ou altura da viga (para 

2 Ls de aba), como mostrado na Tab. 2.15. 

Chen & Lui (1983) iniciaram o estudo do benefício das ligações flexíveis no 

travamento das colunas usando 2Ls de alma e 2Ls de aba. 

As deformações da ligação com duas cantoneiras de aba são representadas na Fig. 

2.37(b), sendo que a opção com 4Ls, na realidade, é uma soma de efeitos dos tipos 

anteriores, sendo válidas as três observações numeradas na figura. O seu estudo tem 

ênfase com os trabalhos analíticos de Kishi & Chen (1987). Os resultados, porém, são 

apresentados com o modelo matemático da curva potencial dada pela Eq. 2.31, 

calibrada experimentalmente com parâmetros de forma. 

Attiogbe & Morris (1991) apresentaram comparações das fórmulas de Richard & 

Abbott (1975) com as de Ramberg & Osgood (1943), determinando parâmetros pelo 

método dos mínimos quadrados para essa ligação e gabaritando-os com os ensaios de 

Onuah et al. (1989). 

Mander et al. (1994) estudaram o ciclo de fadiga para 2Ls de aba, empregaram, no 

caso monotônico, a curva  M-θ de Menegotto & Pinto (1973), indicaram a grande 

plasticidade e encruamento da ligação, bem como a influência da cabeça do parafuso, da 

porca, da arruela e o do aperto do conjunto, no comportamento da ligação. 

 

Tabela 2.15 Valores aproximados de rigidez Rk 
(1). 

Parâmetro associado 
Rigidez Rk  

105 [kNcm/rad] Tipo 
Descrição mín. máx. mín. máx. 

2 L alma num. parafusos      3   10       3,7    323  
2 L aba altura viga [mm] 203 915  245 2170  

Nota: 1) segundo De Falco & Marino (1966). 
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Bhatti & Hingtgen (1995) estudaram parametricamente o efeito da semirrigidez 

em portais, usando as equações analíticas de Kishi & Chen (1987), para os três tipos de 

ligação com Ls. Kim & Chen (1996c) comprovaram que a determinação da potência C1 

da Eq. 2.31 mediante o ajuste de curva era melhor do que com o emprego da equação 

empírica de Kishi & Chen (1987), para a ligação com 2Ls de aba. 

Benuzzi et al. (1996) constataram que o comportamento das ligações no 

experimento de estruturas era inferior ao apurado em ensaios da ligação isolada, por 

meio do modelo em balanço (ou T deitado). Essa conclusão evidenciou que o 

comportamento das ligações com Ls precisavam de novas avaliações. Zandonini & 

Zenon (1996) procuraram estudar a influência do cortante em ligações semirrígidas com 

cantoneiras, diagnosticando os seguintes casos: 

a. a ligação com 2Ls de abas pode ter resistência próxima e até superior a uma 

ligação com 4Ls;  

b. aumentar a espessura dos Ls da ligação não majora necessariamente a 

resistência da mesma;  

c. com o apoio da aba da viga na coluna, ligações com 2Ls de alma e similares 

podem suportar momentos de ligações maiores, como os de uniões com Ls nas 

abas, em situações em que o cortante predomine (vão menores Lv < 5m). 

Assim, o cortante pequeno permite que a ligação seja mais rígida (com 2Ls de 

aba, com ou sem os de alma), o inverso quando este cortante é elevado: e,  

d. a ligação de alma permanece mais flexível, não recebendo influência do 

cortante. 

 

Faella et al. (1996) utilizaram o método das “componentes” e o estudo analítico 

de Kishi & Chen, (1987) para desenvolver a curva M-θ na ótica do Eurocode 3 (1992). 

Posteriormente, Kim & Chen (1998) apresentaram uma tabela de dados para a 

equação potencial de Kishi & Chen (1987), da ligação com 4Ls, empregando 

parâmetros de dimensionamento usuais do AISC (1993). Lourenço et al. (1997) 

realizaram um estudo experimental para determinar o ciclo de histerese pra ligação com 

2Ls de aba. 

Chisalla (1999) propôs outro modelo exponencial com análise paramétrica 

estudando ligações com duas cantoneiras (2Ls de alma ou de aba). Shen & Astaneh-Asl 

(I999) estudaram o diagrama de histerese para ligações com Ls, para terremotos.  
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Pucinotti (2001) desenvolveu o método das “componentes” para as ligações com 

2Ls de aba, ou 4Ls. Lee & Moon (2002) apresentaram novos resultados de ensaios, 

processo analítico e curvas M-θ obtidas com a Eq. 2.39 do modelo de Wu & Chen 

(1990). Citipitioglu et al. (2002) avaliaram o efeito do deslizamento em ligações com 

4Ls. Albomaali et al. (2003) propuseram um diagrama de histerese para 2Ls de alma, 

Garlock et al. (2003) para 2Ls de aba, enquanto Calado (2003) faz o mesmo para 4Ls, 

porém adotando o método mecânico (das “componentes”). 

 

2.6.6 RÓTULAS DE FATO  

Nesta subseção, apenas complementa-se uma visão geral das ligações, pois 

sempre se trata a ligação flexível ou com baixas rigidez e resistência (Mu ≤ 25% Mp) 

como uma rótula. E, como mostrado, ligações com chapa soldada lateral à alma, com 

duas cantoneiras de alma ou chapa de cabeça, das Figs. 2.4(b-g-o), respectivamente, e 

outras similares, são “rotuladas”, mas não são rótulas. 

Para construir uma ligação que se aproxime da rótula perfeita, existem quatro 

formas representadas na Fig. 2.38, cuja preocupação foi enfatizar a liberdade de giro. 

Entretanto, o meio mais comum realmente é o olhal [ver Fig. 2.38(d)]. Naturalmente, 

alguns dispositivos complementares para travamento laterais ou guias são necessários 

para garantir posição e estabilidade.  

As ligações de emendas de trechos de colunas ou de vigas, com talas e similares 

entre outras, foge dos objetivos com este trabalho, porém na próxima seção algumas 

considerações sobre as ligações de base das colunas são apresentadas. 

SoldasElementos : Barras 

(a) (b) (c) (d) 

 

Figura  2. 38  Ligações por rótulas: 

(a) apoio em chapa; (b) apoio em berço ou meia-lua; (c) apoio em rolete; (d) olhal. 
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2.7 LIGAÇÕES NAS BASES 

As bases das colunas constituem uma parte pouco lembrada quando se fala da 

influência da semirrigidez das ligações nas estruturas. Faz-se uma apresentação nesta 

seção apenas para complemento do assunto, já que ainda não se dispõem de curvas M-θ 

bem calibradas e, assim, não se adotaram ligações nas bases nos exemplos desta tese. 

Os primeiros estudos dessas ligações aparecem com Salmon et al. (1955). Já De 

Wolf & Sarisley (1980) verificaram bases à compressão excêntrica e Thambiratnam & 

Paramasivam (1986) avaliaram as espessuras das chapas de base à compressão 

excêntrica, com apenas um chumbador à tração. A partir daí, surgiram os trabalhos de 

Melchers (1992) e associados (Hon & Melchers, 1987) e Ermopoulos & Stamatopoulos 

(1996a,b), os primeiros para as bases rotuladas e os últimos, para as rígidas.  Wald et al. 

(1996) e Jaspart & Vandegans (1998) realizaram uma série de ensaios e desenvolveram 

fórmulas analíticas com o método das “componentes” para ambos os tipos de base, com 

o primeiro artigo definindo a rigidez da ligação e o segundo, propondo as curvas M-θ. 

A influência das bases no comportamento estrutural já foi comprovada tanto em 

coluna isoladas (Lau et al., 2003), como também em pórticos (Hayalioglu & 

Degertekin, 2005), o que justifica a sua inclusão neste estudo. 

Em nível de construção, identificam-se, tradicionalmente, dois tipos de base: 

a.   rotuladas – nas quais se supõe, a priori, que os chumbadores não resistem aos 

esforços rotacionais, e um pequeno giro da base é permitido sem a presença de 

esforços. Experimentalmente, entretanto, comprova-se a existência de uma 

pequena resistência que pode ser considerada para a coluna; e  

b.  engastadas – nas quais se supõe que os chumbadores e a placa de base 

fornecem à estrutura a rigidez necessária para absorver todos os esforços e 

transmiti-los às fundações, não apresentando qualquer rotação da coluna 

naquele ponto. De fato, tanto sob condições últimas como nas de serviço, 

podem ocorrer rotações que não se devem desprezar. Cabe verificar qual a 

influência delas no comportamento estrutural, principalmente em relação à 

consequente movimentação horizontal dos pavimentos superiores.  

 

Como já esperado, nenhuma dessas hipóteses se cumpre perfeitamente na prática 

e, por consequência, ambos os tipos de base dependem também da parcela de esforço 

axial atuante para definir o seu comportamento de ligação quanto ao giro M-θ.  
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Não foram realizados muitos experimentos, tampouco se dispõe de muitos 

trabalhos de pesquisadores, o que torna um ensaio experimental desse tipo desafiador. O 

Eurocode 3 (1992), por exemplo, apenas aborda o caso da compressão pura, ignorando 

o efeito dos momentos e excentricidades (Ermopoulos & Stamatopoulos, 1996a). 

A maior parte dos resultados disponíveis foi produzida por métodos numéricos 

(MEF) ou analíticos (das “componentes”) e alguns foram obtidos por meio de fórmulas 

matemáticas explícitas, como as da seção 2.5. Os tipos de base tradicionais são descritos 

nas subseções seguintes. 

 

2.7.1 BASES ROTULADAS 

Essa ligação é representada na Fig. 2.39 e tradicionalmente não absorve 

momentos. Por essa razão, como se elucida na figura, os chumbadores são colocados:  

a. um par no centro, que é mais tradicional; ou  

b. quatro chumbadores centrais, quando o esforço cortante é maior.  

 

Quando ocorre o giro da ligação (θr) porém, surgem esforços de tração e a 

resultante do axial se desloca do centro linear da coluna, gerando um pequeno momento 

na base. Murray (1983) fez os primeiros estudos modernos desse tipo de base, incluindo 

o arrancamento do chumbador, mas considerando uma pequena carga de compressão. 

Melchers (1992) propôs um método analítico para obtenção da rigidez inicial e da 

curva M-θ. Melchers & Hon (1987) adotaram a Eq. 2.41 (Yee & Melchers, 1986) para 

descrever o comportamento dessa ligação, que inclui vários parâmetros (ver Fig. 2.39):  

a. dimensões da chapa – extensão ap, largura bp e a espessura da chapa tp; 

b. excentricidade – e = M/N (relação entre a carga axial e o momento na base); 

c. dimensões e propriedades do chumbador – comprimento de ancoragem lc, 

extensão da rosca lr, diâmetro dc, tensão de escoamento  σyb, forma da ponta; e  

d. dimensões e propriedades da base de concreto – extensão ac, largura bc, altura 

hc, tensão última de referência σck, altura do enchimento te, módulo elástico do 

concreto Ec; entre outros. 

 

Algumas dimensões são empregadas para definir larguras de borda, pressões na 

base e a tração dos chumbadores, bem como o possível efeito de alavanca. A 

desvantagem de se empregar esse modelo é que há muitos parâmetros envolvidos.  
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Adicionalmente, a base de dados empregada para calibrar as fórmulas é bem 

reduzida ainda, carecendo de maior comprovação experimental, principalmente para 

colunas de seções maiores e sujeitas a maiores esforços nas bases. 

 

2.7.2 BASES ENGASTADAS 

A ligação avaliada nesse contexto, representada na Fig. 2.40, refere-se às 

condições de pequenos a médios esforços, não se requerendo reforços locais da chapa, 

ou mesmo a construção de grelhas para transmissão de esforços de compressão. 

SoldasElementos : Chumbadores

(a) 

(b) 

Concreto Enchimento
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Figura  2. 39  Bases de colunas rotuladas: 
(a) com 2 chumbadores; (b) com 4 chumbadores centrais; (c) detalhe do chumbador. 
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Figura  2. 40  Bases de colunas engastadas. 
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Os parâmetros são os mesmos do tipo anterior, porém, aqui, supõe-se que a base 

terá rigidez suficiente para absorver os esforços (momentos) de projeto. 

Ermopoulos & Stamatopoulos (1996a,b) desenvolveram modelos de curvas M-θ 

tanto para análise estática como dinâmica. Esses pesquisadores apresentaram uma 

formulação analítica em que o esforço normal atuante e as tensões de compressão 

resultantes determinam em qual dos 15 possíveis diagramas de equilíbrio a base será 

enquadrada. Conforme a posição da resultante das pressões sobre a placa, o 

alongamento do chumbador e a tração atuante, calcula-se o momento resultante e o 

ângulo de giro procurado.  

Scacco (1992) avaliou o efeito do cisalhamento e da tração combinados nos 

chumbadores para projeto. Jaspart & Vandegans (1998) desenvolveram métodos 

analíticos das “componentes” para essa base. O dimensionamento, segundo a ótica dos 

estados limite pelo AISC (1993), foi tratado por Drake & Elkin (1999). 

Kotonleon et al. (1999) realizaram uma série de ensaios experimentais e 

numéricos com o MEF, abordando o comportamento de bases à flexocompressão 

considerando o efeito do contato e o levantamento da base. 

Liew et al. (1997) e Chan et al. (2005) empregaram a análise avançada para 

alguns estudos de estruturas com ligações não lineares nas bases também. 

 As deformações dessas bases podem ser entendidas acompanhando a Fig. 2.41, 

na qual se mostra que quando o chumbador se alonga permite o giro da base, em geral, 

em relação ao flange mais comprimido, e aí placa sofre esmagamento e dobramento, 

enquanto no lado oposto se separa da base. 

 

(a) (b) 
 

Figura  2. 41  Deformações das bases: 
(a) rotulada com 2 chumbadores; (b) engastada com 4 chumbadores. 
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Observe-se que foi indicado um tipo chumbador na Fig. 2.39(c), com a ponta 

encurvada (tipo “bengala”), que é uma das formas mais antigas. Hoje, existem outros 

tipos de ponta (cabeça de martelo, arruela de chapa, etc.) que propiciam maior 

ancoragem ao concreto e, também, melhoram o comportamento do chumbador. 

As ligações nas bases não foram incluídas neste trabalho de pesquisa, mas serão 

objetos de trabalhos posteriores, acompanhando a comunidade científica mundial. 

Note-se que não se falou aqui de uma série de trabalhos envolvendo pilares, vigas 

e ligações mistas, nos quais o concreto trabalha associado ao aço. Nos últimos quinze 

anos essa área tem tido um enorme crescimento, todavia, não foi incluída no escopo 

deste trabalho. As condições dinâmicas ou situação de incêndio também não foram 

tratadas pelo mesmo motivo, embora sejam metas de futuros trabalhos. 

Os vários trabalhos hoje já publicados sobre ligações (Nethercot & Zandonini, 

1990; Chen, 1988; Bjorhovde et al., 1987, 1996) tornam esse assunto facilmente 

acessível ao projetista ou engenheiro. Procurou-se, então, neste capítulo fazer uma visão 

geral sobre o estado da arte das ligações, talvez não tão atualizada, afinal, no último 

decênio muito material foi produzido, em diversas áreas correlatas ou complementares. 

Alguns aspectos particulares, porém, foram abordados, para que a seção seguinte possa 

apresentar uma nova proposta de curva M-θ. 
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2.8 MODELO DE CURVA M-Θ COM RIGIDEZ BILINEAR (RBL) 

Após o estudo de alguns tipos de ligação, observa-se a exigência de que a curva 

M-θ seja capaz de representar de forma racional o comportamento demonstrado pelas 

ligações em seus ensaios experimentais, como sugerem as normas. Para isso, essa curva 

deve satisfazer, mesmo que de forma aproximada,  as seguintes condições sintetizadas 

por Yee & Melchers (1986): 

a. a curva deve passar pela origem: Mr (θr = 0) = 0; 

b. a rigidez na origem deve ser a inicial: Rkt (θr = 0) = Rki; 

c. a rigidez deve convergir para o valor plástico, quando a rotação tende a crescer 

arbitrariamente (infinito): Rkt (θr → ∞) = Rkp; 

d. quando a rigidez plástica tender a zero, Rkp→ 0, a curva deverá ter como 

assintota o momento último Mu; 

e. para qualquer valor da rotação, a tangente a curva M-θ definirá o valor da 

rigidez da ligação (d Mr/d θr) = Rkt; 

f. os parâmetros adotados devem ter um significado para projeto e ser 

determinados de forma fácil e  acurada; e  

g. que a curva M-θ aproximada tenha uma forma relativamente suave. 

 

O grande desafio de introduzir as ligações no processo de análise estrutural, 

portanto, é atender a todas essas exigências, pois nem sempre as condições anteriores 

são preenchidas pelos modelos disponíveis, tampouco existem modelos adequados para 

todos os tipos de ligação. 

Assim, parte-se agora para a proposta de uma nova curva M-θ, cujo objetivo 

básico é atender de forma mais explícita as condições estipuladas nos itens (c, d & e) 

anteriores, estabelecendo desde o início que: 

c.  a rigidez plástica ocorre na rotação última: Rkt (θr = θu) = Rkp; 

d. a curva passará por θr = θu,  que corresponderá ao valor Mr = Mu. Isso significa 

afirmar que não existe mais uma assíntota (tendência), e sim o último ponto da 

curva, em todos os casos; independentemente do valor da rigidez plástica ser 

zero (ou até negativo, se desejado); e  

e.  o atendimento a Rkt = dMr/dθr é básico no modelo proposto, pois a integração 

para obter-se a curva M-θ será realizada, garantindo, assim, a continuidade da 

curva proposta em todos os pontos. 
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Figura  2. 42 Modelos mais simples: 
(a) curva M-θθθθ; (b) curva Rk-θ. 

 

Essas definições indicam que é necessário considerar a rigidez da ligação como a 

propriedade mais importante na avaliação do seu comportamento. É fundamental, por 

isso, que a sua avaliação seja a mais coerente possível, o que requer uma análise mais 

detalhada da curva Rk-θ das ligações. 

Nos estudos anteriores, constatou-se que os modelos lineares e até bilineares 

atendiam aos vários tipos de análise elástica. De maneira geral, porém, quando se avalia 

a curva Rk-θ dessas ligações, verifica-se a falta de concordância com a realidade 

experimental. Na figura 2.42, por exemplo, mostra-se como o modelo linear, e o 

bilinear, de diagrama M-θ apresenta o diagrama Rk-θ com pouca informação.  

Na figura 2.43, ilustra-se o caso do modelo trilinear que é adotado pelo Eurocode 

3 (1992). Essa curva (em linha traço e ponto) da norma europeia possui três saltos de 

rigidez: o primeiro maior seguido por outro menor, sendo a rigidez no endurecimento 

sob tensão desprezada (Rkp = 0). Note-se que, mesmo empregando-se médias de Rk, que 

são constantes nos intervalos (linha traço dois pontos), esses saltos persistem. Portanto, 

fica evidente que o modelo trilinear não apresenta a continuidade que se espera para a 

rigidez, indicado pela curva contínua que representa o experimental. 

Poder-se-ia, então, adotar uma curva polilinear (pentalinear, por exemplo), cuja 

precisão é bem maior que as anteriores, e inclusive ajustando-se alguns pontos aos do 

ensaio experimental, como se indica na Fig. 2.44. Entretanto, mesmo considerando as 

rigidezes médias de Rk, nos intervalos, verifica-se que os saltos continuam desconexos 

em relação ao que se desejaria de uma curva de rigidez. 
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Figura  2. 43 Modelo trilinear:  
(a) curva M-θθθθ; (b) curva Rk-θ. 

 

Assim, fica claro que a rigidez Rk é inadequadamente representada, quando se 

empregam modelos com trechos lineares, visto que a curva Rk-θ torna-se uma função 

descontínua (com saltos) em tantos intervalos quanto sejam os segmentos lineares 

adotados. 

Por outro lado, para as curvas M-θ definidas na forma de equações matemáticas, 

como as polinomiais, exponenciais, potenciais, etc., embora possuam expressões para 

Rk que são contínuas, várias não atendem a algumas das condições anteriores 

estipuladas por Yee & Melchers (1986) e observadas na curva a ser proposta. 
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Figura  2. 44 Curva Rk-θ para o modelo pentalinear: 
(a) curva M-θθθθ; (b) curva Rk-θ. 
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Um dos ensaios experimentais de Rathbun (1936) com a curva M-θ reproduzida 

na Fig. 2.25 tem agora sua curva Rk-θ correspondente representada na Fig. 2.45, para os 

modelos:  

a. polinomial de Frye & Morris (1975);  

b. exponencial modificado de Kishi & Chen (1987); e   

c. potencial de Kishi & Chen (1987).  

 

Nessa mesma figura (2.45), são fornecidos os pontos obtidos por meio do ensaio 

experimental, o que contrasta bastante com os modelos matemáticos escolhidos. 

Verifica-se que, embora as curvas M-θ obtidas (ver Fig. 2.25) não sejam tão diferentes, 

as curvas Rk-θ mostram grandes diferenças, mesmo no caso do modelo exponencial de 

Kishi & Chen (1987), que é a aproximação melhor dentre as três. Essa constatação 

sugere que se pode obter uma boa aproximação entre a curva M-θ numérica e a 

experimental, ainda que a curva Rk-θ apresente diferenças. 

Deve-se lembrar, entretanto, o desafio que é medir a rigidez da ligação por meio 

experimental. Note que os pontos do ensaio experimental, indicados na Fig. 2.45, 

apresentam maiores discrepâncias entre si (irregularidades na trajetória ou saltos 

aparentes), que os obtidos nas curvas de modelos matemáticos (mais suaves). 
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Figura  2. 45 Curva Rk-θ da ligação de Rathbun (1936). 
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Além disso, vale comentar que os modelos matemáticos não são aplicáveis para 

todas as ligações. São modelos que dependem fortemente de parâmetros de ajuste ou 

empíricos, que nem sempre são adequados ou estão disponíveis para projeto. Como 

alternativas para o projetista, são apresentadas as seguintes possibilidades:  

a. o uso de modelos 3D com o MEF para estudo de cada ligação particular. Isso 

exige que o profissional tenha conhecimento das ferramentas numérico-

computacionais existentes (saber modelar e ter acesso aos pacotes existentes, 

como o Ansys, 2005; Adina, 2000, etc.), para que os resultados sejam 

abalizados possibilitando a obtenção de uma curva confiável; ou, 

b. adotar o método das “componentes”, no qual o Eurocode 3 (1992) assume a 

responsabilidade, perante a comunidade científica, pelo uso de uma forma 

bastante simplificada para construir a curva M-θ requerida. 

 

Portanto, embora já dispondo de muitos resultados experimentais e modelos já 

calibrados, o projetista não dispõe de tantos recursos para se poder incluir o efeito das 

ligações na prática da engenharia estrutural. E assim a alternativa (b.) anterior passa a 

ser bastante adequada se for possível determinar uma curva M-θ não linear, para um 

projeto específico, que atenda aos princípios do Eurocode 3 (1992). 

Nesta seção, trata-se da proposição de uma curva de ligação M-θ mais simples e 

geral que a obtida com os modelos matemáticos já apresentados e cujo objetivo 

principal é fornecer um recurso adicional ao projetista. 

A ideia inicial é partir de um diagrama Rk-θ de forma polilinear no qual se possa 

representar adequadamente a rigidez da ligação. Uma vez definido esse diagrama Rk-θ, 

por integração se determina a curva M-θ. Isso significa propor um processo matemático 

oposto à técnica tradicional, na qual se estabelece a curva M-θ e, em seguida, obtém-se 

a rigidez da ligação pela sua diferenciação (Rk = ∂M/∂θ). 

King (1994) desenvolveu a primeira tentativa para se achar uma curva M-θ de 

uma ligação integrando a curva Rk-θ. Esse pesquisador obteve bons resultados 

considerando uma curva exponencial e avaliando a rigidez segundo a equação: 

( )[ ]1

ukik MM1 R 
M

 R C
−=

θ∂

∂
=  (2.57) 

na qual C1 é um fator de forma. O grande desafio que surge, o que é comum a todas as 

curvas aproximadas, é definir qual o fator de forma adequado para cada caso de ligação. 
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Não se dispõe, porém, de tantas informações sobre a rigidez (tabelas Rk-θ de cada 

ligação ou ensaio), pois é uma propriedade cuja medição experimental não é simples, e 

os desvios são maiores. Assim, na prática, não se tem essa curva Rk-θ tão precisa. 

Simplificando a ideia inicial de trechos de reta, desenvolve-se o novo modelo de 

comportamento de ligação que segue a mesma proposta inicial das primeiras curvas bi-

lineares M-θ, porém agora para a rigidez. Ou seja, propõe-se agora construir um 

diagrama Rk-θ bilinear e contínuo, desenhado na Fig. 2.46(b), que será a base para 

construir a curva M-θ desejada da Fig. 2.46(a). Essa proposta será denominada modelo 

de curva M-θ com Rigidez Bilinear (RBL). 

O diagrama de rigidez Rk-θ da Fig. 2.46(b) já possui dois pontos conhecidos e que 

devem ser determinados pelo projetista em qualquer análise de ligação, quais sejam:  

a.  ponto inicial (θr = 0, Rk = Rki) – no qual a rigidez inicial é sempre um valor 

requerido como dado em qualquer modelo; e  

b. ponto final (θr = θu, Rk = Rkp) – atende-se à condição (c) modificada de Yee & 

Melchers (1986), sendo que a rotação última (θu) tanto pode ser estimada pelo 

cálculo (por exemplo, com o método das “componentes”) como pode ser 

arbitrada: um valor recomendado ou prescrito: 20 θ0, não superando 30 mrad, 

em geral (Swanson & Leon, 2000). A rotação θu pode ser gabaritada em relação 

a outros modelos do mesmo tipo já estudado. Já a rigidez última ou plástica, 

pode ser determinada (método das “componentes”) ou aproximada [Rkp = (1/7) –

(1/10) de Rki], como sugerem alguns pesquisadores (Faella et al., 2000). 
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Figura  2. 46 Modelo de rigidez bilinear RBL proposto: 
(a) curva M-θθθθ; (b) curva Rk-θ. 
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Define-se, agora, o ponto A da interseção das duas semirretas [ver Fig. 2.46(b)], 

ou seja, os valores (θr = θA; Rk = RkA), que permitam uma boa aproximação do 

comportamento da rigidez. A adoção dessas semirretas leva em conta dois 

comportamentos da rigidez que interferem no diagrama M-θ final, que são: 

a.  trecho quase elástico – no qual a plasticidade começa a se manifestar nos 

componentes como chapas e perfis, podendo ocorrer grandes variações de 

rigidez em pequenos ângulos de giro da ligação; e  

b. trecho quase plástico – no qual, com uma pequena variação da rigidez, ocorrem 

elevadas variações da rotação da ligação. 

 

Deve-se enfatizar que o comportamento descrito por esses dois trechos na curva 

Rk-θ permitirá que se obtenha uma curva M-θ bastante acurada com o modelo RBL.  

Ao estabelecer o ponto A (θA, MA), pode-se definir a rigidez em A (RkA) partindo 

da expressão: 

( ) ( ) 2 RR  d RM AkAki

0

kA

A

θ+≈θθ= ∫
θ

=θ

 (2.58) 

que, resolvendo para RkA, chega-se a: 

kiAAkA R M2 R −θ=  (2.59) 

A variação Rk-θ é representada por duas semirretas, genericamente são definidas 

pela equação geral: 

( )  b   2a  R iik +θ=θ  (2.60a) 

cuja integração fornece: 

( ) ii
2

ir c   b   a  M +θ+θ=θ  (2.60b) 

em que os coeficientes (a-b-c) devem ser determinados considerando as duas semirretas 

isoladamente (i = 1 ou 2), ou seja: 

a.  trecho quase elástico – em que 0 ≤ θ ≤ θA:  

( ) 0  c      R b      RR  a 1ki1AkAki1 ==θ−−=  (2.61) 

com Rki  ≥ Rk ≥ RkA  e, consequentemente, 0 ≤ Mr ≤ MA; e  

b. trecho quase plástico – com  θA ≤ θ ≤ θu:  

( )
( )

( )
( ) A2

2
A2A2

Au

AkpukA
2

Au

kpkA
2 b a M  c      

 

R R
  b      

 

R R
  a θ−θ−=

θ−θ

θ−θ
=

θ−θ

−
−=  (2.62) 

com o que: RkA ≥ Rk ≥ Rkp  e, portanto, MA ≤ Mr ≤ Mu. 

As equações finais para a curva M-θ, válida por trechos, são dadas por: 
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( ) ( )

( )
( )( )[ ]

( ) ( )AAu

AkpukAAkAkp
A2A

A
2

kAkiki1A

  

RR2 RR
 M   M  :  

       RR  R    M  :  

θ−θθ−θ

θ−θ+θ+θ−
+=θθ>θ

θθ−−θ=θθ≤θ

 (2.63) 

Para avaliar essa proposta, estuda-se o exemplo de ligação de Rathbun (1936) com 

os valores de Rki e Rkp obtidos experimentalmente, e determina-se a rigidez RkA a partir 

de um ponto selecionado da curva experimental M-θ (θr = θA, M = MA), de tal forma 

que este será também ponto da curva M-θ do modelo RBL. 

Sabe-se, como comentado, que a rigidez inicial (Rki) não possui uma medida 

experimental precisa. De acordo com o SCDB (Kishi & Chen, 1990), os outros modelos 

adotaram diferentes rigidezes Rki, conforme:  

a.  Rki = 364,9 kNm/rad, para o modelo polinomial (Frye & Morris, 1975); 

b. Rki = 149,1 kNm/rad, para o modelo potencial (Kishi & Chen, 1987);  

c.  Rki = 72,79 kNm/rad, e com a rigidez máxima 125,3 kNm/rad, em θ = 1,2 mrad, 

para o  modelo exponencial modificado (Kishi & Chen, 1987); e  

d. Rki = 115,2 kNm/rad, e com o valor máximo 121,3 kNm/rad em θ = 3,81 mrad, 

para o ensaio experimental (Rathbun, 1936). 

  

Resolve-se aqui, então, o problema de maneira inversa, iniciando-se por 

determinar RkA em função de Mu e MA, que são dados conhecidos, e finalmente obtém-

se o valor de Rki por meio dos parâmetros já calculados e de θA. Com esse procedimento 

constrói-se a Tab. 2.16 a partir de três pontos diferentes, escolhidos para o ponto A de 

transição (P13, P21 e P29) na curva M-θ ilustrada na Fig. 2.47(a). Nessa figura, estão 

presentes três curvas M-θ obtidas por esse processo, de onde se verifica que a curva que 

apresentou o resultado melhor em relação à experimental foi aquela em que o ponto A é 

o indicado por P13, onde θA ≈ θu /3. Pode-se definir a relação κA = RkA/Rki. 

 

Tabela 2.16 Curva M-θ com RBL para exemplo de Rathbun (1936). 

Ponto A Ponto 0 
Rotação  Momento Rigidez [kNm/rad] 

Ponto 
comum 

(1) [mrad] [kNcm] RkA (2) Rki  
(3) 

κA (4) 
[%] 

P13   9,31 105,6 101,9 125,0 81,5 
P21 15,85 168,5   71,6 141,0 50,8 
P29 23,10 217,6   30,6 157,8 19,4 

Notas: 1) Ponto da curva M-θ de Rathbun (1936) escolhido para ponto A; 
2) RkA = 2(Mu-MA)/(θu- θA) -Rkp; 3) Rki = 2MA/θA -RkA; 4) κA = RkA/Rki.  
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Figura  2. 47 Curvas da ligação de Rathbun (1936) com modelo RBL 
(a) curva M-θθθθ; (b) curva Rk-θ. 

 

Verifica-se com a Fig. 2.47(b) que a curva M-θ onde se localiza o ponto P13 é 

mais centrada em relação aos pontos do experimento e possui a menor diferença em 

relação ao Rki máximo do modelo experimental, o que parece justificar sua boa 

reprodução da curva M-θ experimental de Rathbun. 
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King (1994) comprovou que a curva M-θ gerada por integração de Rk-θ permite 

obter curvas bem mais próximas das experimentais. E esses resultados iniciais 

comprovam que se pode encontrar um ponto A, bem calibrado, que permita reproduzir 

uma curva experimental de forma razoável para projeto, e mesmo que tal procedimento 

tem um significado bem claro e simples, como foi inicialmente proposto. 

Como mencionado, uma das formas mais expeditas de que se dispõe para traçar a 

curva M-θ é pelo Eurocode 3 (1992), que emprega o método das “componentes”. Trata-

se de um procedimento bastante vantajoso, pois está ao alcance dos projetistas e é 

garantido por norma.  

Uma primeira aplicação é converter o diagrama M-θ trilinear do Eurocode 3 

(1992), ilustrado na Fig. 2.48(a), num equivalente não linear do modelo RBL. Para isso, 

destacam-se os seguintes trechos característicos do diagrama trilinear apresentado: 

a.  trecho quase elástico – Rk = Rki, 0 ≤ θ ≤ θy, no qual a rotação de início do 

escoamento θy = 2 θ0/3, sendo a rotação de referência θ0 = Mu / Rki e o momento, 

My = 2Mu/3; 

b. trecho quase plástico – para θy  ≤ θ ≤ θs, em que se considera a rigidez secante 

Rky = Rki/7, em que o momento na ligação atinge o valor máximo Mu. 

Considerando as condições anteriores, define-se o ângulo θs = θy +∆ θys, no qual 

∆θys = (Mu – My)/Rky. Substituindo os valores conhecidos, chega-se a θs = 3 θ0; e  

c.  trecho plástico sem encruamento – com Rkp = 0, em que apenas o ângulo de 

rotação cresce de θs  ≤ θ ≤ θu, podendo ser definido θu ≈ 20 θ0 (≤ 30 mrad). 

 

Fazendo-se a conversão ao modelo RBL, têm-se como dados: Rki, Rkp (= 0), Mu e 

θu. O diagrama de rigidez equivalente Rk-θ do RBL, mostrado na Fig. 2.48(b), é formado 

por dois triângulos cujas áreas representam os momentos ∆M1 e ∆M2, isto é: 

( ) ( ) ( )
2R   M

 2 RR   2 RR  2 RR   M

u2k2

A2kkiAkA2kAkAki1

θ=∆

θ−=θ+−θ+=∆
 (2.64a,b) 

em que da segunda expressão obtém-se Rk2, ao fazer ∆M2 = Rky θs, equilibrando o 

diagrama Rk-θ do Eurocode 3. Lembrando-se de que para ∆M1 + ∆M2 = Mu emprega-se 

a Eq. 2.64 (a), com ∆M1, resolvendo para θA. 
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Figura  2. 48 Curva trilinear com Rkp = 0 empregando RBL: 
(a) curva M-θθθθ; (b) curva Rk-θ. 

 
 

Para esses procedimentos, utiliza-se a versão de Frye & Morris (1975) da curva de 

Hechtman & Johnson (1947), adotando-se os dados: Rki = 30248 kNm/rad, Mu = 13685 

kNcm e θu = 20,025 mrad. Pelo Eurocode 3 (1992), são definidos os novos parâmetros 

para os diagramas da Fig. 2.49: 

θ0 = Mu/Rki =  4,524 mrad,   θy = 2 θ0/3 = 3,016 mrad,    θs = 3 θ0 = 13,572 mrad,          

Rky = Rki/7 = 4321 kNm/rad,   My = 2 Mu/3 = 9123 kNcm. 

 Notas: 1) 1 [kNm/rad]× 1 [mrad] = 0,1 [kNcm]; 2) 1 [kNcm] / 1 [kNm/rad] = 10 [mrad]. 

 

Passando agora ao processo de geração da curva M-θ pelo modelo RBL, 

determinam-se os parâmetros complementares: 

∆M2 = Rky θs =  5864 kNcm,                      ∆M1 = Mu - ∆M2 =  7821 kNcm,  

Rk2 = 2 ∆M2 / θu = 5857 kNm/rad,             θA = 2 ∆M1 / (Rki – Rk2) = 6,413 mrad,  

RkA = Rk2 (1 – θA / θu ) = 3981 kNm/rad,   MA = (Rki + RkA) θA /2 = 10975 kNcm. 

Com esses resultados constroem-se, então, os diagramas das curvas de Hechtman 

& Johnson (1947) M-θ e Rk-θ ilustrados na Fig. 2.49. Observa-se que a curva M-θ do 

modelo RBL praticamente se ajusta de forma bastante razoável ao diagrama do 

Eurocode 3, com uma leve saída na região de início da rigidez secante, sendo tangente 

na base à Rki e na parte superior, com Rkp = 0. (Obs. κA = 3981/30248 = 13,2%). 

O bom ajuste encontrado para a curva M-θ pode ser explicado ao constatar-se que 

a curva Rk-θ do modelo RBL se parece com uma média daquela adotada no Eurocode 3. 
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Figura  2. 49 Curvas de Hechtman & Johnson (1947) sem encruamento: 
(a) curva M-θθθθ; (b) curva Rk-θ. 

 
 

Note-se que esse processo de solução pode ser aplicado a todos os diagramas 

desse tipo. Agora, determina-se uma curva não linear com o método RBL, para o tipo 

genérico de curva M-θ trilinear do Eurocode 3 (1992), na qual a rigidez Rkp não é zero, 

como mostrado na Fig. 2.50(a). O diagrama trilinear possui as seguintes partes: 
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a. trecho quase elástico – Rk = Rki, 0 ≤ θ ≤ θy, no qual a rotação de início do 

escoamento θy = 2 θ0/3, sendo a rotação de referência θ0 = Ms / Rki, e o momento 

é limitado a My = 2Ms/3; 

b. trecho quase plástico – para θy  ≤ θ ≤ θs, com a rigidez secante Rky = Rki/7, 

sendo que o momento é inferior ao de referência Ms, e adota-se θs = 3 θ0; e  

c. trecho plástico com encruamento – com Rkp > 0, para θs  ≤ θ ≤ θu, adotando 

também θu ≈ 20 θ0 ( ≤ 30 mrad) e momento máximo igual ao último Mu.  

 

Pode-se considerar que, no endurecimento sob tensão, o momento máximo tenha 

um acréscimo proporcional à relação entre o módulo tangente e o elástico, Et/E = 2%, 

ficando o trecho final quase horizontal (Faella et al., 2000). 

Para demonstrar o emprego do RBL, entretanto, adotar-se-á Ms = 90% Mu, 

encontrando-se a relação: 

( ) ( ) ( ) ( )suususususukp - θθM 10  - θθM M  - θθM   R ,=−=∆=  (2.65) 

Seguindo a Fig. 2.50(b), percebe-se uma nova área retangular ∆M3 = Rkp θu, que 

corresponde a uma parcela constante a ser retirada de Mu para chegar-se à soma das 

áreas dos dois triângulos já definidos: ∆M1 e ∆M2. Agora, escreve-se: 

( )

123u

u2k2

A2kki1

M M M M

2R   M

 2 R R   M

∆+∆=∆−

θ=∆

θ−=∆
*

**

 (2.66a-c) 
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Figura  2. 50 Curva trilinear com Rkp > 0 empregando RBL: 
(a) curva M-θθθθ; (b) curva Rk-θ. 
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sendo R*
k2 = Rk2 – Rkp, que é a parcela de rigidez que supera Rkp. Portanto, R*

k2 é a 

parcela da rigidez máxima da área triangular ∆M2, que deve ser somada à Rkp para 

obter-se Rk2. De igual forma, deverá ser avaliado R*
kA e RkA.  

Para boa compreensão do que foi exposto, reestuda-se o exemplo anterior 

mantendo-se os dados: Rki = 30248 kNm/rad, Mu = 13685 kNcm e θu = 20,025 mrad, 

com os seguintes valores complementares para o diagrama do Eurocode 3: 

Ms   = 0,9 Mu = 12316 kNcm,   Rky = Rki/7 = 4321 kNm/rad,  

θ0   = Ms/Rki  =  4,072 mrad,    θy   = 2 θ0/3 = 2,714 mrad,  θs = 3 θ0 = 12,216 mrad,  

My = 2 Ms/3 = 8211 kNcm,    Rkp = 0,1 Mu /(θu – θs) =  1752 kNm/rad.  

Para gerar a curva do modelo RBL, determinam-se as grandezas: 

∆M3 = Rkp θu =  3508 kNcm,                        ∆M1 + ∆M2  = Mu – ∆M3 =  10177 kNcm,  

∆M2 = (Rky – Rkp) θs =  3138 kNcm,          ∆M1 = 7039 kNcm 

R*
k2 = 2 ∆M2 / θu =   3134 kNm/rad,           R*

ki   =  Rki – Rkp  = 28496 kNm/rad, 

θA    = 2 ∆M1 / (R*ki – R*
k2) = 5,551 mrad,  Rk2   = R*

k2 + Rkp   = 4886 kNm/rad,  

R*
A =  R*

k2 (1 – θA / θu ) = 2265 kNm/rad,   RkA  =  R*
kA + Rkp = 4017 kNm/rad, 

MA = (Rki + RkA) θA /2 = 9510 kNcm.         (Obs. κA = 4017/30248 = 13,3%) 

Esses resultados são empregados na obtenção das curvas M-θ e Rk-θ da ligação de 

Hechtman & Johnson (1947) ilustrados na Fig. 2.51. Note-se que a curva M-θ da Fig. 

2.51(a) fica totalmente envolvida pela do Eurocode 3 (1992). Comprova-se, na Fig. 

2.51(b), que a rigidez do modelo RBL é quase uma média do diagrama do Eurocode 3 

(1992), explicando-se, assim, o bom resultado.  

Deve-se enfatizar que essas aplicações do método RBL para os diagramas do 

Eurocode 3 (1992) se mostraram bem razoáveis em ambos os casos (sem e com 

encruamento), justificando o seu emprego direto por aqueles que adotam essa norma 

para projeto de forma rotineira.  

Antes de seguir explorando o modelo RBL proposto, faz-se necessário entender a 

influência dos seus parâmetros principais e estabelecer formas mais simples de tratar 

essa curva M-θ. Naturalmente, parâmetros como a rigidez inicial (Rki), o momento 

último (Mu) e a rotação última (θu) são definidos a priori pelo projetista e não podem 

ser muito diferentes dos valores fornecidos. A questão se prende quanto a avaliar a 

rigidez plástica (Rkp) e a situação do ponto A, que podem ser arbitrados ou ajustados. 

Em geral, pode-se adotar para uma curva M-θ qualquer a mesma forma de solução 

empregada para o diagrama genérico trilinear do Eurocode 3 (1992) anterior. 
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Figura  2. 51 Curvas de Hechtman & Johnson (1947) com encruamento 
(a) curva M-θθθθ; (b) curva Rk-θ. 

 

Definem-se as relações entre os momentos ∆M, correspondentes às áreas do 

diagrama Rk-θ, e o momento último (Mu), conforme as expressões a seguir: 

 MM         MM       MM   u33u22u11 ∆=α∆=α∆=α  (2.67) 

O primeiro parâmetro de forma da curva é determinado por βL = α1/ (α1 + α2), tal 

que: 0 ≤ βL ≤ 1, e representa a variação de rigidez quase elástica (α1) em relação a toda 
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variação de rigidez do diagrama Rk-θ do modelo RBL. Observe-se que α3 depende 

fundamentalmente de Rkp. Assim, para o triângulo superior tem-se: α1 =  βL (1– α3) e, 

por conseguinte, α2 = 1 – α1 –  α3. O efeito do fator de forma βL é ilustrado na Fig. 2.52, 

em que se manteve o valor de α3 = 0,25; e varia-se βL no intervalo 0 ≤ βL ≤ 1, com 

passos de 10%, para os mesmos dados da curva de Hechtman & Johnson (1947) da 

versão com encruamento da Fig. 2.51. 

Observe-se que as curvas M-θ da Fig. 2.52(a) apresentam uma forma mais suave 

para valores βL pequenos (< 0,3) e vai aproximando-se de um comportamento bilinear 

para βL próximos de 1.  

Nos diagramas Rk-θ da Fig. 2.52(b) verifica-se que aqueles que possuem traçado 

elástico mais acentuado terão rigidez plástica menor e sem grandes variações, tornando 

a curva M-θ mais abrupta.  O contrário ocorre para os diagramas que possuem traçados 

elásticos menores, gerando curvas M-θ mais suaves. 

Repare-se que quando o fator de forma βL for zero (βL = 0), a rigidez inicial Rki se 

reduz e o diagrama Rk-θ se torna linear. Por exemplo: 

α1 = 0, α2 = 1- α3 = 0,75                           ∆M2 = 0.75 Mu = 10263,8 kNcm   

R*
k2 = 2∆M2/θu = 10251 kNm/rad           Rk2 = R*

k2 + Rkp = 12003 kNm/rad      

Rk2 = 39,7% Rki 

Ou seja, na realidade, tem-se outra curva (outro Rki = Rk2). Veja-se que βL também pode 

ser negativo, como sucedeu no caso do ponto A sendo P13, para a curva da ligação de 

Rathbun (1936), mas isso ocorre em casos particulares (recomenda-se βL ≥ -0,1). 

Conforme mostrado na Fig. 2.52(b), com βL = 1 define-se o valor θA máximo, 

sendo recomendado que θA ≤ θu/3 e próximo de θ0 = Mu/Rki. Já quando βL = 0 obtém-se 

o valor de RkA máximo (que não pode ser superado, do contrário surgirá valor de α3, ou 

de α1, negativo). Esses são valores limites adotados para escolher-se o ponto (MA, θA). 

Outro parâmetro de forma a ser estudado é definido pela relação κp = Rkp/Rki, que 

depende da rigidez plástica (Rkp) e influencia a trajetória final da curva M-θ (podendo 

até ser de valor negativo, o que não é avaliado neste instante). Esse fator indica a 

parcela de rigidez plástica fixa (ou constante) do diagrama Rk-θ do modelo RBL. Nesse 

caso, o que varia é a área do retângulo ∆M3, e com isso reduz-se, também, a influência 

do parâmetro βL no restante da curva. 

Ilustra-se na figura 2.53, o efeito do fator de forma (κp) nas curvas M-θ e Rk-θ, no 

intervalo 0 ≤ κp ≤ 10%, adotando o fator de forma βL = 0,5 (α1 = α2) em todos os casos.  
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Figura  2. 52 Estudo do fator de forma βL 
(a) curva M-θθθθ; (b) curva Rk-θ. 

 

Considerou-se que nas ligações usuais não ocorrem valores de Rkp muito elevados 

(superiores a 10% de Rki), como indicaram Sherbourne & Bahari (1997) para as 

ligações com chapa estendida de topo, por exemplo. Observa-se que para valores de (κp) 

pequenos, a curva M-θ ficam mais elevadas e suaves, já quando se aproxima de 10%, as 

curvas ficam mais abruptas, como se tendessem ao modelo bilinear.  
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Figura  2. 53 Estudo do parâmetro κp: 
(a) curva M-θθθθ; (b) curva Rk-θ. 

 

Os diagramas de rigidez mostram um primeiro trecho mais alto e mais externo 

para (κp) próximos de zero. O inverso ocorre para valores maiores de (κp), como se 

poderia esperar. Com κp = 0,1 obtém-se θA mínimo; já com κp = 0, determina-se RkA 

mínimo. É possível, também, adotar-se um valor de (κp) negativo (Rkp < 0), que 
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representaria uma condição de amolecimento da ligação (Almusallam & Richard, 1992) 

que é pouco considerada na prática. 

Para ilustrar são apresentados na Tab. 2.17 os parâmetros obtidos para as três 

curvas aproximadas de Rathbun (1936) da Fig. 2.47, que possuem os seguintes dados: 

Rki = 121,3 kNm/rad (não empregado aqui), Rkp = 25,76 kNm/rad, Mu = 236,6 kNcm e 

θu = 29,84 mrad. Nesse caso como Rkp é fixo, α3 = Rkpθu/Mu = 32,5% é constante, 

enquanto o parâmetro κp = Rkp/Rki variará em função do Rki adotado em cada ponto A, 

sendo mais correto o valor experimental κp ≈ 21,2% (> 10%, próximo de 20,6%!) 

Deve-se indicar uma relação direta entre os parâmetros (κp) e (α3) dada por: 










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M

M
    

M

R
     (2.68) 

na qual se relaciona o momento elástico esperado (Mo = Rki θo) e o momento último Mu. 

De igual forma, para valores de βL fixos, κp = 0 e κp = 0,1 chega-se nos limites 

inferior e superior de θA, respectivamente, servindo também como orientação ao 

projetista. Quando Ms = Mu, como no caso da curva trilinear do Eurocode 3 (1992) da 

Fig. 2.49, então α3 = κp (= 0). Se Ms = 0,9 Mu, como no diagrama trilinear da Fig. 2.51, 

encontra-se agora: 

κp = Rkp / Rki = 1752 / 30348 = 5,78%.  

α3 = 5,78 (0,9Mu / Mu) / (4,072 / 20,025) = 25,58%. ≈ 25,6% 

∆M3 / Mu = 3508 / 13685 = 25,63% ≈ 25,6% (confere!) 

Para finalizar, vale informar que será realizado, no futuro, um estudo para calibrar 

valores dos parâmetros (βL & κp) em relação às curvas experimentais de forma a 

orientar os projetistas quando na utilização dos diversos tipos de ligação.  

No próximo capítulo será apresentada a formulação numérica geral do elemento 

finito com ligação, que será empregado para realizar a análise avançada neste trabalho. 

 

Tabela 2.17 Fatores de forma βL & κp para exemplo de Rathbun (1936). 

Rigidez [kNm/rad] ∆M2 Parâmetros [%] Ponto 
A (1) Rki 

(2) Rk2  RkA 
(3) [kNcm] α1 α2 βL κp (4) 

P13 125,0 136,4 101,9 165,1 -2,3 69,8  -3,4 20,6 
P21 141,0 123,5   71,6 145,9   5,8 61,7   8,6 18,3 
P29 157,8   47,2   30,6   32,0 54,0  13,5 80,0 16,3 

Notas: 1) Ponto da curva M-θ de Rathbun (1936) escolhido para ponto A (Fig. 2.47); 
2) Rki = 2MA/θA -RkA; 3) RkA = 2(Mu-MA)/(θu- θA) -Rkp; 4) κp = Rkp/Rki..  
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3.1  INTRODUÇÃO 

Neste capítulo, faz-se a apresentação geral da base numérica computacional 

empregada ao longo deste trabalho para se realizar a Análise Avançada incluindo o 

efeito das ligações.  

A formulação geral aborda um elemento finito (EF) que possui uma ligação numa 

das extremidades. Outros EFs empregados ao longo desta tese situam-se como casos 

particulares dessa formulação.  

Na próxima seção, descrevem-se inicialmente as hipóteses simplificadoras, o 

referencial lagrangiano atualizado, o sistema corrotacional, os conceitos de tensão-

deformação que levam ao comportamento inelástico, as condições básicas do problema 

estrutural na ótica de como se realizar uma Análise Avançada, as principais limitações, 

as características e os pesquisadores que se relacionam com os atributos adotados. 

O EF com ligação é desenvolvido na seção 3.3. Partindo-se da cinemática do 

elemento, adota-se a aproximação do comportamento da fibra pelo eixo e chega-se a 

uma avaliação da deformação. Definem-se as grandezas naturais (deslocamentos, 

esforços) e se estabelecem as funções de forma. As condições de contorno introduzem 

particularidades da ligação, das quais são obtidos os campos de deslocamentos e de 

deformações correspondentes. Nessa seção, dá-se o destaque à grandeza 

semiflexibilidade nodal η, que permite uma simplificação nas equações que expressam 

os deslocamentos e o campo de deformações anteriores, bem como possui um 

significado especial que é ilustrado.  

Na quarta seção, aborda-se a definição das matrizes de incidência cinemática, de 

rigidez constitutiva, a associada à curvatura do EF/barra e a geométrica, locais e globais, 

desde sua concepção genérica, partindo do equilíbrio e do PTV. Nessa seção, destaca-se 

um estudo sobre as propriedades elastoplásticas médias que são tratadas de outra 

maneira em relação aos processos anteriores (Lavall, 1996; Alvarenga, 2005), 

empregando as considerações de Chen et al. (1996). 

Os esforços internos complementam a formulação, destacando a Integração 

Iterativa do Esforço Axial (Alvarenga, 2005), com algumas modificações e ajustes, ao 

longo desse período de estudos (Alvarenga & Silveira, 2008c).  

A maioria das deduções e expressões algébricas desenvolvidas neste capítulo foi 

verificada pelo programa computacional “MAPLE” versão 7.0 (WMI, 2001), também, 

que forneceu um valioso auxílio. 
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3.2  CONSIDERAÇÕES GERAIS 

 Desenvolve-se uma formulação numérica para realizar uma análise inelástica de 

segunda ordem empregando o conceito de zona plástica ou plasticidade distribuída. Por 

meio dessa formulação, que é aplicada no plano da estrutura, procura-se monitorar a 

formação das zonas plásticas da flexocompressão ao longo das barras, tratadas aqui de 

forma genérica (viga-coluna), para assim, fazer-se um retrato simplificado mais fiel do 

comportamento estrutural. 

Na abordagem com zona plástica, de acordo com a Fig. 3.1(a), cada barra da 

estrutura é representada como uma série de elementos finitos (EF) que são definidos por 

um par de nós (por exemplo, A e B) nas extremidades. Nesses nós se avaliam as 

propriedades geométricas efetivas (a área A0, a posição do centro de gravidade plástico 

yCGP, o momento de inércia Iz) e o comportamento da seção (o módulo tangente D; o 

estado de tensões σ, o de deformações ε), conforme apresentaram inicialmente Owen & 

Hinton (1980).  

Nesta abordagem, todas as barras/EFs têm seções de perfis I, com altura (d), 

largura (b), espessuras de aba (t) e de alma (a), como indica a Fig. 3.1(b). 

Neste capítulo, desenvolve-se um EF mais geral, que possui uma ligação numa das 

extremidades, B no caso da Fig. 3.1(a). Essa ligação contribui com um novo grau de 

liberdade interno, representado pelo seu giro próprio, que está relacionado à sua rigidez 

e ao momento que ali atua, sendo estudado na seção seguinte. 

O conceito de zona plástica adotando a técnica das fatias considera cada seção dos 

nós extremos (A-B) subdividida em componentes de área (dA0), que são denominados 

de fatia, representada na Fig. 3.1(c) (Lavall, 1996). Essas fatias são avaliadas conforme 

o estado de tensão ou a deformação do seu centroide, denominado fibra, também 

representada no centro da fatia na Fig. 3.1(c). 

Essas fatias são delimitadas pelas seções extremas do EF e têm a mesma extensão 

(L), porém, tanto as tensões como as deformações de cada extremidade da fatia são 

diferentes não existindo o imaginado equilíbrio de fatias, mas, sim, o equilíbrio dos 

esforços internos resultantes nas seções com as cargas aplicadas em termos nodais. 

 Nas fibras considera-se apenas o comportamento linear, desprezando as rotações e 

os deslocamentos de um ponto do corpo. Ou seja, avaliam-se apenas as relações que 

determinam as alterações de comprimento da fibra (ver o apêndice A.4). 
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É importante destacar que o estado das fibras, em cada nó, determina o estado das 

fatias e pela soma dos estados dessas fatias se encontra o estado de cada nó (a nível de 

esforços internos) e do EF como um conjunto (em nível de propriedades e rigidez). 

Numericamente, essa integral se transforma numa soma ao longo da área (A0) de cada 

seção, de cada nó do EF, envolvendo todas as fatias de área (dA0). 

Do ponto de vista das propriedades estruturais (tanto a rigidez da seção como a 

determinação do seu centro de gravidade plástico) deverão ser avaliadas em cada 

instante (ω), baseando-se nas médias das propriedades atualizadas dos dois nós; já as 

demais características [como posição da fatia (yc), área (dA0) da fatia, etc.] são 

grandezas constantes (não se alteram), estabelecidas no início do análise, ou seja, são 

grandezas originais.  

Tendo em vista as diversas considerações adotadas nessa formulação e para 

permitir sua apresentação mais clara, os trechos seguintes são divididos em subseções, 

destacando-se nos subtítulos o assunto principal. 

 

3.2.1 SISTEMA CORROTACIONAL 

 Essa formulação adota o referencial lagrangiano atualizado (RLA), para o qual as 

grandezas da configuração que se deseja obter no instante atual (ω), com o subscrito (d) 

significando deformadas, são relacionadas às grandezas já determinadas, do instante 

anterior (ω-1), com o subscrito (c) significando conhecidas, em cada ciclo do processo 

de solução. As grandezas constantes da análise são chamadas de grandezas originais, 

com o subscrito (0) (zero), quando ω = 0. Essas configurações são representadas 

esquematicamente na Fig. 3.2.  

Os pontos originais (A0, B0), que definem a distância original Lo, ocupam a 

posição deformada (Ad, Bd), no instante atual (ω), e serão relacionados à posição 

conhecida (Ac, Bc) do instante anterior (ω-1) por meio de deslocamentos que cada ponto 

(ou nó) sofre u (u, v, θ) ao passar da configuração (c) para a (d), em razão do 

carregamento atuante, ou parcela, que provoca esse movimento.  

Tanto o eixo do elemento finito como os referenciais são definidos pela linha que 

une os nós (A-B) e determinam um ângulo de posição atual φd entre o eixo local atual 

(xd, yd), e o global fixo (x0,y0). Como existe, analogamente, um ângulo de posição 

conhecida (φc) anterior, define-se o giro que nasce da diferença entre esses dois ângulos 

de eixos coordenados (ou referenciais), por giro de corpo rígido θg, isto é: 
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Figura  3.1 Modelagem da Zona Plástica: 
(a) estrutura com EFs; (b) elemento finito e eixo; (c) fatia com fibra. 
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Figura  3.2 Configurações do referencial lagrangiano atualizado: 
(a) original, (ω=0); (b) conhecida, (ω-1); (c) deformada, (ω). 

 

Essa formulação numérica atende, também, ao teste fundamental de movimento de 

corpo rígido de Yang & Kuo (1994), que não provocando o surgimento de esforços 

espúrios, como se comprovou (Alvarenga, 2008). 

Conforme Silveira (1995), a grande vantagem de se adotar o RLA é que se 

consegue um bom controle sobre o giro de corpo rígido (θg) ao se aproximar as duas 

configurações, conhecida e deformada, minimizando os desvios na avaliação das 

deformações e dos esforços internos de equilíbrio.  

A principal diferença em relação ao referencial lagrangiano total é que, ao 

relacionar a configuração deformada diretamente à original, quanto maior for o ângulo 

(φd) maior tenderá a ser o desvio nos resultados produzidos. 

 

θg = φd - φc (3.1) 
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Por outro lado, as equações deduzidas dependem tanto de grandezas estabelecidas 

no RLA propriamente quanto de grandezas originais, visto que o estado de tensões é 

integrado ao longo do volume original, que é considerado fixo, para a obtenção dos 

esforços internos, como será visto nas subseções 3.2.3 e 3.2.4.  

 

3.2.2 TENSÃO E DEFORMAÇÃO DA FIBRA 

Como a fibra estabelece o comportamento da fatia, define-se o alongamento linear 

ε (ou técnico) e a tensão nominal σ, conforme (Biot, 1939): 

sendo Ld e Lc o comprimento deformado e o conhecido, dNd é a parcela de esforço que 

solicita a fibra e dA0 a área da fibra, que é constante (dAd = dAc = dA0), como se mostra 

na Fig. 3.3(a), em que se considera, apenas, o comportamento unifilar da fibra. 

 Essas grandezas (σ, ε) formam um par de medidas conjugadas, que são 

relacionadas entre si por uma lei constitutiva, em que a tensão σ é função da deformação 

ε, como ilustrado na Fig. 3.3(b). Para maior entendimento veja o apêndice A.4. 

Define-se o módulo de rigidez do material da fibra como a tangente a curva σ-ε no 

ponto que representa o estado atual dessa fatia, ou seja: 

Existem vários diagramas de material que podem ser empregados, mas nesta 

formulação se consideram os tipos mais usuais na prática: o infinitamente elástico, o 

elástico perfeitamente plástico, o modelo dito bilinear e o trilinear com patamar, todos 

ilustrados na Fig. 3.3(c). 

Notando-se que o comportamento estabelecido pelos diagramas prevê o módulo D 

como função do nível de tensão da fibra: 

a.  E – o módulo elástico ou de Young (Beal, 2000), quando em regime elástico, 

logo, σ < σy, sendo σy a tensão inicial de escoamento do material;  

b.  0 – se o material for perfeitamente plástico e estiver em escoamento σ = σy; 

c.  Et – o módulo tangente (Engesser, 1889 e 1895), quando em carregamento 

plástico, então σ ≥ σy. É comum, na prática, adotar-se um Et de valor pequeno 

não nulo, simulando o diagrama perfeitamente plástico (para evitar alguns 

tipos de singularidade de solução). Esse procedimento, entretanto, não será 

aplicado aqui. 

 

ε = Ld/Lc –1      σ = dNd/dA0 (3.2a-b) 

D = dσ(ε)/ dε (3.3) 
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Figura  3.3 Comportamento da fibra e do material: 
(a) deformação da fibra; (b) módulo de rigidez; (c) diagramas tensão-deformação: 

(—) perfeitamente plástico, (−·−) infinitamente elástico, (−··−) bilinear e (---) trilinear. 
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Figura  3.4 Comportamento no descarregamento da fibra: 
(a) elástico; (b) ajuste plástico; (c) escoamento no sentido oposto. 

 

O descarregamento da fibra (ou seja, a variação de deformação dε de sinal oposto 

ao da carga plástica) é tratado de forma diferente das aproximações anteriores (Lavall, 

1996). Supondo-se, por exemplo, que o material tenha um diagrama de comportamento 

bilinear σ-ε, conforme a Fig. 3.4(a-c), há três casos de descarregamento considerados: 

a.  quando ocorre a redução de deformação dε, após a fibra entrar em carga 

plástica e atingir um ponto de equilíbrio F, a fibra volta a se comportar de 

forma elástica, atingindo o ponto C [ver Fig. 3.4(a)] (Lavall, 1996); 

b.  se a fibra parte do ponto de equilíbrio F, continua em carga, atingindo o ponto 

C, sem convergir, quando ocorre o descarregamento em decorrência da 

deformação dε, a fibra atinge o ponto D, ou seja, a plasticidade é apenas 

ajustada, pois o equilíbrio ainda não tinha sido encontrado [ver Fig. 3.4(b)] ; 
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c.  ocorrendo o descarregamento elástico previsto no caso (a), a deformação dε 

máxima possível não poderá causar uma tensão no sentido oposto superior à 

de escoamento (-σf) [ver Fig. 3.4(c)]. Admite-se o encruamento isotrópico, 

pequenas deformações e despreza-se o efeito Bauschinger (Chen & Han, 

1987). 

 

A principal diferença recai no fato de que, nessa formulação (adotada aqui), a 

plasticidade é ajustada durante todo o processo iterativo, reduzindo-se os ciclos até a 

convergência e evitando-se as soluções incoerentes (Nyssen, 1981).  

Considera-se como descarregamento elástico o ocorrido apenas após ter sido 

atingida uma convergência anterior e acontecer uma deformação de sinal contrário ao 

do carregamento plástico. Adicionalmente, impõe-se um limite nesse descarregamento, 

como o início do escoamento no sentido oposto. A carga plástica no sentido oposto é 

condição de término da análise, uma vez que se torna complicado estabelecer o que está 

ocorrendo com a fibra, que poderia ter deformações plásticas de sinal oposto às tensões 

de escoamento existentes (o que causaria confusão com um possível erro numérico). 

 

3.2.3 LIMITAÇÕES E HIPÓTESES SIMPLIFICADORAS 

Para definir o EF genérico dessa formulação, introduzem-se agora algumas 

hipóteses simplificadoras, juntamente com os seus autores (ou referências):  

a. Bernoulli (1728): o efeito de Poisson (Timoshenko & Goodier, 1970) é 

desprezado e na plasticidade o volume não se altera, portanto as deformações 

transversais ao eixo do EF são desprezadas, o que permite que a área 

geométrica das seções e das fatias seja constante (não se alteram na análise), 

não admitindo grandes deformações; 

b. Euler (1759): as seções permanecem ortogonais ao eixo da barra, ou seja, não 

ocorrerão distorções nas seções, desprezando-se o efeito da força cortante; 

c. Navier (1823): seções transversais planas permanecem planas após a 

introdução dos carregamentos, ou seja, não ocorre empenamento; 

d. Vlassov (1962): todas as barras (vigas e/ou colunas) estarão travadas fora do 

plano da análise, evitando a instabilidade lateral por flexotorção ou por 

empenamento. Isso implica que a esbeltez transversal deverá ser limitada (ver 

apêndice A.1 para parâmetros limite das normas): 
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i. próximo às zonas plásticas: ][kN/cmσ95525rL 2
yyt += , ou, 

ii. trechos elásticos: ( ) ,70][kN/cm254060rL 2
yMyt ≤σβ+=  

em que ry é o raio de giração da seção no eixo de menor inércia (y), Lt é a 

distancia entre travamentos laterais e βM a relação entre os momentos nas 

seções do travamento, com: –0,625 ≤ β M = Mt/Mp ≤ 1,0 adotando o sinal (+) 

para curvatura reversa (Higgins et al., 1971); 

e. Neal (1977): não se reduzirá a tensão de escoamento sob tensões combinadas, 

pois os esforços de cisalhamento são pouco expressivos. Então, não são 

reduzidos Mp ou Ny por causa do cisalhamento. Portanto, exige-se que os 

cortantes sejam: ayd d a5770V σ≤ ,  (Higgins et al., 1971), em que da é a altura 

livre da alma (neste trabalho: da ≈ d – 4t). Entretanto, procura-se atender ao 

critério de von Mises (1913) quanto ao maior cisalhamento suportado pela área 

remanescente elástica da alma (a·dae) da seção do perfil I, verificando-se: 

daeyde Vd a770V ≥σ= , ; 

f. Galambos (1982): todas as seções (perfis I) são compactas (não ocorrerá a 

instabilidade local das chapas componentes) e pode-se atingir a carga limite do 

sistema estrutural. Na prática, limitam-se as relações de esbeltez das partes 

componentes dos perfis segundo: 

i.   para a aba: y2108tb σ≤ , ; 

ii.  para a alma de colunas (com ou sem flexão): ya 158ad σ≤ ; e  

iii. para a alma de vigas (somente na flexão): ya 533ad σ≤ ; 

como recomenda o LRFD (Salmon & Johnson, 1990), sendo σy (≤ 45) 

expresso em kN/cm2,  para todos os casos (ver o apêndice A.1); 

g. não é verificado o atendimento à lei do regime de fluxo plástico, ou a teoria de 

menor deformação J2 (Chen & Han, 1987). Tampouco se comprova que há 

atendimento completo ao critério de von Mises (1913), ou a qualquer outro, 

com relação ao escoamento, uma vez que somente se consideram tensões 

normais atuantes nas fibras e, assim, o escoamento é estabelecido apenas pelo 

diagrama de tensão-deformação do material, sendo por isso exigido o item (e); 

h. será considerada a influência da ligação entre a viga e a coluna, conforme a 

construção seja: i. rígida; ii. rotulada; ou iii. semirrígida; 
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i. não se propõe um estudo sobre o comportamento dos painéis das colunas, que 

são normalmente considerados rígidos, não apresentando distorções. Três 

situações são previstas, entretanto, com as construções (ver apêndice A.2): 

i.  rígida – mesmo na presença de elevados momentos e cortantes, ou seja, 

nessa consideração cumpre que sejam colocados enrijecedores adequados nas 

colunas (horizontais na direção dos flanges das vigas e em diagonal para o 

cisalhamento, se requeridos);  

ii. flexível – supondo que não haveria, a priori, esforços de momento, não 

seriam empregados enrijecedores;  

iii. semirrígida – a curva momento-rotação da ligação implicitamente pode 

incluir a deformação do painel, dependendo da forma (tipo), das grandezas 

envolvidas e dos enrijecedores que podem, também, ser especificados; 

j.  a excentricidade da ligação pode ser considerada, mas não foi explorada neste 

trabalho; 

k.  as bases podem ter comportamento semirrígido, também, sendo resultado de 

uma família de curvas momento-rotação avaliadas sob uma dada condição de 

esforço axial, o que, entretanto, não determina modificação na definição das 

condições de contorno para o EF com ligação. Portanto, despreza-se o efeito 

da deformação axial para se estabelecer o comportamento momento-rotação da 

base; 

l.  desprezam-se os efeitos das deformações locais de abas de colunas, nos pontos 

de contato com a ligação associados aos casos de flambagem local e/ou lateral, 

considerando que esses estados combinados serão críticos somente na 

trajetória após flambagem, ou seja, que as seções possuem capacidade de 

rotação de forma a atingir o momento último (Kemp & Dekker, 1991) 

 

Essas considerações são também atributos ou limitações da Análise Avançada, 

aqui adotada, e que serão empregadas na seção seguinte, para estabelecer o elemento 

finito com uma ligação na extremidade. Algumas das características descritas não serão 

exploradas no corpo desta tese, embora isso não queira dizer que não tenha sido 

desenvolvida a formulação e/ou implementação correspondente (como o caso da 

excentricidade da ligação, por exemplo). 
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3.3 DESENVOLVIMENTO DO ELEMENTO FINITO COM LIGAÇÃO  

Nesta seção é apresentada a formulação numérica do elemento finito (EF) para a 

condição de contorno rígido-ligação.  O EF com condição de contorno oposta (ligação-

rígido) obedece às mesmas considerações aqui estabelecidas, de forma simétrica, não 

sendo repetido o procedimento. 

Nos capítulos seguintes (6 e 7), serão abordados os EFs que possuem as condições 

de contorno rígido-rígido e rígido-rótula, que se tornam casos particulares do EF rígido-

ligação, em que se faz a consideração de rigidez infinita para o primeiro e de nula para o 

último. O EF rígido-rígido, chamado convencional, proposto inicialmente por Lavall 

(1996) é adotado, de maneira geral, em todos os modelos, por ser do tipo mais comum. 

Já o tipo rígido-rótula, em que a ligação se torna um pino, representa condições mais 

comuns às estruturas em treliças, previstas nas normas. A presença de rótulas nas 

análises passa a ser questionada com base no conceito atual de ligação semirrígida e do 

comportamento chamado flexível visto no capítulo anterior. 

Deve-se verificar, todavia, que as funções de forma obtidas para estas condições 

de contorno, rígido-rígido e rígido-rótula, independentemente, não são as mesmas 

adotadas para a condição de contorno rígido-ligação, o que, de certa maneira, serve para 

comprovar a correção da formulação proposta ao atender ambas as considerações. 

Na cinemática do EF genérico, apresentada a seguir, propõe-se a representação do 

comportamento do EF pelo seu eixo; em seguida são estabelecidas as grandezas 

corrotacionais e as funções de forma, que obedecerão às condições de contorno do EF 

com ligação. Estabelecidos os campos de deslocamento e de deformações, por 

diferenciação se chega às matrizes de rigidez (MR). As condições de equilíbrio 

determinam os esforços internos desse elemento.  

 

3.3.1 CINEMÁTICA DO ELEMENTO 

 As hipóteses da seção anterior são necessárias para que um ponto da seção (uma 

fibra, por exemplo) possa ter seu estado de tensão-deformação estabelecido com base no 

conhecimento do comportamento do centroide da seção (O), que durante a fase elástica 

está contido no eixo do EF. Porém, na fase elastoplástica, somente em casos especiais, 

como ilustrado na Fig. 3.5(a-b), tem-se a distribuição da plasticidade na seção de forma 

simétrica em relação ao eixo z-z (caso de flexão pura ou de esforço axial puro, na figura 

se considerou o esforço de compressão). 
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Figura  3.5 Zonas plásticas na seção com TRs: 
(a) flexão pura; (b) compressão pura; flexocompressão: (c) com 1 ZP; (d) com 2 ZPs; 

(e) convenção: □ elástico, plástico: (����)  à tração, (����) à compressão; (••••) eixo do EF e (••••) CG plástico. 
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Figura  3.6 Relação entre a fibra e o eixo: 
(a) deslocamentos de P em relação a O; (b) raios de curvatura do elemento. 

 

Em geral, na presença de esforço axial e da flexão combinados, a plasticidade na 

seção é assimétrica, resultando no deslocamento do centro de gravidade plástico (CGP), 

ou seja, yCGP ≠ 0 [CGP não coincide com o eixo do EF (O)], como se representa na Fig. 

3.5(c-d) para os casos de flexocompressão com uma ou duas zonas plásticas. Isso ocorre 

e torna-se ainda mais grave porque se considera a presença das tensões residuais (TRs) 

no material. 

Cumpre, agora, estabelecer o comportamento de um ponto P genérico da seção 

(uma fibra), como representado na Fig. 3.6(a), que sofre deslocamentos (ud, vd) em 

relação aos deslocamentos (uOd, vOd) do centroide da seção ponto O, pelas expressões: 

sendo (x) a posição longitudinal da seção que contém P, no sistema local corrotacional, 

ud (x, yP) = uOd (x) – yP sen ρ 

       vd (x, yP) = vOd (x) – yP (1 – cos ρ)  
(3.4a-b) 
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na configuração deformada, yP a posição desse ponto em relação ao centro de giro da 

seção (na figura o eixo O)  e ρ o ângulo de giro do eixo que contém essa seção. 

O conceito de alongamento considerando a fibra isolada é relacionado, então, ao 

alongamento da fibra contida no eixo do EF, acompanhando a Fig. 3.6(b). Para um 

trecho infinitesimal dx do EF, numa seção de altura d, com os raios de curvatura do 

ponto P (Rd) e do centroide O (ROd), pode-se expressar a deformação de P (ε) como: 

na qual (εO) é a deformação da fibra no eixo O e (ρ' = dρ/dx) é a variação do ângulo de 

giro da corda relativamente ao eixo global, sendo agora (yP) a posição da fibra, da seção 

considerada, que pode ser alterada ao longo do processo de solução (quando ocorre a 

plasticidade, desconta-se o yCGP da cota de posição original da fibra: yP = yPO - yCGP).  

Deve se observar que:  

a.  a rotação específica (ρ') somente se confunde com a curvatura (d2y/dx2) 

quando não ocorre esforço axial na seção ou quando se despreza a curvatura 

inicial do eixo do EF, sendo essa uma grandeza conjugada energeticamente ao 

momento fletor (Pimenta, 1986). Quando há plasticidade, outros pesquisadores 

chamam essa rotação (ρ') de curvatura inelástica (Galambos, 1982); 

b.  a cota de posição (yP) somente coincide com a cota original (yPO) no regime 

elástico, visto que no estado elastoplástico o centroide da seção remanescente 

(CGP) não mais necessariamente coincide com a linha de centro do EF, como 

visto na Fig. 3.5. Portanto, (yp) pode ter valores diferentes (yPO ≠ yPc ≠ yPd), 

atualizado em cada instante (ω), adotando-se, nas equações posteriores, o 

símbolo (yc), que indica a grandeza conhecida [retira-se o índice (P)]; 

c.  admite-se que a corda e a tangente ao eixo do EF coincidem, desprezando o 

possível ângulo inicial de curvatura adotado por Lavall (1996); 

d.  fica evidente que quando acontece, portanto, uma variação do esforço axial ou 

da plasticidade, é necessário corrigir a rotação específica. Isso, de certa forma, 

justifica algumas das proposições adotadas neste trabalho que serão 

apresentadas posteriormente. 

 

Considerando as relações geométricas da Fig. 3.6 combinadas às Eqs. 3.2 e 3.4, a 

deformação do eixo do EF (εO) pode ser expressa em relação aos deslocamentos do 

centroide O, escrevendo: 

ε = εO –yp ρ' (3.5) 
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Reescrevendo-se a Eq. 3.5 utilizando a equação anterior e tomando a definição de 

secante de ρ (sec ρ), obtém-se: 

Considerando-se, então, que os ângulos sejam muito pequenos, são válidas as 

seguintes aproximações usuais da engenharia: 

Com essas aproximações, após alguma manipulação algébrica, determinam-se as 

seguintes expressões para ρ e ρ' (ou, dρ/dx), ou seja: 

e, fazendo ,0uOd =′′  chega-se na relação que define o campo de deformações do 

elemento, que é básica para todo o desenvolvimento posterior da formulação, isto é: 

 

3.3.2 GRANDEZAS DO SISTEMA CORROTACIONAL 

Emprega-se o RLA, já visto na subseção 3.2.1, para acompanhar o comportamento 

do EF, que é determinado pelo movimento dos nós A e B em cada instante, 

relacionando a configuração deformada (ou atual) do sistema corrotacional (xd, yd) à 

configuração anterior conhecida (xc, yc). 

Destaca-se que a configuração conhecida e a deformada são consequências do 

processo de solução, no qual a configuração conhecida no instante (ω-1) é atualizada 

pela deformada (ω). Verifica-se o giro de corpo rígido do EF (θg), ângulo que surge da 

diferença dos ângulos de posição (φd-φc), da Eq. 3.1, quando se justapõem na mesma 

origem O os 2 sistemas referenciais representados na Fig. 3.7(a),  

Assim, as rotações das extremidades do EF (θA e θB), representadas na Fig. 3.7 

(b), em quaisquer das configurações, incluem o giro de corpo rígido do EF (θg) definido 

pelos eixos corrotacionais que acompanham essas configurações, como mostrado na 

Fig. 3.7(a). Veja que, em cada instante (ω), define-se um giro de corpo rígido (θg) cuja 

soma resulta no ângulo da posição deformada (φd). 
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Nesse sistema local corrotacional que acompanha cada EF, são estabelecidas três 

componentes de deslocamento, definidas aqui como grandezas objetivas, que não são 

afetadas por giro de corpo rígido do elemento (θg) e, portanto, espelham um campo de 

deformações. Essas grandezas formam o vetor q = qα , α = {1 a 3}, e são definidas por 

incrementos (a cada instante) com expressões: 

sendo o estiramento (q1) a variação da corda do elemento, ou da distância entre os nós, 

que se demonstra ao coincidirem os extremos Ac = Ad = A como na Fig. 3.7(c). Já os 

ângulos de giro efetivo são rotações das quais se retirou a parcela de corpo rígido (θg), 

que provocam esforços, denominados por q2 e q3 na Fig. 3.7(d). 

Partindo da Eq. 3.11, pode-se dizer, detalhando um pouco mais, que as grandezas 

incrementais geram as grandezas finais: 

nas quais (J) os subscritos (A) ou (B), refere-se à rotação do nó inicial (A) e do final (B) 

do EF, respectivamente, como será tratado doravante. Já (j) são os subscritos: (2) ou (3), 

indicam o giro corrotacional efetivo dos nós do EF (q2 e q3). Em geral, as grandezas 

corrotacionais serão chamadas (qα) e o sentido positivo é o indicado na Fig. 3.7(c-d).  

Os ângulos que definem os eixos locais corrotacionais, conhecido e deformado, 

são calculados, com base nas posições e nos deslocamentos, pelas expressões: 

Esses nós estão relacionados ao sistema cartesiano global (fixo) do problema, 

havendo três graus de liberdade por nó (u, v, θ), seis para cada EF, armazenados no 

vetor u = ui , i = {1 a 6}, como mostrado na Fig. 3.8(a). Assim, escreve-se: 

 Enquanto os comprimentos do EF, conhecido e deformado, são dados por: 

Os deslocamentos qα e ui, ilustrados nas Figs. 3.7 e 3.8(a), respectivamente, estão 

correlacionados geometricamente, pelas equações anteriores. Os esforços também 

dq1 =  Ld – Lc          dq2 =  θA - θg        dq3 =   θB - θg (3.11a-c) 

q1d =  q1c + dq1          dqj = (θJd - θgd )-(θJc- θgc)        qjd =   qjc + dqj (3.12) 
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Nó inicial A:  u1 = uA,    u2 = vA,    u3 =  θA, 
Nó final B:     u4 = uB,    u5 = vB,    u6 =  θB.  

(3.14a-b) 
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podem ser relacionados entre si, como ilustrado na Fig. 3.8(b), na qual se tem tanto os 

esforços corrotacionais vetor Q = Qα, α = {1 a 3}, como os globais, vetor F = Fi , i = {1 

a 6}, constituído pelas forças (HA, HB, VA, VB) e pelos momentos (MA, MB) de forma 

correspondente. Observe-se que, por simplicidade para efeito de dedução das equações, 

tratam-se as grandezas incrementais (dqα) como as finais (qα) no instante ω = 0. 
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Figura  3.7 Grandezas do sistema corrotacional: 
(a) giro de corpo rígido; (b) rotações envolvidas; (c) estiramento q1; (d) rotações efetivas q2 e q3. 
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Figura  3.8 Sistema global e corrotacional: 
(a) coordenadas e deslocamentos globais; (b) esforços globais e corrotacionais. 
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3.3.3 FUNÇÕES DE FORMA – VISÃO GERAL  

No contexto do método dos elementos finitos (MEF), os deslocamentos do 

centroide (uOd e vOd) serão aproximados por funções de interpolação de (x) 

estabelecidas na configuração atual, sendo retirados, por simplicidade, os subscritos (d). 

São adotadas funções tradicionais (Hermite, 1848), presentes em várias formulações de 

EF (Bathe, 1996). 

 A função de interpolação que aproxima o deslocamento axial u0 é linear. Como 

esse deslocamento não depende de condição de contorno, essa função é adotada por 

qualquer tipo de EF empregado. Assim, o deslocamento uO é obtido pela expressão: 

a qual, quando aplicada aos nós extremos (A, B), xA = -L0/2 e xB = L0/2, permite 

escrever o sistema de equações: 

cuja solução permite avaliar as constantes (a, b): 

Da definição do estiramento q1 pela Fig. 3.7(c), pode-se reescrever a Eq. 3.18 

fazendo uA = 0, e todo o deslocamento axial se mede por uB = Ld-Lc = q1, então: 

em que (L0) é o comprimento original do EF (do eixo), pois as funções de interpolação 

são estabelecidas no instante ω = 0, quando Lc = L0.  Conclui-se pela Eq. 3.19 que a 

função (Ψ1) determina os deslocamentos: uO(-L0/2) = 0 e uO(L0/2) = q1. 

Já o deslocamento vO é aproximado por meio de um polinômio do terceiro grau 

em x, que depende das condições de contorno do EF considerado, sendo desenvolvido 

neste capítulo o caso geral do EF rígido-ligação. As demais condições de borda serão 

discutidas nos capítulos referentes a cada caso (extremidade rígida e a rótula). 

Empregando-se, agora, um polinômio do terceiro grau para aproximar o 

deslocamento transversal ao eixo do EF vO(x), tem-se a expressão: 

uO(x) = a x + b = Ψ1(x) (3.16) 
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vO(x) = c x3 + d x2 + e x + f  (3.20) 
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na qual existem quatro constantes que devem ser determinadas pelas condições de 

contorno do problema. O objetivo é que se possa definir essa função (v0) também em 

relação às grandezas qα, ou seja:  

nas quais aparecem as funções Ψj (x) relacionadas às rotações efetivas qj que se desejam 

determinar. (Ver no apêndice A.5, explicação para a presença de q1 em vO). 

Todavia, pela formulação corrotacional, empregando a Eq. 3.20 aos extremos do 

intervalo, impõe-se que vO(xA = -L0/2) = vA = 0, e vO(xB = L0/2) = vB = 0, obtendo-se 

duas condições para (e, f), comuns a todos os EFs desenvolvidos, resultando em: 

As duas condições adicionais necessárias para determinar-se (c, d) provém das 

rotações líquidas, como a diferencial de vO(x) em relação à (x), ou seja: 

ou ainda, das relações com a variação da rotação, ou seja, a derivada de segunda ordem 

de vO(x) = d2vO/dx2 = dθ(x)/dx = -M(x)/EIz, supondo válida a equação diferencial 

elástica, gerando outro tipo de restrição de extremidade do tipo: 

No caso do extremo rígido, por exemplo, empregam-se as Eqs. 3.20 e 3.23 para 

ambos os nós, construindo o sistema de equações: 

que se resolve com os deslocamentos (vA, θA) e (vB, θB) correspondentes à (xA = -L0/2) e 

(xB = L0/2), obtendo-se as constantes (c, d, e & f) bem como a função de interpolação. 

Para o caso com rótula, emprega-se a Eq. 3.24 em uma das extremidades. Já para o 

EF com ligação, é preciso encontrar relações adequadas para empregar a Eq. 3.24, 

montar e resolver esse sistema (Eq. 3.25). Essa condição de extremidade só pode ser 

desenvolvida, após se estabelecer o comportamento da ligação, como se verá na 

subseção seguinte. 
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3.3.4 INTRODUÇÃO DA RIGIDEZ DA LIGAÇÃO NO EF 

Neste instante não se avalia o efeito da excentricidade ou a participação da curva 

de ligação, no estabelecimento das expressões de equilíbrio e compatibilidade. 

Genericamente, admite-se que num dado instante (ω) a ligação possua a rigidez 

Rk, determinada pela curva M-θ adotada, sendo Rk = dMr(θr)/dθr sua tangente, para um 

dado valor de teta (θr). A rigidez também pode ser obtida pela secante que liga dois 

pontos equidistantes de um valor ∆θr muito pequeno em relação ao ponto θr, isto é: 

Note-se que a curva M-θ, agora, pode ser fornecida por qualquer dos diversos 

processos indicados no capítulo 2, ou seja, uma expressão matemática, uma fórmula 

empírica, uma tabela de valores, um resultado intermediário de método analítico, etc. O 

que se requer, aqui, é apenas a sua rigidez à rotação, tal como definida acima. 

A formulação a seguir apresentada, de maneira geral, está ligada ao índice de 

rigidez relativo da viga (g), definido na subseção 2.2.4 pela Eq. 2.3. Ressalte-se que o 

módulo de elasticidade (E) e o comprimento da viga (LV) não se alteram ao longo da 

análise. Entretanto, tanto a rigidez da ligação (Rk) como a inércia da seção [(Iz), por 

causa da plasticidade], são atualizados em cada instante (ω). Deve-se lembrar que cada 

barra (viga ou coluna) é composta de vários elementos finitos (EF), mas apenas os da 

extremidade podem ter ligações; assim, não se deve confundir o comprimento da barra 

(LV) com o comprimento de cada EF (L0i), i = {1 a (nef > 1)} que forma a barra, ou seja:  

que é determinado no início da análise, sendo (nef) o número de EFs da barra. 

 

3.3.5 CONDIÇÕES DE CONTORNO PARA O EF COM LIGAÇÃO 

Para avaliar o feito da ligação é necessário determinar as condições de contorno 

representativas dessa situação que engloba as demais. Isso pode ser alcançado partindo-

se da Fig. 3.9, na qual se ilustra uma viga genérica, com uma união rígida, ou engaste, 

na extremidade A, enquanto no lado oposto (B) tem-se uma ligação dita semirrígida, ou 

seja, para a qual a continuidade não é perfeita. 
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Constata-se que na extremidade rígida o giro interno da viga (φA) tem o mesmo 

valor do giro externo (θA), por exemplo, na coluna a qual está ligada. Na extremidade 

com ligação a mesma situação não ocorre, já que existe uma rotação interna da ligação 

(αB) que se soma ao giro interno da viga (φB). Logo, as rotações internas são: 

Na subseção anterior, verificou-se que esse giro próprio da ligação relaciona o 

momento que nela atua e a sua rigidez rotacional, ou seja (ver Eq. 3.26): 

Considerando-se o comportamento elástico linear do material, pode-se avaliar que 

os momentos atuantes nas extremidades da viga dependem das suas grandezas básicas e 

das rotações internas que ocorreram. Aplicando-se a relação clássica curvatura-rotação, 

escreve-se (Chen & Lui, 1991): 

Substituindo-se agora nessas expressões os ângulos externos (θA e θB) das Eq. 3.28 

(a-b), com a definição de (g) pela Eq. 2.3 e do ângulo de giro da ligação (αB) da Eq. 

3.29, chega-se, após alguma manipulação algébrica, às expressões desses momentos: 

Podem-se separar os efeitos das rotações externas (θA e θB) das Eqs. 3.31(a-b), 

fazendo cada uma unitária e a outra nula. Isso é indicado na Fig. 3.10(a) para a rotação 

θA e 3.10(b) para θB, encontrando-se, então, as condições de contorno necessárias para o 

desenvolvimento da formulação na subseção seguinte. 

Dessa forma, os momentos provocados pela rotação em A (θA) são: 

enquanto os momentos gerados pela a rotação em B (θB): 

BBBBBBAA              α−θ=ϕ∴α+ϕ=θθ=ϕ  (3.28a-c) 

αB = MB / Rk (3.29) 
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Note-se que o termo (1+4g) participa nas equações anteriores indicando que a 

ligação reduz a rigidez nos extremos da viga (já que g ≥ 0). O momento no engaste MA 

varia de 100% a 75%, enquanto na ligação MB varia 1 a 0, para rotação no engaste (θA). 

Porém o efeito redutor é o mesmo, quando a rotação é na ligação (θB).  

Para avaliar o sentido dessas expressões, estudam-se os casos extremos de (g): 

a. quando a ligação é engaste (Rk → ∞), então g = 0, que substituindo nas equações 

anteriores recai nas Eqs. 3.30 (a-b) iniciais; 

b.  quando a ligação é rótula (Rk = 0), com g  → ∞ (um valor elevado), obtêm-se: 

portanto: MA = MB = 0 com qualquer giro da “rótula”  θB (θA = 0), como esperado.  

 

As equações 3.32 e 3.33 são consideradas clássicas para um EF com ligação 

(Vasconcelos Filho, 1986; Kotlyar, 1996). 
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Figura  3.10  Efeito da rotação na viga com ligação: 

(a) rotação no extremo rígido θA; (b) rotação no extremo com ligação θB. 
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3.3.6 FUNÇÃO DE FORMA PARA O EF COM LIGAÇÃO 

Partindo-se das condições de contorno anteriores (Eqs. 3.32 e 3.33) usando a 

restrição da Eq. 3.24, pode-se modificar a Eq. 3.25 para o seguinte sistema de equações: 

Considerando-se que as rotações agora avaliadas não incluem a rotação de corpo 

rígido, substituem-se, então, os valores dos ângulos genéricos (θA e θB), analisados para 

a viga, pelas grandezas corrotacionais equivalentes (q2 e q3), respectivamente. 

Agora os momentos provocados pela grandeza corrotacional q2 serão (Eq. 3.32): 

enquanto para a grandeza corrotacional q3 têm-se (Eq. 3.33): 

observando-se, já, a adoção dos sinais compatíveis. Levando em consideração o efeito 

da deformação axial, definido o estiramento da fibra pela relação: 

As novas condições de contorno podem ser escritas, como: 

nas quais substituiu-se o comprimento da viga (Lv) pelo original do EF (L0) que é 

adotado para expressar as funções de forma (ou de interpolação). 

Com essas definições, determinam-se todas as constantes da Eq. 3.20, como 

funções das grandezas corrotacionais, isto é: 
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e substituindo na Eq. 3.20 obtém-se a expressão dos deslocamentos verticais: 

Emprega-se, agora, o índice de semiflexibilidade da ligação (η), definido na Eq. 

2.7(a), para simplificar a expressão anterior, considerando que: 

Assim, a Eq. 3.41 pode ser reescrita da seguinte forma: 

Observe-se que nas deduções antes apresentadas considera-se a aproximação 

numérica das tangentes de q2 e q3 pelos próprios ângulos (tan qj ≈ qj, j= 2 a 3). 

As matrizes de rigidez (MR) são determinadas ao diferenciar o campo de 

deformações, em relação às grandezas objetivas (qα). Para isso, é aplicada a regra da 

cadeia, diferenciando primeiro as funções de interpolação do deslocamento em relação à 

(x). Logo, retornando a Eq. 3.21 (b), explicitam-se as funções Ψ2 e Ψ3, conforme: 

com as suas derivadas de primeira ordem sendo dadas por: 
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e as de segunda ordem: 

Constata-se que tanto a função Ψ2, como Ψ3, definidas na Eq. 3.44, reproduzem os 

valores correspondentes aos casos particulares de ligação rígida perfeita (engaste) ou 

rótula, fazendo-se η = 0 ou 0,5 (para g = 0 ou g = ∞), respectivamente. Esses casos 

particulares são tratados nos capítulos correspondentes (5 e 6). 

 

3.3.7 SIGNIFICADO DO PARÂMETRO η 

As modificações que os deslocamentos sofrem em decorrência da ligação, 

representada pelo parâmetro η, podem ser avaliadas, lembrando-se de que apenas a 

função vO (x) possui essa influência, pois depende dessas condições de extremidade. 

A seguir, estuda-se o comportamento dessa função vO, com suas derivadas, 

considerando-se que não há deslocamento uO (q1 = 0) e, os três tipos de união: 

a. engaste ou rígida perfeita (η = 0);  

b. a chamada midirrígida, com a semiflexibilidade η = 0,25; obtida com g = 0,25 

também, o que corresponde à rigidez linear Rk = 4EIz/LV, ou seja, a rigidez da 

ligação é igual à rigidez elástica da viga; e  

c. rótula (η = 0,5).  

 

Na figura 3.11(a), representa-se a função vO para essas três ligações, considerando 

a rotação unitária q2 e na Fig. 3.11(b) a unitária q3. Para a rotação q2, à medida que  η 

cresce, a posição de máximo se desloca de 17% para 7% (quase no meio-vão), saindo da 

curva de flecha da viga biengastada que sofre uma rotação no nó A (η = 0) e atingindo o 

máximo, próximo de 20%, para o extremo oposto com rótula (η = 0,5).  

Já quando se avalia o efeito da rotação unitária de q3 nas flechas da Fig. 3.11(b), 

tem-se a mesma curva, modulada por (1-2η), a posição x/L0 do máximo não se altera e o 

máximo decai de 18% no engaste (η = 0), para 0 no caso da rótula (η = 0,5).  
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Figura  3.11 Representação da função de vO(x) 
(a) rotação unitária em A; (b) rotação unitária em B. 

 

Portanto, o efeito da rotação transmitida se reduz e serão menores as flechas 

decorrentes. A ligação midirrígida se comporta de forma intermediária às curvas dos 

dois extremos (engaste e rótula), como esperado. 

De forma idêntica, examina-se agora os valores da derivada vO' (= dvO/dx) para 

entender como se comporta a rotação das seções ao longo do EF, quando são impostas 

essas rotações unitárias de extremidade. 

No caso da rotação unitária q2 da Fig. 3.12(a) com a ligação tipo engaste em B, o 

giro próprio ali é zero. Essas rotações em B, porém, vão crescendo em valor absoluto 

(sinal oposto), à medida que a flexibilidade do nó B aumenta (η cresce), chegando ao 

máximo no caso de rótula, quando se encontra q3 = – q2/2.   
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Figura  3.12 Representação da função de vO'(x) 
(a) rotação unitária em A; (b) rotação unitária em B. 

 

Por outro lado, ao se aplicar a rotação unitária em q3, não há qualquer rotação na 

ligação rígida em A, mas ocorre uma notável redução do comportamento das rotações 

até a situação de rótula, na qual nenhuma rotação ocorrerá na viga (toda a rotação é na 

ligação, q3 = αB). Adotou-se η = 0,495 (≈ 0,5) para ressaltar essa redução.  

Observe-se que existe um ponto comum a ambos gráficos (x = L0/6) no qual a 

função (vO') é independente de η, tendo o mesmo valor (-1/3) para a rotação unitária em 

q2; e (0, zero) para a unitária em q3. 

Finalmente, analisa-se o comportamento dos momentos de flexão da viga, na 

condição elástica, avaliados pela derivada segunda de vO, ou seja, vO'' (= d2vO/dx2). Por 

meio da Fig. 3.12, confirma-se que vO'' varia linearmente (seguindo as hipóteses 

iniciais), notando que este gráfico é adimensional pela relação EIz vO''(x)/(M0L0). 
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Figura  3.13 Representação da função de EIz vO''(x)/(M0L0) 
(a) rotação unitária em A (M0 = Q2); (b) rotação unitária em B  (M0 = Q3). 

 

Considera-se 100% ao momento máximo em A (M0 = Q2, vO'' mínimo, pois é 

negativo), para a rotação unitária q2. E o momento máximo em B (M0 = Q3, vO'' máximo 

positivo), corresponde à rotação unitária q3. Não se deve deixar de levar em conta o 

sinal da relação entre o momento M(x) e a derivada (-)vO''(x).  

Para o caso de ambos os extremos rígidos (η = 0), os momentos (vO'') dos nós 

opostos são metade do valor em A ou B, com sinal oposto, respectivamente, como é 

conhecido (Vasconcelos Filho, 1986).  

Para a condição rótula em B, o momento (vO'') ali é zero e na outra extremidade 

representa 67,5% do caso rígido, para q2 = 1. Quando o valor de η se aproxima de 0,5; a 

rotação unitária em q3 não provoca flexão significativa na barra (vO'' ≈ 0).  
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Com a midirrigidez η = 0,25; as derivadas (vO'') variam de {-87,5% a 25%} entre 

as extremidades, para q2 = 1; enquanto, para q3 = 1, essa variação é de {50% a -25%}. 

É necessário, também, avaliar ângulo de giro próprio da ligação (αB), já definido 

antes pela Eq. 3.29, com relação às grandezas corrotacionais, ou seja: 

Quando a ligação é rígida (η = 0), então αB = 0, como esperado, não há rotação 

própria da ligação. Por outro lado, na condição de rótula (η = 0,5) tal rotação será q2/2 

(metade da rotação do lado oposto, q2), somada a qualquer rotação q3 que ocorra na 

extremidade B, visto que é rótula, e tal rotação q3 não provocará nenhum esforço, ou 

seja, é apenas um giro próprio da rótula. Observe que q3 = θB – αB = 0 – (q2/2) = – q2/2, 

que é o giro da rótula (Vasconcelos Filho, 1986), se nenhuma outra rotação (θB) nela 

ocorrer.  Dessa forma pode-se, então, denominar o parâmetro η como índice de rotação 

própria da ligação.  

Para entender bem a participação de αB nas funções de forma (Eq. 3.43), retorna-

se a Eq. 3.44(a), que é separada agora em dois termos:  

cujo significado pode ser compreendido vendo a Fig. 3.14. A função chamada Ψ20 

representa o comportamento da ligação biengastada em ambos os extremos, com q2 = 1 

(q3 = 0, η = 0). Note-se que essa curva Ψ20 possui o valor máximo em x/L0 = -1/6 e que 

na extremidade direita há uma mudança no sentido da curvatura (R+/R-).  

Já a curva -Ψ30 é simétrica à curva anterior, sendo somada modulada por η, ou 

seja, essa é a influência da ligação na rotação q2. Ao somar (Ψ20) e (-0,5 Ψ30) obtém-se a 

forma da curva para ligação com rótula em B (η = 0,5). Observe-se que essa curva 

possui apenas um sentido da curvatura (R+); não há mudança de sentido. 

Portanto, a midiflexibilidade η = 0,25 é um ponto intermediário entre a presença 

mais acentuada de Ψ20, que resulta numa mudança de curvatura na extremidade direita 

(para η < 0,25) e o efeito de -Ψ30, quando não há essa mudança (η > 0,25). 

Já a função de interpolação associada à rotação q3, dada pela Eq. 3.44(b), não 

muda de forma (função Ψ30), apenas a sua intensidade é modulada pelo termo (1-2η). 

Assim, pode-se reescrever a função de interpolação dos deslocamentos vO como: 

( )32B q2q +η=α  (3.47) 
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Figura  3.14 Representação das funções Ψ20 e Ψ30. 
 

Agrupando termos em η, chega-se à expressão: 

na qual se tem o comportamento do EF rígido-rígido (Lavall, 1996), modificado pelo 

segundo termo, que representa o efeito da ligação (η) e o uso da função de forma Ψ30 

para fazer a correção. (Obs. lembrando de ξ definido pela Eq. 3.38). 

Substituindo a Eq. 3.47 na expressão anterior, obtém-se finalmente, a participação 

do giro da ligação no campo dos deslocamentos, conforme: 

ou seja, o giro da ligação (αB) é um fator da função de forma Ψ30 que se subtrai 

(superpõe-se -Ψ30) da expressão dos deslocamentos do EF da condição rígido-rígido 

(normal).  
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3.3.8 CAMPO DE DEFORMAÇÃO 

O campo de deformação para este EF com ligação pode ser estabelecido pela Eq. 

3.5 (ver apêndice A.4 para detalhes sobre esta consideração), na qual, empregando-se o 

teorema do valor médio, determina-se a deformação εO do eixo como a deformação 

média εm do EF, isto é: 

Realizando as substituições, integrações e simplificações algébricas necessárias, 

encontra-se a expressão final do campo de deformação para esse elemento com ligação: 

que será utilizada na dedução das matrizes de rigidez. 

Nas deduções e para obter a MRE, aplica-se a semiflexibilidade (η), dita global, 

que é avaliada pela Eq. 2.7(a) com o valor de (g) calculado com Lv, comprimento da 

barra. Para determinarem-se as deformações (e as tensões), todavia, emprega-se a Eq. 

3.53, com a semiflexibilidade (ηEF), chamada local, em que é usado comprimento do EF 

(L) para avaliar (g). (Alvarenga & Silveira, 2009a).  
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3.4 MATRIZES DE RIGIDEZ DO EF COM LIGAÇÃO 

São apresentados na subseção seguinte os procedimentos para obtenção das 

matrizes de rigidez (MR) do EF com ligação. O processo, adotado aqui, difere da forma 

geral empregada pelo método dos elementos finitos (MEF) na qual se faz a 

diferenciação das funções de forma para se chegar às matrizes de rigidez. Neste caso, os 

campos de deformações já foram expressos diretamente em relação às grandezas 

corrotacionais e, assim, pode-se diferenciá-los de forma direta, fazendo o emprego da 

relação (qα × ui) por meio de uma matriz de transformação cinemática, o que torna a 

solução mais econômica e simples. 

 

3.4.1 MATRIZES DE RIGIDEZ NA FORMA GENÉRICA 

Estabelecendo-se o equilíbrio do elemento por meio do princípio dos trabalhos 

virtuais (PTV) aplicado ao volume original, que se considera fixo, por hipótese, ao 

longo de todo o processo da análise estrutural, escreve-se: 

Isso significa que a variação do trabalho realizado pelos esforços externos (Fi) na 

produção dos deslocamentos (ui) é equilibrada pela variação do trabalho das tensões nas 

deformações. 

A variação de δε pode ser achada aplicando-se a regra da cadeia (sabendo que ε é 

função de qα, que por sua vez é função dos deslocamentos ui), isto é: 

e, desde que δui ≠ 0, obtém-se, substituindo a relação anterior na Eq. 3.54, expressa na 

foram indiciada: 

 que pode ser escrita também na forma matricial: 

que representa o equilíbrio do elemento finito.  

Note-se que na Eq. 3.56(b) A0 é a matriz de incidência cinemática e Q é o vetor de 
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esforços corrotacionais, com as componentes: 

Torna-se necessário conhecer a variação das grandezas corrotacionais (ou 

objetivas) em relação às globais, o que significa diferenciar os deslocamentos qα em 

relação aos deslocamentos globais ui. Considerando-se inicialmente a influência do 

ângulo ϕd, tem-se: 

com α = {1 a 3} & i = {1 a 6}, o que determina a denominada matriz de mudança 

instantânea de coordenadas A(ϕd), de dimensões [3×6], conforme expressão abaixo: 

Uma matriz similar é indicada por Yu & Shanmugan (1986), Gao & Haldar (1995) 

e Tin-Loi & Miza (1996). Como não se conhece a priori o ângulo de giro ϕd, procura-se 

estabelecer a relação qα,i fazendo-se ϕd = 0 na equação anterior, com o que se encontra, 

então, a matriz de incidência cinemática A0, já indicada na Eq. 3.56(b), que é 

representada por: 

Determina-se, agora, a matriz de rigidez do elemento referida ao sistema global 

derivando-se a Eq. 3.56(a) em relação às componentes dos deslocamentos globais uj, 

lembrando-se de que existe adicionalmente a parcela advinda do movimento de corpo 

rígido, ligada à compatibilidade geométrica. Da Eq. 3.56(a), chega-se à expressão geral: 

Observe-se que a primeira parcela da equação anterior pode ser encontrada 

derivando-se a Eq. 3.57 em relação à qβ, ou seja: 

tendo as parcelas indicadas o significado seguinte: 
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Com a substituição da Eq. 3.62 na Eq. 3.61, é possível escrever: 

sendo as duas primeiras parcelas matrizes de rigidez dependentes das grandezas 

objetivas (qα) que causam a deformação do elemento, enquanto a última parcela 

representa o efeito do movimento de corpo rígido do EF. 

Fazendo-se a reordenação da Eq. 3.64, encontra-se, finalmente: 

em que a primeira parcela representa a rigidez constitutiva associada ao material e às 

propriedades da seção; a segunda avalia a variação geométrica da curvatura do 

elemento, ligada ao efeito Pδ; e, por fim, a parcela referente ao efeito de movimento de 

corpo rígido, associada aos efeitos secundários P∆ e MΦ, já apresentados na seção 1.2. 

Observe-se também, que as derivadas de segunda ordem de qα em relação à uj 

podem ser obtidas diretamente da Eq. 3.58, fazendo-se ϕd = 0, isto é: 

j i
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com α = {1 a 3}, i = {1 a 6} e j = {1 a 6}. Como respostas dessas diferenciações, são 

encontradas três matrizes, uma matriz para cada α, de dimensões [6×6], chamadas de 

matrizes de compatibilidade geométrica Gα. 

Agora, reescreve-se a Eq. 3.65 na forma matricial: 

em que 

sendo Kep definida a matriz de rigidez constitutiva e Kg a matriz de rigidez geométrica. 
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Dessa forma, para cada elemento finito, determina-se a sua matriz de rigidez 

elastoplástica e de rigidez geométrica. As matrizes (Kep, Kh e Kgα) são simétricas de 

dimensão [6×6] definindo-se as duas primeiras em cada caso particular (engaste, rótula 

e semirrígida), enquanto a última não depende das condições de extremidade do EF. 

A matriz Kgα pode ser apresentada então como: 

sendo os termos dentro da matriz definidos por:  

Note-se que o termo K representa o feito MΦ, enquanto L representa o efeito P∆, 

com Ld sendo o comprimento atual (ou deformado). 

 As matrizes Kep e Kh possuem termos que estão associados aos esforços 

corrotacionais Qα, ao comprimento original L0 e às propriedades elastoplásticas a 

serem avaliadas em cada instante ω, ou seja, a cada ciclo de iteração da solução, pelos 

processos numéricos envolvendo as fatias da seção, nos nós inicial e final, tratados na 

subseção 3.4.4. 

 

3.4.2 MATRIZES DE RIGIDEZ BÁSICAS DO EF COM LIGAÇÃO 

A matriz de rigidez básica constitutiva (D), definida pela Eq. 3.63(a), pode ser 

escrita de forma muito simples, como mostrado a seguir: 

sendo os valores dos coeficientes di funções de η: 

Já a MR básica relativa à curvatura (H), definida com a Eq. 3.63 (b), é dada por: 
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na qual os parâmetros hj valem: 

A tabela 3.1 fornece para alguns casos particulares de η, os valores dos 

coeficientes di, i = {1 a 6} e hj, j= {1 a 3}. Nela se inclui o caso da rótula, o da ligação 

totalmente rígida, que é chamada de engaste; e também a ligação midirrígida, que 

possui η = 0,25. 

 

Tabela 3.1 Valores particulares dos coeficientes das MRs básicas D e H. 

Ligação (1) η d1 d2 d3 d4 d5 h1 h2 h3 
engaste 0,00 1 -1 4 2 4 4 -1 4 

0,05 1,05 -0,9 3,81 1,62 3,24 4,11 -1,08 3,24 
0,10 1,1 -0,8 3,64 1,28 2,56 4,24 -1,12 2,56 
0,15 1,15 -0,7 3,49 0,98 1,96 4,39 -1,12 1,96 

rígida 

0,20 1,2 -0,6 3,36 0,72 1,44 4,56 -1,08 1,44 
midirrígida 0,25 1,25 -0,5 3,25 0,50 1,00 4,75 -1,00 1,00 

0,30 1,3 -0,4 3,16 0,32 0,64 4,96 -0,88 0,64 
0,35 1,35 -0,3 3,09 0,18 0,36 5,19 -0,72 0,36 
0,40 1,4 -0,2 3,04 0,08 0,16 5,44 -0,52 0,16 

flexível 

0,45 1,45 -0,1 3,01 0,02 0,04 5,71 -0,28 0,04 
rótula 0,50 1,5  0 3 0 0 6 0 0 

Notas: 1) engaste é o rígido perfeito; flexível, a quase rótula; midirrígida para a posição média em η. 

 

3.4.3 MATRIZES DE RIGIDEZ NA FORMA COMPLETA 

Uma função linear de transformação denominada fT gera a MR [6×6] na forma 

tradicional, ao realizar o duplo produto pela matriz A0, que já foi indicado nas Eqs. 

3.67(b-c), definida pela relação: 

na qual são conhecidos os termos da MR básica R [3×3]: 

e a matriz de incidência cinemática A0, da Eq. 3.60, escrevendo-se a MR completa: 
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com o que se estabelece a relação de correspondência da transformação fT: 

Assim, definem-se as operações lineares: 

com o que se encontra diretamente a MR constitutiva Kep, como: 

na qual os termos internos da matriz são dados por: 

Da mesma forma, pode-se expressar a MR da curvatura Kh por: 

com os termos dentro dessa matriz valendo: 
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Avalia-se a variação com o parâmetro η dos coeficientes da matriz Kep [Eqs. 

3.80(a-j)] na Tab. 3.2 e da matriz Kh [Eqs. 3.82(a-f)] na Tab. 3.3. 

Os coeficientes da matriz Kep são quadráticos em η, diferindo dos encontrados por 

Monforton & Wu (1963), que são lineares em η, comprovando as diferenças entre essas 

duas formulações (Alvarenga, 2008). 

As propriedades elastoplásticas da seção, indicadas como (D1m, D2m, D3m) e 

empregadas na matriz Kep, serão definidas na próxima subseção. 

 

Tabela 3.2 Valores particulares dos coeficientes da MR Kep. 

Ligação (1) η A B C D E F G H I 

engaste 0 1 0 1 1 12 6 6 4 2 
0,05 1 0,15 1,05 0,9 10,29 5,43 4,86 3,81 1,62 
0,10 1 0,30 1,10 0,8 8,76 4,92 3,84 3,64 1,28 
0,15 1 0,45 1,15 0,7 7,41 4,47 2,94 3,49 0,98 

rígida 

0,20 1 0,60 1,20 0,6 6,24 4,08 2,16 3,36 0,72 
midirrígida 0,25 1 0,75 1,25 0,5 5,25 3,75 1,5 3,25 0,5 

0,30 1 0,90 1,30 0,4 4,44 3,48 0,96 3,16 0,32 
0,35 1 1,05 1,35 0,3 3,81 3,27 0,54 3,09 0,18 
0,40 1 1,20 1,40 0,2 3,36 3,12 0,24 3,04 0,08 

flexível 

0,45 1 1,35 1,45 0,1 3,09 3,03 0,06 3,01 0,02 
rótula 0,50 1 1,5 1,5 0 3 3 0 3 0 
Numerador D1m D2m D2m D2m D3m D3m D3m D3m D3m 

Denominador L0 L0 Ld L0 L0 L0 Ld
2 L0 Ld L0 Ld L0 L0 

Nota: 1) engaste é o rígido perfeito; flexível, a quase rótula; midirrígida para a posição média em η. 

Tabela 3.3 Valores particulares dos coeficientes da MR Kh. 

Ligação (1) η M N P R S T 

engaste 0 6 3  3 4 -1 4 
0,05 5,19 3,03  2,16 4,11 -1,08 3,24 
0,10 4,56 3,12  1,44 4,24 -1,12 2,56 
0,15 4,11 3,27  0,84 4,39 -1,12 1,96 

rígida 

0,20 3,84 3,48  0,36 4,56 -1,08 1,44 
midirrígida 0,25 3,75 3,75  0,00 4,75 -1,00 1,00 

0,30 3,84 4,08 -0,24 4,96 -0,88 0,64 
0,35 4,11 4,47 -0,36 5,19 -0,72 0,36 
0,40 4,56 4,92 -0,36 5,44 -0,52 0,16 

flexível 

0,45 5,19 5,43 -0,24 5,71 -0,28 0,04 
rótula 0,50 6 6 0 6  0 0 
Numerador 1 Ld Ld Ld

2 Ld
2 Ld

2 
Nota: 1) engaste é o rígido perfeito; flexível, a quase rótula; midirrígida para a posição média em η. 
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3.4.4 PROPRIEDADES ELASTOPLÁSTICAS DA SEÇÃO 

As integrais no volume original (VO), como as indicadas nas Eq. 3.57 e Eqs. 3.63 

(a-b), são aproximadas por meio dos somatórios de fatias no nó do EF. Isso pode ser 

apresentado, de maneira geral, pela expressão: 

na qual (j) é o índice do nó inicial (1 = A) ou final (2 = B); (i) se refere à fatia de cada 

seção, em que se está integrando; Xi (xj) representa a grandeza avaliada na fatia (i), no 

nó (j); dAOi é a área constante original da fatia (i); e Lo é o comprimento original do EF. 

Note-se que é feita a média das integrais das propriedades nas áreas do nó inicial e final. 

Esse processo caracteriza a integração numérica de Newton-Cotes, pela regra do 

trapézio (Abramowitz & Stegun, 1972), e se justifica porque as propriedades das fatias 

nos pontos extremos do EF são conhecidas, recomendando-se o emprego de integrações 

reduzidas em análises inelásticas (Saje et al.,1996). 

As propriedades elastoplásticas mencionadas serão calculadas, então, em termos 

médios, utilizando: 

em que se avalia no nó índice j (a ou b): 

ou seja: D1j é a avaliação numérica da integral de (D·dA0), D2j a de (D·yc·dA0) e D3j a 

relativa à (D·yc²·dA0), no nó j (somando todas as fatias da seção), e Dij, que corresponde 

a D, é obtido de acordo com Eq. 3.3 para cada fatia i do nó j. Com a plasticidade, 

separam-se as somas de fatias (dA0) em elásticas (dAe) e plásticas (dAp), mas a área não 

se altera. 

Esse processo foi empregado para produzir vários resultados anteriormente 

(Alvarenga & Silveira, 2006b, 2008a/b), inclusive os de validação do EF dito rígido-

rígido, estudado no capítulo 5, e do EF rígido-rótula, tratado no capítulo 6.  

Um conceito mais efetivo de avaliação das propriedades elastoplásticas foi 

adotado ultimamente e produziu bons resultados de validação (Alvarenga e Silveira, 

2009a). Esse procedimento foi adotado nos capítulos 7 e 8, sendo esclarecido a seguir. 

Considerando o equilíbrio do EF corrotacional do ponto de vista apenas 

constitutivo, pode-se escrever para o EF sem ligação (η = 0): 
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em que qi e Qi são os já conhecidos deslocamentos e os esforços corrotacionais. 

Em seguida, analisa-se o significado de cada termo da matriz D. Para isso, avalia-

se o comportamento de um EF de seção retangular (mais simples do que os Is 

empregados na parte computacional da solução), com uma zona plástica (ZP) já 

formada, para se ter uma boa ideia do comportamento da seção na plasticidade. 

Os termos da Eq. 3.86 representam de forma simplificada: 

a. D1m.q1/Lo = Q1 é a forma de avaliar o esforço e a deformação puramente axial, 

como elucida a Fig. 3.15(a). Pela representação da Fig. 3.15(b) percebe-se que 

essa deformação depende igualmente de ambas as extremidades nodais e, por 

isso, utiliza-se o valor médio (da mesma forma anterior):  

em que se somam a contribuição da área das fatias elásticas (dAe) e das plásticas 

(dAp), com seus respectivos módulos, numa área elastoplástica D1 do nó j. 

Adota-se a média dos valores, nos nós, para a MR, quando Et = 0 significa 

somar o valor nodal das partes elásticas remanescentes da seção de cada nó, ou 

seja: EAm = E (AeA +AeB)/2;   

b. já os termos D2m.qj/Lo = Q1 e D2m.q1/Lo = Qj, com (j) = (2) ou (3) constituem uma 

novidade, pois, em geral, são desprezados ou ignorados. Ocorrem duas novas 

situações:  

i. a deformação axial q1 pode produzir momentos dQ2 (ou dQ3), como ilustra a 

Fig. 3.15(c), dada à presença da excentricidade, já mostrada na subseção 3.3.1, 

(isto é, yCGP ≠ 0, ver Fig. 3.5); 

ii. as rotações efetivas q2 ou q3 podem gerar contribuições nos esforços axiais 

dQ1, que são vistos na Fig. 3.15(d), atuando de forma excêntrica. 

 

Em razão do esforço axial excêntrico [que na Fig. 3.15(c) ocorre somente no nó 

A], pode-se gerar um momento Q2 = dQ1.yCGP. Note-se que esse efeito não 

ocorre no nó B, para essa representação. Logo, não se justifica que se tomem 

valores médios para essa propriedade. Portanto, considera-se cada nó com a 
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propriedade independente, com os termos D2m substituídos por D2A e D2B, 

respectivamente (sem utilizar a média); 

c. os termos com D3m são mais difíceis ainda de serem aceitos na forma das 

médias simples anteriores (Alvarenga, 2005). Isso porque a plasticidade é 

capturada de forma bastante trabalhosa, monitorando cada fatia de cada nó do 

EF, do que se determinam as propriedades nodais mais corretas. Então, supondo-

se o emprego de valores médios, imagina-se que tais médias devem reproduzir 

um pouco do que ocorre nos nós.  
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Figura  3.15 Rigidez axial equivalente: 
(a) plasticidade em A; (b) deformação média axial; (c) deformação axial dq1 excêntrica 

induzindo ao momento dQ2; (d) giro dq2 gerando esforço axial dQ1. 
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Figura  3.16 Rigidez à flexão equivalente: 
(a) a rotação q3 induz momentos Q2 e Q3; (b) efeito de q3 na forma de média;  

(c) a rotação q2 induz momentos Q2 e Q3 e axial dQ1; (d) efeito de q2 na forma de média. 
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Ao se fazer a média anterior, entretanto, ambos os nós ficavam com as mesmas 

propriedades (valor único para ambos os nós), sendo que os comportamentos e os 

estados (desses nós) podem ser bastante diferentes. Observe-se que o que se deseja 

é achar uma média mais razoável, considerando o estado desses nós. Para melhor 

entender essa diferença, requer-se um estudo mais detalhado. Na figura 3.16(a), 

mostra-se a ZP do nó (A) e compreende-se que com aplicação da rotação q3 só 

ocorram momentos induzidos Q2 e Q3, os quais poderiam corresponder aos 

obtidos pela média na Fig. 3.16(b), Deve-se lembrar que, dessa forma, ambos os 

nós (A) e (B) possuiriam, também, a excentricidade yCGP, menores que o real em 

(A) (visto que, fez-se a média dessas propriedades).Entretanto, quando se impõe a 

rotação q2, como representado na Fig. 3.16(c), aparecerão não apenas os 

momentos induzidos Q3 e Q2, mas uma parcela de esforço axial excêntrico, dQ1 

associado. Note-se que essa parcela de axial deve aparecer tanto na forma da 

média anterior como na proposta atual. Na forma anterior, porém, a parcela de 

axial é dividida em dois nós, sendo que no nó B não há excentricidade (não possui 

ZP).  

 

Poder-se-ia justificar o emprego da média anterior informando que isso torna a 

plasticidade mais lenta, uma vez que os deslocamentos maiores são retardados, visto 

que plasticidade nodal é diluída no EF, e não dominante onde se origina. Se a 

formulação consegue ter uma adequada recuperação dos esforços internos e se no 

restante do processo essas influências (excentricidades) são consideradas, a média 

anterior apenas dificulta o processo de equilíbrio. Requerendo mais iterações e forçando 

a distribuição da plasticidade, perde-se mais tempo no ciclo corretivo até atingir a 

convergência, chegando ao mesmo estado de equilíbrio. 

Essas avaliações de médias foram modificadas, considerando-se agora a 

aproximação desenvolvida no método plástico refinado proposto por Liew, quando se 

forma uma rótula plástica (RP) em uma das extremidades do EF (Chen et al., 1996). 

Dessa forma, reescreve-se a matriz D, que procura espelhar coerência maior com o 

que ocorre nos nós correspondentes, baseando-se em novas propriedades elastoplásticas 

nodais, por meio da expressão: 
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na qual os parâmetros (dj), j = {1 a 5} são os mesmos da Eq. 3.70, porém se emprega o 

momento estático elastoplástico da seção dos nós (A) e (B), dado por: 

 que não será zero se houver plasticidade e o deslocamento do CGP (yCGP ≠ 0).  

Os termos relativos à inércia elastoplástica de cada nó (j) são avaliados da forma 

tradicional, considerando o teorema dos eixos paralelos: 

em que yCGP, quando ocorre a plasticidade, será encontrado pela relação: 

Adotando-se a aproximação de Chen et al. (1996), determinam-se as inércias 

elastoplásticas nodais efetivas conforme: 

em que D3ABm avalia a relação de transmissão de momentos entre os nós, considerando 

o efeito conjugado da plasticidade em ambos os nós, e a rigidez de viga (4EIz/L0) é a 

base para a correção de D3jm, j sendo o nó (A) ou (B). (Veja também o apêndice A.7). 

Para melhor avaliar a diferença entre os dois processos, por exemplo, considera-se 

um EF com seção retangular (com dimensões de 20 cm ×1 cm), e supõe-se que a 

extremidade A tenha 40% da seção plástica, como na Fig. 3.17(a) e do outro lado, no nó 

B, a plasticidade varia conforme o parâmetro (ρP), no intervalo de 0 (elástico) ≤ ρP ≤ 1 

(plástico), representado na Fig. 3.17(b). 

Ao considerar o material como elástico-plástico perfeito (Et = 0) e isolando o 

módulo elástico (E), pode-se dizer que: 
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( ) ( ) ( ) 4D3D D        EIDDD ABm33j3jm0B3A3ABm3 +==  (3.92a-b) 

D1A/E = 12 cm2       D1B/E = 20(1-ρP)       D1m/E = 16-10 ρP 

yA = 4 cm     D2A/E = 48 cm3    yB = 10  ρP      D2B/E = 200(1-ρP) ρP 
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Figura  3.17 Geometria da seção retangular elastoplástica: 
(a) plasticidade no nó A, lado B elástico; (b) plasticidade também em B;  

(c) esquema das seções analisadas para cálculo. 
 

A área média da seção representa um valor coerente, como se acompanha na Fig. 

3.18(a). Já o momento estático na Fig. 3.18(b) varia muito no nó B e é constante no nó 

A. Assim, a média acompanha as mudanças em B, distorcendo o que ocorre em A. 

Para avaliar a inércia elastoplástica, pode-se escrever: 

Com esses valores se constrói a Fig. 3.19, na qual se verifica que a média anterior 

(D3m) considerou-se uma inércia mínima no nó com ρp = 1, que é incorreta. Na 

abordagem atual, as inércias ajustadas dos nós refletem tanto a plasticidade da seção 

(D3A e D3B), como a influência do nó oposto no nó avaliado (D3ABm). 
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Figura  3.18 Propriedades da seção retangular elastoplástica: 
(a) área elastoplástica média; (b) momento estático elastoplástico médio. 

D3A/E = h3/12 + h.y2 = (12)3/12 +12(4)2 = 336 cm4        

D3B/E = [20(1- ρP)]3/12 + [20(1- ρP)](10 ρP)2 = 8000(1- ρP)(4 ρP
2-2 ρP+1)/12 
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Figura  3.19 Comportamento da inércia elastoplástica: 
(a) média no nó A (com ZPs fixas); (b) média no nó B (com ZPs crescendo). 

 

No nó A com ZP fixa, a média D3Am está mais perto de D3A do que D3m, como se 

mostra na Fig. 3.19(a). Já no nó B da Fig. 3.19(b), com a ZP crescendo, quando ρp = 1 

então D3Bm atinge zero, acompanhando D3B, enquanto D3m não é nulo.  

Essa nova abordagem melhorou a velocidade de convergência quando já ocorria 

plasticidade em diversos EF/barras, para algumas estruturas analisadas (Alvarenga & 

Silveira, 2009a). Algumas vezes, houve um insignificante acréscimo de deslocamentos, 

porém, mostra-se mais instável próximo do ponto limite de carga [na versão anterior do 

PPLANAVA, ocorria singularidade mais rapidamente, na atual sucede uma divisão por 

zero (“overflow”) nos casos de formação de mecanismo (viga, por exemplo)]. 

 

3.4.5 MATRIZ DE RIGIDEZ GLOBAL 

Com as propriedades definidas, chega-se na matriz de rigidez K de cada elemento 

finito (i) no sistema corrotacional local. Em seguida, procede-se à sua transformação 

para o eixo global por uma rotação de eixos (θg) por meio da operação linear:  

na qual T(θg) a matriz de transformação por rotação (ver apêndice A.6). Em seguida, 

faz-se a montagem da Matriz de Rigidez Global S do sistema estrutural, somando-se a 

contribuição isolada de cada EF de cada barra, alinhada por graus de liberdade (GDL), 

ou seja: 

K(i) = TT(θg)K T(θg) (3.93) 

∑
=

=
elementos n

1i

(i)KS  (3.94) 
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3.5 ESFORÇOS INTERNOS DE EQUILÍBRIO 

Complementando a formulação apresentada, serão encontrados agora os esforços 

internos resultantes no EF. Como foi dito, na técnica das fatias esses esforços são 

avaliados pela integração das tensões atuantes em todas as fatias da seção de cada nó. 

Note-se que essas tensões são obtidas a partir do diagrama σ-ε selecionado, somando às 

tensões residuais e às existentes, as variações de tensões causadas pelos acréscimos das 

deformações calculadas pela Eq. 3.53, ou seja, dependem da ligação (ηEF) também. 

Considerando o nó j genérico, que pode ser o inicial (A) ou o final (B), determina-

se o esforço axial Nj resultante da expressão: 

e o momento de flexão Mj é dado por: 

Nessas expressões, as integrais na área original (isto é, em toda a seção A0) são 

convertidas em somatórios de (n, número total fatias), cada fatia com sua tensão (σi), 

sua área (dA0i) e a sua posição em relação ao eixo do EF (yci). 

As respostas dessas integrais (Nj, Mj) correspondem aos esforços corrotacionais de 

equilíbrio. É fácil concluir que os momentos de flexão são Q2 = -MA e Q3 = MB. Há, 

porém, dois esforços axiais Nj associados à grandeza Q1. No regime elástico, as 

integrais fornecem valores absolutos iguais (-NA = NB = Q1). Já na presença da 

plasticidade, em geral, essas integrais podem produzir valores absolutos diferentes. 

Dadas as diferenças produzidas nas respostas do método anterior (Lavall, 1996), 

desenvolveu-se um processo alternativo de ajuste chamado IIEA Integração Iterativa do 

Esforço Axial (Alvarenga e Silveira, 2008c), escrevendo: 

Esse processo será apresentado com maiores detalhes na seção seguinte. 
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Q1 = IIEA (-NA, NB) (3.97) 
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3.6 INTEGRAÇÃO ITERATIVA DO ESFORÇO AXIAL (IIEA) 

Uma parte importante no processo numérico de geração dos esforços internos 

reside na correção do estado das fatias, quando ocorre a plasticidade. Lavall (1996) 

tentou realizar a aproximação do esforço axial como uma média simples das integrais 

das tensões nas fatias, calculadas no nó inicial e final de cada EF, de forma similar à Eq. 

3.83 adotada para as propriedades elastoplásticas, ou seja: 

na qual se tem o esforço axial no EF corrotacional Q1 relacionado aos esforços Ni que 

são avaliados pela Eq. 3.95. 

Vários pesquisadores (Oran, 1973; Kam et al., 1983; Kassimali, 1983) reportaram 

dificuldades numéricas surgidas com a interação entre o esforço axial, o momento fletor 

e a curvatura (ou rotação específica) quando a plasticidade participa da análise. 

Kassimali (1983) atribuiu algumas dessas discrepâncias numéricas do passado a 

considerações inadequadas da formulação. Já Yang & Kuo (1994) atribuíram à 

incapacidade de algumas formulações acompanharem o movimento de corpo rígido, 

avaliando esforços espúrios. Entretanto, em trabalhos realizados, mostrou-se que as 

diferenças encontradas no método anterior não tinham essas origens, mas, proviam de 

uma perda do equilíbrio, que nasce no instante em que se limita (ou se modifica) o 

comportamento da fatia por causa do escoamento, como se mostra na subseção seguinte. 

Maiores detalhes sobre esses aspectos podem ser vistos em Alvarenga (2005, 2008; & 

Silveira, 2008c). 

 

3.6.1 INTRODUÇÃO  

Seguindo a figura 3.20(a), observa-se que quando determinada fibra está no 

regime elástico, a uma deformação ε1 corresponde uma tensão σ1 < σy, tal que: 

Quando ocorrer um acréscimo de deformação δε, num dado instante ω do processo 

incremental-iterativo, tal que: 

então a tensão encontrada na fibra será: 

2

NN
Q BA

1

+−
= .   (3.98) 

ε1 = σ1/E < εy.   (3.99) 

ε2 = ε1 + δε ≥ εy (3.100) 

y2y112 E σ=σ∴σ>δε+σ=δσ+σ=σ   (3.101) 
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Figura  3.20 Início da plasticidade da fatia (fibra): 
(a) Escoamento: σσσσ1 + δδδδσσσσ > σσσσy; (b) deformação permanente: dεεεεp. 

 

Supondo que o material seja elástico e perfeitamente plástico, constata-se que a fibra 

entrou em escoamento. Dessa forma, o acréscimo de tensão inicialmente suposto, ao 

realizar-se a análise e o equilíbrio do vetor de cargas, não mais ocorrerá.     

Haverá, então, uma deformação permanente (plástica) dεp, mostrada na Fig. 3.20 

(b), e uma deformação elástica dεe = εy – ε1, de tal forma que: 

NA figura 3.21(a) mostra-se a situação de um EF onde no nó (A) surgem fibras 

plásticas e o nó (B) está em regime elástico. Forma-se, então, uma zona plástica (ZP) ao 

longo do EF. Observe-se, também, que a Eq. 3.102 só pode ser definida considerando 

uma redução da tensão, antes avaliada como superior a σy em cada fatia. 

Assim, ocorre naturalmente uma parcela de tensão dσ não equilibrada nas fatias 

que sofrem o escoamento neste instante. Integrando-se as tensões em todas as fatias das 

seções, nos nós inicial e final desse EF, obtém-se o vetor de esforços internos: 

Ocorre que esses esforços apresentam uma parcela de desequilíbrio no esforço 

normal, causada pelos valores dσ não equilibrados: 

Verificou-se que essa diferença não pode ser restaurada por meio do processo 

iterativo de Newton-Raphson e que a ausência dessa parcela gerava uma distorção 

nos resultados (Alvarenga, 2005). Isso será exemplificado no capítulo 5. 

ε2 = ε1 + dεe + dεp = εy + dεp > εy. (3.102) 

{ } { } QF ==−−=
T

321
T

BBAAI Q  Q  QM N  M  N  ,,,,,  (3.103) 

dNA = |NA| – |NB| ≠ 0 (3.104) 
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Figura  3.21 Formação de ZP em um nó do EF: 

(a) ZP causa  dσσσσ desequilibrado;  (b) esforços intenos no EF; (c) deformação adicional. 

 

Deve-se lembrar que se considera NA e NB com o sinal de engenharia: (+) para 

tração e os esforços internos tem sentidos opostos no EF, que são diferentes dos sinais 

das tensões. Para ajustar tensões de forma a equilibrar os esforços normais, apresentou-

se um processo iterativo aplicado a todos os elementos que tivessem fibras plásticas, nos 

quais, enquanto houver uma diferença |dNj| > tolerância (≅ 0,1%), será introduzida uma 

deformação axial adicional no nó índice j (A ou B), onde ocorre dNj, pela expressão 

(Alvarenga, 2005): 

na qual Acj é a área da seção conhecida (naquela iteração), avaliada no nó de índice j (A 

ou B), que será atualizada iterativamente. Assim, novas tensões serão obtidas, outros 

esforços F também, e o ciclo será repetido até se atingir à convergência do processo. Na 

Fig.3.22(a-d), elucida-se a transformação de um diagrama elástico em um diagrama 

plástico, fazendo-se a recuperação das tensões ∆F1 e ∆F2, que nascem da plasticidade, 

gerando o diagrama plástico correspondente, com esforços resultantes menores. 

O objetivo aqui é garantir que em cada EF ter-se-á sempre: -NA ≈ NB ≈ Q1, visto 

que o esforço normal deverá ser constante (inalterado entre os extremos do EF) e que 

não há carga axial externa aplicada no interior do EF. 
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Figura  3.22 Processo da Integração Iterativa: 
(a) diagrama elástico; (b) diagrama reduzido; (c) correção; (d) diagrama final. 

δεj = dNj/Acj (3.105) 
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Não é necessário fazer o mesmo para o momento, que é avaliado linearmente ao 

longo do EF, sendo possível seu equilíbrio ou ajuste na iteração seguinte usando apenas 

o esquema de Newton-Raphson. 

 

3.6.2 JUSTIFICATIVA 

A justificativa desse processo pode ser expressa como: “os esforços nodais de EF 

baseados em deslocamentos não podem ser recuperados através da integração direta das 

tensões nas fibras ao longo das seções nas extremidades do EF, porque, em geral, as 

equações diferenciais de equilíbrio não são atendidas ali (para formulações fracas que 

assumem alguma função de forma para aproximar o EF deformado), quando ocorre a 

plasticidade” (Kassimali, 1984).  

“Tampouco a matriz de rigidez tangente do EF deve ser empregada para recuperar 

os esforços incrementais do EF”, já que “essa não pode capturar a não linearidade do 

material que aparece no atual passo de carga” (Teh & Clarke, 1999). 

Alvarez & Birnstiel (1969), nos primórdios da técnica de ZP, já indicavam a 

“necessidade de correção iterativa de (Nj e Mj) no próprio passo de carga”, notando que 

“Mj depende de Nj e da deflexão, e que o ajuste de Mj deveria ser feito após o primeiro, 

em outro processo iterativo”. 

Esse processo tem precedente nos trabalhos de Terro & Hamoush (1996), que 

reproduziram o diagrama tensão-deformação de uma seção retangular (que se constrói 

com as fórmulas de Moses, 1964), por meio de um processo iterativo que possui a 

mesma essência do desenvolvido agora (Alvarenga & Silveira, 2008c). São ideias 

similares às de Bushnell (1977), adotadas na formulação com ZP de Clarke (1994). 

Pode-se considerar, então, que o procedimento aplicado tem justificativa teórica, 

significado físico e precedente (Alvarenga, 2005). 

 

3.6.3 IIEA SOB CONDIÇÕES ESPECIAIS 

A IIEA representa uma tarefa numérica complementar da formulação cujo 

desdobramento computacional será tratado no capítulo seguinte. Cabe ressaltar, porém, 

alguns aspectos teóricos que devem ser levados em consideração, que são as questões de 

como definir-se o valor esperado, ou correto, desse esforço axial Q1 no EF, 

principalmente, quando se tem outras situações mais complexas do que a ilustrada na 

Fig. 3.22. 
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O esforço axial estabelecido pela Eq. 3.95 pode ser relacionado ao campo de 

deformações da Eq. 3.5, escrevendo-se: 

do que aparecem, genericamente, as duas parcelas que contribuem: 

Como em dado instante ω ainda não ocorreram novos escoamentos de fatias, as 

grandezas indicadas são calculadas e avaliam-se os acréscimos dos esforços, então o 

incremento do esforço axial que deverá ocorrer naquele instante, independentemente de 

haver nova plasticidade, é dado por: 

Esse incremento possui duas componentes: a do alongamento (∆Nεj), que é 

abalizada por uma integral média, já apresentada, e a parcela da curvatura (∆Nρ’j) que é 

relacionada à excentricidade (yCGP). Mas, essa excentricidade é uma das principais 

causas das variações acopladas do esforço axial, por isso mesmo essa parcela é 

desconsiderada e toma-se como incremento real esforço do axial apenas a parcela do 

alongamento.  

Portanto, conhecendo-se esse valor, pode-se fazer a correção do esforço axial após 

a determinação de todas as plasticidades que aconteceram naquele instante (ω), 

retirando-se a parcela já introduzida, que representa a diferença entre o axial obtido e o 

do instante anterior (ω-1), valor que será reincorporado ao EF pela IIEA: 

no nó correspondente. 

Este assunto é revisto no próximo capítulo, na parte de implementação 

computacional, na qual se indicam alguns detalhes adicionais. 

Com as matrizes de rigidez e os esforços internos do elemento, a base da 

formulação geral fica completa, passando-se agora ao estudo do processo de solução 

numérica e a sua implementação computacional. 
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4.1  INTRODUÇÃO 

Hoje, uma das partes mais complexas de um trabalho de pesquisa de engenharia, 

que aborda a área numérica, reside na transcrição de fórmulas e processos numa base 

computacional ou no desenvolvimento dessa base. Isso tem transformado a meta 

principal da engenharia estrutural, na utilização de programas de computadores ou no 

desenvolvimento dessas ferramentas; muitas vezes esquecendo-se de que não é esta a 

sua finalidade, nem do trabalho proposto e, tampouco essa é a parte mais importante. 

Isso contrasta muito com o que se espera da própria engenharia, pois, de certa 

maneira, parece transformar o profissional e/ou analista estrutural em um usuário dos 

chamados “pacotes” (ANSYS, 2009; ADYNA, 2000; etc.), ou pior, num mero 

programador, capaz de produzir um código aberto, para um uso irrestrito e 

descontrolado (Peters et al., 1998). Fica, assim, a impressão de que a engenharia 

estrutural se transformou no desenvolvimento de programação de computadores, e não 

na solução de problemas estruturais. 

Por essa razão, nesta tese se mostram detalhes num nível mais alto, incluindo 

neste capítulo a compreensão de princípios e decisões principais que nortearam o 

trabalho e excluindo-se, de maneira geral, o código computacional, ou seja, esta tese 

não é um manual de utilização ou do desenvolvimento de programa computacional. 

Mas as informações fornecidas são as suficientes para que se possa ter uma visão 

geral de como desenvolver essa tarefa, empregando os diversos recursos hoje existentes, 

nas mais diversas plataformas e linguagens disponíveis. 

Desenvolveu-se um sistema de programas de computador modulares, baseado no 

sistema operacional “IBM PC DOS” (versão 6.3, 1993), denominado PPLANAVX, com 

a linguagem “TURBO-BASIC” (Miller, 1987). Esse sistema produziu excelentes 

resultados até 2007, tendo resolvido vários dos exemplos, para o EF rígido-rígido (que 

serão vistos no próximo capítulo) e para o EF rígido-rótula (capítulo 6). 

Posteriormente, verificando-se as desvantagens de continuar utilizando as 

máquinas controladas com o sistema operacional anterior (“IBM PC DOS”, 1993), 

migrou-se para uma linguagem nova “POWER-BASIC” (2005) compatível com o 

sistema “WINDOWS” (versão XP, 2001), que é mais lenta em alguns pontos que a 

anterior e mais rápida em outros. O resultado final é que o tempo e a memória gastos 

permanecem sendo um dos desafios a vencer no futuro. 
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Na próxima seção, faz-se um apanhado geral das características desse sistema 

computacional, fornecendo uma descrição bastante sucinta da filosofia principal das 

partes, um fluxograma geral e alguns comentários complementares. 

Posteriormente, trata-se da solução do problema não linear, que se relaciona à 

técnica incremental-iterativa. Nessa implementação, definiu-se um fator de incremento 

(um número que varia de 0 a 1, de forma automática ou com passos predefinidos) que 

está vinculado ao tipo de controle incremental selecionado pelo usuário (de carga, por 

exemplo). Neste ponto, então, surge outra contribuição deste trabalho, que é o chamado 

Controle de Deslocamento Generalizado (CDG). 

Na seção 4, abordam-se alguns aspectos computacionais que nascem da 

Integração Iterativa do Esforço Axial (IIEA), apresentada no capítulo anterior e 

empregada nos exemplos desta tese. Alguns trechos relativos à IIEA estão mais 

compactos, sendo complementados por informações já apresentadas em trabalhos 

anteriores (Alvarenga, 2005 e 2008), que não serão repetidas aqui. 

Na penúltima seção, aborda-se outra contribuição desta tese, que é o controle da 

ligação por meio da curva M-θ e um diagrama de comportamento de semi-histerese. 

Além disso, estuda-se, também, a determinação da rotação da ligação, que é uma 

novidade e outro desafio a ser vencido na obtenção dos resultados apresentados no 

capítulo 7 do EF rígido-ligação. 

As referencias do capítulo compõem a última seção. 
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4.2  CONSIDERAÇÕES GERAIS 

 O sistema computacional PPLANAVA (Pórtico PLano ANálise AVAnçada) é um 

conjunto de programas independentes que trabalham numa sequência de tarefas (ou 

objetos), cujo resultado final é desenvolver uma análise inelástica de segunda ordem, 

incluindo: 

a. as imperfeições geométricas (a curvatura inicial, CI; e/ou o fora de prumo, FP); 

b. as imperfeições físicas (os diagramas tensão-deformação e as tensões residuais, 

TR); e agora,  

c. as ligações semirrígidas. 

 

Os dois primeiros módulos (1 e 2) são de entradas de dados de geometria e cargas, 

respectivamente. No módulo 3 definem-se as hipóteses a serem analisadas. No quarto 

módulo (4), inicializam-se os dados nas matrizes, como tensões residuais, ligações, e 

prepara-se a etapa de solução de cada hipótese. Após a conclusão desta parte, o 

problema entra na chamada fase de solução.  

A fase de solução corresponde ao processo incremental-iterativo, em que 

ciclicamente são chamados os módulos, que desempenham as seguintes tarefas: 

a.  módulo 0: define o vetor de cargas de referência, usado na análise naquele 

instante, podendo ser um vetor de acréscimo de carga ou até o de carga fixa (no 

início do processo), bem como o vetor de carga acumulada;  

b. módulo 5: obtém as diversas matrizes de rigidez (MR) dos EFs [6×6], para 

qualquer tipo de EF: normal, com rótula ou com ligação, soma as MRE (K= Kep 

+ Kgα +Kh) e faz a rotação de eixos do sistema local para o global; 

c.  módulo 6: faz a montagem da matriz de rigidez global (S); 

d. módulo 7: resolve o sistema de equações lineares por redução de Gauss (Mayer, 

1973) de forma otimizada, com um ou dois vetores de cargas simultaneamente, 

obtendo os deslocamentos correspondentes;  

e.  módulo D: define o vetor de carga final, o vetor de deslocamentos final e o fator 

de carga, com base nos resultados anteriores, quando se emprega o fator de 

incremento para deslocamento selecionado ou generalizado;  

f.  módulo 8Ap: obtém a nova configuração, determina as deformações e tensões 

nas fatias ao longo de todo o modelo;  

g. módulo 8Bp: desenvolve a IIEA, quando ocorre a plasticidade no EF;  
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h. módulo 8Cp: controla a ligação, ajustando o comportamento do EF à curva M-θ 

selecionada;  

i. módulo 9: realiza a checagem da convergência, avaliando o resíduo de forças, 

momentos, deslocamentos e rotações, em relação ao estado anterior, 

determinando se obteve um novo estado aproximado de equilíbrio;  

j.  módulo P: faz a saída geral dos resultados, por passo ou por iteração; e   

k. módulo C: permite reiniciar de algum ponto anterior, refinando o fator de 

incremento, quando já ocorreu o colapso com passos maiores que 0,1%. 

 

Esse procedimento é representado esquematicamente pelo fluxograma das Figs. 

4.1 e 4.2, nas quais se destacam três grandes laços (“loops”): 

a.  das hipóteses – que ocorre quando se tem num mesmo trabalho mais de uma 

hipótese de análise (pouco usado);  

b. dos incrementos – que podem ser de carga, deslocamento escolhido ou 

generalizado; e   

c.  das iterações – que depende do grau de não linearidade do problema, do critério 

de convergência adotado, bem como, da proximidade de um ponto limite de 

carga, ou limite de deslocamento ou, ainda, de um ponto de bifurcação. 

 

Desenvolveu-se um sistema computacional por causa do volume de informação 

manipulada (e não por um objetivo puramente modular ou uma visão de macro 

programa). A filosofia de qualquer programa estrutural pode ser expandida a outras 

aplicações, mas, neste caso, isso seria bastante ineficiente, visto que a quantidade de 

informações envolvidas no processo com fatias é muito elevada e exige um espaço de 

armazenamento próprio, o que difere das concepções adotadas nos programas que 

avaliam a plasticidade de forma concentrada (Chen & Toma, 1994). 

As tarefas que envolvem as fatias englobam:  

a. a geração da MRE (propriedades geométricas);  

b. a determinação do campo de deformações (acréscimos de tensões);  

c. o estabelecimento da plasticidade com o caminhamento no diagrama tensão- 

deformação (escoamento, deformações plásticas, estado de carga plástica);  

d. a obtenção dos esforços internos (integração de tensões);  
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Figura  4.1 Fluxograma (parte I) 
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Figura  4.2 Fluxograma (parte II) 
 

e. os ajustes da IIEA;  

f. os ajustes de propriedades geométricas elastoplásticas; e  

g. a interferência da ligação no comportamento das fatias (como será visto na 

penúltima seção deste capítulo). 

 

Na filosofia de desenvolvimento de PPLANAVA, considera-se o uso dos recursos 

disponíveis na máquina, maximizando a parcela do armazenamento com arquivos em 
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disco, quando o tradicional é que se façam tais armazenamentos na memória. Isso torna 

o processamento mais lento, porém se ganha ao manter a informação necessária em 

todas as etapas da solução (como no caso de se refazerem os trabalhos com menor 

perda).  

Essa arquitetura permite a parada para análise e o seu reinício posterior. São 

aspectos que aparentemente não têm sentido para modelos pequenos, mas que se tornam 

interessantes quando o processo eletrônico se torna caro (consumo de tempo de refazer 

um trabalho, por exemplo). Isso permite, também, uma facilidade de diagnóstico de 

erros (de implementação, formulação ou numéricos). Todavia, há muito debate em torno 

de soluções e arquiteturas de sistemas computacionais, o que se torna novamente uma 

questão de alternativas pessoais e foge ao objetivo com este trabalho. 

A entrada de dados e o comportamento dos modelos, com base no conceito da 

Análise Avançada, em que se têm os chamados Aspectos Importantes [efeitos 

geométricos da curvatura inicial (CI), fora de prumo (FP) e físico das tensões residuais 

(TR)], já foram mostrados (Alvarenga, 2005) e o programa não teve alterações 

significativas nesta parte.  

A introdução da ligação semirrígida exigiu a modificação de uma parte da entrada 

de dados para permitir algumas facilidades de uso, além da inclusão de um arquivo 

temporário de informações relativo aos EFs com ligação. 

O novo módulo de ligações (PPLANV8Cp) do sistema é uma ferramenta ainda em 

desenvolvimento, mesmo após a conclusão deste trabalho. Vários pontos, como o efeito 

da plasticidade e do axial, não puderam ser plenamente avaliados, seja pela carência de 

exemplos correspondentes, seja por não ter conseguido reproduzir os existentes na 

literatura. Além disso, há controvérsias nas formas em que são apresentadas essas 

curvas M-θ em alguns trabalhos, daí a dúvida se o ângulo de giro da viga está incluído. 

Pode-se adicionar que nem sempre as publicações trazem todos os dados necessários 

(por exemplo, por limites editoriais como espaço), ou não se tem acesso às obras 

completas (no caso de teses, ensaios de laboratório), nos quais mesmo um contato com 

o pesquisador não permite acesso a essas informações. Sem as informações completas e 

adequadas, reduzem-se os meios de avaliar as discrepâncias, já constatadas em outros 

casos e propor ajustes ou melhorias. São etapas naturais a vencer no futuro, que serão 

abordadas no capítulo 9. 
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4.3 SOLUÇÃO DO PROBLEMA NÃO LINEAR 

Como se constata pelo fluxograma nas Figs. 4.1 e 4.2, o processo de solução do 

problema não linear, tratado nesta tese, engloba três considerações básicas: 

a. a avaliação das hipóteses;  

b. o processo incremental; e   

c. o processo iterativo. 

 

A avaliação das hipóteses tem relação direta com a definição de carregamentos e 

como as cargas são inseridas e tratadas no modelo estrutural pelo programa 

computacional. O processo incremental-iterativo constitui a forma de solução geral para 

uma análise com não linearidade física e geométrica, porque as incógnitas principais – 

os deslocamentos – estão também relacionadas às matrizes constitutivas e geométricas, 

como foi indicado antes. 

Lembrando que a análise é incremental, uma fração ∆F do carregamento nodal 

equivalente é aplicada em cada passo. Então, forma-se o sistema de equações lineares 

no instante (ω), característico dos métodos inelásticos de segunda ordem, indicado por: 

Os deslocamentos (u) e as forças (F) são atualizados em cada etapa, bem como a 

rigidez (S) que relaciona o seu incremento (∆u, ∆F) em cada instante (ω). 

O sistema definido pela Eq. 4.1(a) é resolvido por redução de Gauss, com 

substituição retroativa (Owen & Hinton, 1980). Determinam-se, assim, os acréscimos de 

deslocamentos ∆uω e as reações Rω = Rω-1 + ∆Rω. Com os deslocamentos atuais, obtêm-

se as deformações (εω = εω-1 + ∆εω) das fatias de cada nó do EF; com base nelas, as 

tensões correspondentes (σω = σω-1 + ∆σω), e integrando essas tensões, os novos esforços 

internos (FI
ω). Veja-se que o vetor completo de cargas de referência é F0. 

Na sequência, os esforços desequilibrados do sistema estrutural são obtidos pela 

diferença entre a parcela de cargas aplicadas Fω = λω F0 (externas) e os esforços internos 

nodais FI
ω, como ilustrado na Fig. 4.3(a), ou seja: 

sendo λ o fator de carga, que pode ser fixo ou definido em cada instante (ω). 

 

Sω∆uω = ∆Fω = ∆λ F0    uω  = uω-1 + ∆uω    Fω = Fω-1 + ∆Fω = λω F0 (4.1a-c) 

∆Fω = Fω – FI
ω = λω F0 – FI

ω (4.2) 
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Figura  4.3 Solução do problema não linear: 
(a) definir cargas residuais; (b) correção da rigidez iterativamente. 

 

Essas forças desequilibradas ou residuais (∆F) são, então, eliminadas aplicando-

se o processo iterativo, conforme ilustrado na Fig. 4.3(b), que apresenta a trajetória de 

equilíbrio de uma análise. Constrói-se tal trajetória com um deslocamento escolhido (u), 

associado a um fator de carga (λ) e procura-se atingir o ponto da curva (uk, λk) com as 

iterações ω = 1, 2, 3, etc. Como visto, (ω) é simplesmente um instante em qualquer 

iteração de qualquer passo, sendo que no início do passo e na figura, por simplicidade, 

tomou-se o valor ω = 1. 

A matriz de rigidez global (MRG), que representa a tangente ou gradiente (define 

a direção de crescimento), é atualizada em várias etapas chamadas de ciclos iterativos, e 

o ponto de solução (vetor de deslocamentos) vai se aproximando do ponto da curva, na 

qual se obtém um valor próximo do equilíbrio.  

Quando esse ciclo de iterações, que reavalia todas as grandezas, tende a resultados 

finais muito próximos entre duas iterações seguidas, acréscimos de outras iterações 

podem ser desprezados. Assim, considera-se atingido um ponto da trajetória de 

equilíbrio, iniciando-se um novo passo ou incremento. 

Essa técnica de solução incremental-iterativa constitui o método de Newton-

Raphson (Simpson, 1740) que, em geral, consegue uma convergência quadrática na 

direção da solução, como também pode apontar para divergência, em proximidade de 

pontos críticos, e ficar estacionário em pontos de bifurcação. 

Alguns detalhes dessas considerações básicas do processo de solução serão 

abordados nas subseções seguintes. 
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4.3.1 AVALIAÇÃO DAS HIPÓTESES 

No programa computacional PPLANAVA, todos os carregamentos são 

constituídos por cargas nodais, ou por cargas aplicadas nas barras, que são convertidas a 

nodais equivalentes, referenciadas em conjunto. Assim, na realidade, forma-se um vetor 

de cargas com valores associados a cada grau de liberdade (GDL) da estrutura. 

Durante a leitura de dados, as cargas são definidas pelo GDL associado (u, v, θ), 

como as forças [horizontal (Hj) e vertical (Vj)] e o momento (Mj), atuantes no nó (j). 

Essas cargas são identificadas como fixas ou incrementais, a priori, e são armazenadas 

para o processamento posterior. 

Cada hipótese representa a aplicação desses carregamentos, que podem ser 

combinados (majorados por fatores e somados). As cargas fixas de qualquer 

carregamento da hipótese, com seus fatores, são aplicadas de uma só vez, em um único 

passo (chamado zero, 0), seguido de iterações até a convergência. Todas as cargas 

incrementais dos carregamentos, incluindo seus fatores, são aplicadas, posteriormente, 

seguindo o processo incremental selecionado na hipótese. Esse processo utiliza um fator 

de incremento (número variando de 0 a 100%) cujo crescimento segue um conjunto de 

passos chamado histórico, que pode ser: 

a. predeterminado pelo usuário; ou 

b. automático (gerado pelo próprio programa computacional). 

 

O histórico compõe-se de até 20 intervalos com fatores de incremento e sua 

repetição no intervalo. Por exemplo, considere-se o histórico: (5×10%, 10×1%). Isso 

significa que há 2 intervalos consecutivos de incrementos: no primeiro, aplicam-se 5 

passos de 10% e no segundo, 10 passos de 1%.  Imaginando-se que antes da realização 

desses 2 intervalos, o fator de incremento seja 20%, serão, então, executados 15 passos, 

com valores: 30%, 40%, 50%, 60%, 70% no primeiro intervalo e 10 passos de 1%, 

saindo de 71% e chegando a 80%, no final do segundo. Isso permite passar rapidamente 

por pontos mais fáceis (região elástica) e reduzir ou controlar melhor os passos 

próximos às regiões críticas ou pontos limites (Alvarenga & Silveira, 2006c). 

É necessário determinar qual o fator de início do escoamento, pois com a 

plasticidade, em geral, o tamanho dos passos deve ser reduzido. Às vezes, isso é 

trabalhoso e requer o processo incremental em carga, para fazer-se uma série de 

tentativas, nas quais os passos são reduzidos de 10%, para 5%, 1% ou menos.  
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O PPLANAVA possui um controle interno para detectar o início do escoamento 

(com precisão de até 0,1%) e prosseguir, a partir daí, com passos de 1% até o colapso, 

automaticamente. Esse processo automático – antes era a versão ELAST – foi descrito 

em Alvarenga (2008). Posteriormente, desenvolveu-se o chamado módulo PLAST, no 

qual, depois de encontrado o colapso da estrutura, o processamento retorna ao fator de 

incremento -3%, e realiza 2 intervalos, com os passos: (3×0,5% e 20×0,1%), chegando-

se novamente ao colapso, agora com a precisão de 0,1% no incremento.  

Esses processos automáticos são muito práticos quando se conhece o provável 

valor de colapso. Gabaritam-se as cargas e os fatores de incremento aplicados às cargas, 

de forma que o colapso aconteça com o fator entre 60% a 100%. Assim, os passos com 

1%, na parte com plasticidade, não são pequenos nem grandes demais. Análises 

estruturais, incluindo o EF com ligação, nos quais o passo de carga é superior a 5%, 

podem apresentar desvios maiores, prejudicando os resultados finais. Para esses casos, 

os passos do fator incremental automático, no controle de cargas e regime elástico, 

padronizados antes em (10% e 5%), foram reduzidos para (4% e 2%), respectivamente.  

Outra complicação que pode surgir é ocorrer o escoamento quando na aplicação 

das cargas ditas fixas, em um só passo, ou mesmo, o modelo conter ligações não 

lineares. Significa que não se pode adotar um passo apenas, ou seja, é necessário um 

processo incremental para a carga fixa também. Para isso, tem-se a chamada hipótese 

acoplada. Então, as cargas fixas são introduzidas de forma incremental numa hipótese 

que não provoca o colapso, até se atingir 100% do fator incremental em controle de 

carga. Ao término dessa hipótese, pode-se selecionar a condição acoplada, quando o 

estado atual da estrutura corresponderá à carga fixa da hipótese seguinte, que prossegue 

com o desenvolvimento da condição incremental desejada e permite um resultado 

numérico mais coerente. 

Para concluir esta seção é preciso indicar as condições em que PPLANAVA 

determina o colapso e encerra o processo de análise da hipótese. 

Ocorre a parada no processo de solução incremental-iterativo quando: 

a. a área efetiva, ou a inércia efetiva, ficar próxima de zero (< 0,1% do valor 

original), ou seja, todas as fatias da seção estão plásticas (σ ≥ σy), formando o 

mecanismo de colapso plástico; 

b. o elemento da diagonal principal da MRG (pivô) com valor nulo ou negativo,  
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c. ultrapassar o número de iterações prescrito (mínimo 100), sendo paralisado a 

pedido do operador (processo interrompido sem convergir); 

d. a deformação plástica da fatia exceder ao máximo prescrito (máximo εp = 4%); 

e. a plasticidade do EF ficar descontrolada nas suas extremidades (IIEA); 

f. não atender ao critério de resistência da seção (von Mises, 1913), acontece 

quando o cisalhamento da área elástica remanescente da alma da seção (Awe) é 

ultrapassado pelo esforço cortante no EF, ou seja: 

 

A nova etapa de ligações exige conhecer o seu momento, sua rotação, sua rigidez 

e, ainda, controlar o processo determinando o término quando ocorrer:  

a. o módulo da rotação da ligação superior à rotação última (|θr| > θu); 

b. o módulo do momento da ligação superior ao momento último (|Mr| > Mu); 

c. a rigidez da ligação nula ou negativa (Rk ≤ 0); 

d. o descarregamento que atinja o momento de sinal oposto, superior ao inicial 

antes do descarregamento (|Mrdes| > Mrcar); 

e. ponto do processo (Mr, θr) em conflito com os da curva M-θ, ou tabela de 

dados, que impossibilite a continuação. Isso é detectado também pelo controle 

de convergência da ligação (momento do EF no nó com ligação); e  

f. superar o estado limite previsto pelo método das componentes (ou outro) 

quando este for adotado. Essa etapa ainda não foi implementada. Consiste em 

um conjunto de dados (Mr, θr) que são checados e informa-se na saída quais 

eventos correspondentes ocorreram naquela iteração. Hoje, esse controle é 

empregado para cada ligação flexível (η > 0,4) e verifica quando o ângulo de 

contato (θcn) foi superado [ver subseções 4.5.1 e 2.2.3 (Fig. 2.8)]. 

 

No caso das ligações de base, foi previsto, ainda, o término quando: 

a. ocorrer tensão de compressão no concreto que supera o limite σck; 

b. encontrar-se esforço de tração (Tb) ou corte excessivo (Qb) no chumbador; e  

c. ser superado o estado limite previsto pelo diagrama de solicitações da base. 

 

Essa parte relativa às bases também ainda não foi completamente desenvolvida, 

sendo objetivo de pesquisa posterior (ver capítulo 9). 

Vd > Vde = 0,577 σy Awe (4.3) 
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4.3.2 PROCESSO INCREMENTAL 

Na seção anterior, embora o fator de incremento (h) tenha sido apresentado apenas 

como um número que cresce de 0 a 1, não se definiu a que esse incremento está 

associado.  Esse enfoque é um conceito novo adotado em PPLANAVA que permite 

aplicar esse fator de diversas formas. 

O processo incremental está associado à solução de equações não lineares f (x) = 0 

pelo método de Newton-Raphson (Simpson, 1740). Assim, quando se analisa a curva 

carga-deslocamento de uma estrutura, parece natural que esse incremento seja em carga 

(λ=h), ou um acréscimo em fator de carga (∆λ=dh), que multiplica o vetor de 

carregamento da estrutura (F0), como mostrado na Fig. 4.3(b). 

Entretanto, como é conhecido, o controle de carga (CC) falha ao obter a trajetória 

descendente, como evidenciado na Fig. 4.4(a). Note-se que, em geral, necessita-se 

reduzir muito os passos (∆λ) no topo da trajetória, e mesmo assim sobrevém a MRG 

singular ou um custo elevado para a convergência (Alvarenga & Silveira, 2006c). 

Além disso, em alguns casos, com o controle apenas da carga consegue-se atingir 

o ramo pós-limite de acréscimo, pontualmente, pois ocorre a singularidade da MRG, e 

este último ponto corresponde ao chamado salto dinâmico (“dynamic jump”), como 

ilustrado na Fig. 4.4(b). Essas situações são comuns na versão PPLANAVX. 

Outra possibilidade de incremento é o de uma componente selecionada do 

deslocamento (GDL) ou de referência. Agora o fator de incremento (h) será aplicado 

nesse chamado deslocamento selecionado (uk), k-ésima componente do vetor u, para o 

qual se arbitra um valor máximo (ukmáx) na hipótese correspondente (uk = h ·ukmáx). 

Em geral, esse controle é empregado após alguns modelos prévios serem 

calculados com controle de carga, até para abalizar melhor qual o GDL selecionado, os 

valores dos intervalos de incremento e o máximo arbitrado. Definido o incremento do 

deslocamento selecionado (∆uk = incremento da k-ésima componente de u), pode-se 

determinar o acréscimo de carga (∆λ) e a correção do fator de carga da iteração (δλ) 

pelas expressões (Argyris, 1964): 

nas quais u0k é a componente k dos deslocamentos relativos ao vetor de carga de 

referência (F0) e  δugk é a componente k dos deslocamentos relativos ao vetor das cargas 

residuais (g = ∆Fω) daquela iteração. Note-se que acréscimos da correção iterativa não 

modificam o valor final da componente selecionada uk naquele passo. Por isso, definem-

∆λ =  ∆uk / u0k     δuk =  δugk + δλ u0k = 0    ∴ δλ=  – δugk / u0k (4.4a-c) 
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se ajustes do fator de carga (δλ) pelo acréscimo do deslocamento selecionado originado 

das cargas residuais (δugk).  

O controle do deslocamento (CD), todavia, não é adequado aos problemas 

fortemente não lineares que apresentam pontos limites de deslocamentos, como na Fig. 

4.5(a). Isso já foi verificado em alguns arcos (Xu & Mirmiran, 1997), portais em L com 

cargas excêntricas (Galvão et al., 2000) e treliças espaciais (Pinheiro, 2003). 

Bergan et al. (1978) propuseram o método de controle do trabalho com o chamado 

“parâmetro de rigidez corrente” (CSP), que controla indiretamente o fator de carga. 

Posteriormente, surgiu a estratégia do “comprimento de arco” (Ramm, 1981; Crisfield, 

1981), representada de forma simplificada na Fig. 4.5(b), estudada por Silveira et al. 

(1999) e Rocha (2000). 
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Figura  4.4 Desvantagens do controle de carga: 
(a) falha em atingir carga limite; (b) possibilidade do salto dinâmico. 
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Uma nova área de pesquisa aparece com o desenvolvimento de estratégias para 

superar os pontos limites (de carga, de deslocamento, críticos) e encontrar as diversas 

trajetórias de equilíbrio. Os trabalhos de Crisfield (1991), Kouhia (1992), Fafard & 

Massicotte (1993) e Zhiliang (1994) são relevantes contribuições sobre o assunto. Nas 

técnicas desenvolvidas por esses pesquisadores, propõem-se obter uma solução predita, 

ou tentativa inicial, e, em seguida, o processo iterativo de correção é desenvolvido, 

atendendo a uma condição de restrição adicional (Yang & Kuo, 1994). 

Em geral, todos os processos que acompanham a trajetória descendente pós-limite 

enfrentam as seguintes situações:  

a. a instabilidade numérica próxima a pontos limites de carga ou deslocamento; 

b. o ajuste do fator de carga, que tende a acompanhar as variações de rigidez da 

estrutura; e  

c. a capacidade de se determinar a direção de carregamento e da convergência, 

impedindo as chamadas armadilhas numéricas (pontos que se sucedem no 

processo iterativo, formando um ciclo ininterrupto, sem que o programa 

computacional detecte ou consiga ultrapassar). 

 

Nesse instante, apresenta-se outra contribuição com esta tese, que é chamado aqui 

de controle de deslocamento generalizado (CDG). Essa técnica também foi 

implementada computacionalmente e, da mesma forma que se pode empregar o fator de 

incremento (h) para o controle de carga ou para o controle de um deslocamento 

selecionado, pode-se aplicá-lo ao chamado deslocamento generalizado. 

O controle do deslocamento generalizado não é uma ideia original, visto que 

outros pesquisadores já propuseram algo similar. Yang & Shieh (1990), por exemplo, 

apresentaram um controle desse tipo empregando o chamado “parâmetro de rigidez 

generalizada” (GSP), que tem como vantagens: 

a. estabilidade numérica no limite de carga e trajetória descendente; 

b. a variação de rigidez não linear é obtida pelo GSP (Bergan et al., 1978); e   

c. a troca de sinal do GSP permite conhecer a direção de incremento (+) ou do 

decremento (–) da carga, em conformidade com o estado da análise e o ponto da 

trajetória de equilíbrio procurado. 
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O controle de deslocamento generalizado proposto, não possui todas as vantagens 

listadas, devendo ser considerado uma contribuição mais simples. Pode-se reescrever a 

Eq. 4.1(b), considerando o vetor dos deslocamentos anterior (uA), e o vetor dos 

deslocamentos que se deseja obter (u), como:  

Como em cada passo incremental, supõe-se que uma parcela da carga ∆λ seja 

equilibrada se o vetor de deslocamentos de referência u0 é obtido por  

em que F0 é o vetor de cargas de referência. 

Pela definição da grandeza deslocamento generalizado (s) como o módulo do 

vetor u, ou seja, s = |u|, as seguintes grandezas podem ser determinadas: 

Inserindo Eq. 4.5 na Eq. 4.7(a), se encontra a seguinte relação: 

Substituindo as Eqs. 4.6(b) e 4.7(b-c), na Eq. 4.8 chega-se a equação: 

Reordenando os termos, obtém-se uma equação do segundo grau em ∆λ: 

sendo os coeficientes: 

Assim, surgem as seguintes possibilidades de solução para ∆λ: 

a. o vetor u está crescendo, logo: ∆s > 0:  

ou seja, s > sA, nessa condição tem-se que: 

Portanto, observa-se que também 0  Pb 0
T
A0As >== uu . , encontrando-se: 

Note-se que a outra raiz é a de retorno, e mais, que os vetores uA e u0 possuem a 

mesma direção de crescimento (o ângulo entre os vetores é menor que π/2); 

 

 

u = uA + ∆u (4.5) 
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 b. o vetor u está decrescendo, logo: ∆s < 0: 

chega-se a mesma Eq. (4.13), porém, agora s < sA, então cs < 0, o valor absoluto 

do resultado do radical é menor que (bs/as), então ∆λ < 0. Ou seja, os vetores uA 

e u0 apontam para direções opostas (o ângulo entre eles supera π/2); e   

c. o valor PA0 = 0: 

quando os vetores uA e u0 são ortogonais (perpendiculares) e indicam a mudança 

de crescimento para decrescimento, ou o contrário. Fazendo (bs/as) = 0, na Eq. 

4.13, resulta na expressão: 

na qual o sinal (±) de ∆λ pode ser associado ao sinal de ∆s. Quando ∆s > 0, se 

está num ponto de máximo local, e o vetor uA indica a direção para o 

decréscimo. Já se ∆s < 0, se está num ponto de mínimo local (onde s < sA) e o 

vetor uA aponta para a direção do novo acréscimo de s. 

 

Note-se que já ocorreram duas coincidências:  

a. primeiramente, chega-se a uma equação quadrática, similar à que aparece nos 

estudos com comprimento de arco (Crisfield, 1981); e.  

b. o estudo para escolher a raiz solução, abandonando a solução de retorno, segue 

o mesmo conceito do sinal de um produto escalar (PA0 = uA
T. u0). 

 

Na figura 4.6(a) procura-se ilustrar o significado para a equação do segundo grau 

obtida, como uma parábola de eixo λ, que representa uma restrição. Já na Figura 4.6(b), 

as três situações de comportamento da solução para ∆λ são caracterizadas, observando o 

crescimento (∆λ > 0), o ponto limite de carga (∆λ = 0) e a trajetória do deslizamento 

descendente [“snap-through”, com ∆λ < 0, (Galambos, 1982)]. 

Pode-se ainda simplificar o termo (cs) da equação da parábola considerando que: 

Substituindo a Eq. 4.15 na Eq. 4.11(c), acha-se uma nova expressão para (cs): 

Como em geral (em valor absoluto) |sA| > |∆s|, entende-se que ∆s é que define o 

sinal de (cs) e as mesmas considerações anteriores permanecem válidas. 

( ) ( )

00

A

2
0

2
A

2

s

s

s

s

s

ss

s

ss
 

a

c
∆λ

∆+
±=

−
±=±=  (4.14) 

( ) 2
A

2
A

2
A

2 s s s 2 s  sss ∆+∆+=∆+=  (4.15) 

( ) s ss2    c As ∆∆+=  (4.16) 



Tese • AR Alvarenga • Cap. 4 – Aspectos computacionais 

 

213 
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Figura  4.6 Controle de deslocamento generalizado: 
(a) solução predita; (b) significado de PA0. 

 

Observe-se que no ponto limite de carga a Eq. 4.14 pode ser resolvida 

empregando-se a Eq. 4.16, obtendo-se: 

que indica uma dependência linear de ∆λ com a variação de ∆s/s0 em relação ao módulo 

do vetor de referência e não linear com a variação ∆s/sA em relação ao módulo do vetor 

do estado anterior. Ou seja, próximo ao ponto limite de carga, o sinal de ∆s determina o 

sinal de ∆λ: se ∆s cresce, ainda se está antes do ponto limite e λ ainda cresce; porém, 

quando ∆s muda de sinal, já se ultrapassou o topo local da trajetória. 

Conhecendo-se o acréscimo do fator de carga ∆λ, a partir de ∆s preestabelecido, o 

vetor acréscimo de deslocamento ∆u passa a ser uma modulação do vetor u0, conforme 

a Eq. 4.6(b). Tem-se, assim, a chamada solução predita ou inicial. 

Considerando agora a fase chamada corretiva, isto é, o processo de iteração, 

impõe-se uma restrição adicional, que nesse caso é manter constante o deslocamento 

generalizado (s) até se atingir a convergência. Pode-se expressar essa condição partindo 

da Eq. 4.7(a), mediante a diferenciação, chegando à relação: 

Como s ≠ 0, a Eq. 4.18(b) pode ser atendida de duas formas: 
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a. o produto escalar (uT.du) é nulo: 

supondo que o vetor du ≠ 0, então os vetores se tornaram ortogonais, o que 

caracteriza um ponto limite de carga, que será: 

i.  máximo local, quando uT.(du – δu) > 0 e uT.(du + δu) < 0;   

ii. mínimo local, se ao contrário, uT.(du – δu) < 0 e uT.(du + δu) > 0; sendo 

δu o acréscimo do vetor du, calculado um pouco antes (-) ou um pouco 

depois (+) do ponto; e 

b. o módulo do vetor du tende arbitrariamente a 0, ou du → 0: 

que é a condição mais importante. Lembre-se que ao longo do processo iterativo, 

o módulo do vetor u não se modifica (s = constante), logo o módulo do vetor 

correção também não será alterado. Define-se o vetor de correção iterativa por: 

Ou seja, a soma dos deslocamentos (δug) causados pelo vetor de cargas residuais 

(g = ∆F) e a variação do fator de carga (δλ) nos deslocamentos de referencia (u0) 

é zero. Pode-se, então, determinar a correção do fator de carga (considerando 

que u0 ≠ 0) como: 

que corresponde à mesma equação produzida por Chan (1988), ao desenvolver a 

estratégia que utiliza a norma mínima dos deslocamentos residuais. Note-se que, 

no caso deste trabalho, o objetivo foi manter ds = 0, e isso também ocorre com a 

avaliação dos mínimos quadrados, adotada por esse pesquisador. 

 

Esse controle incremental combina as ideias de Fujji et al. (1992) ao empregar o 

módulo de u (s), Widjaja (1998), ao obter-se u0 considerando a matriz Sω atualizada e 

substitui o proposto antes (Alvarenga, 2008), que é inadequado.   

 

4.3.3 PROCESSO ITERATIVO 

O ciclo iterativo ocorre em qualquer passo incremental e é encerrado quando 

determinada tolerância é atingida, estabelecida pelo critério de convergência. 

Como decorrência desse ciclo, o vetor de forças residuais tende arbitrariamente ao 

vetor 0 ou a ter um módulo muito pequeno. O critério de convergência funciona como 

uma medida para esse resíduo. Em PPLANAVA, porém, as cargas residuais são sempre 
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reintroduzidas nos passos seguintes, de forma a minimizar a parcela acumulada de 

desvios que poderiam aparecer decorrentes desses resíduos, somados ao longo de todos 

os ciclos (isso traz uma pequena melhoria no resultado numérico). 

Existem diversos critérios de convergência. As versões de PPLANAVX anteriores 

a 2007 empregavam o controle de convergência pela norma euclidiana mínima: 

a.  dos esforços residuais; 

b. das forças e momentos residuais, em separado; 

c.  dos incrementos de deslocamentos; 

d. dos incrementos de deslocamentos e rotações, separadamente; e  

e.  do trabalho de deformação. 

 

O critério (d.) da norma mínima dos incrementos dos deslocamentos e rotações, 

separadamente, recomendado por Kassimali (1983), foi o mais adotado nos exemplos 

com o EF rígido-rígido do próximo capítulo e também no EF  com rótula do capítulo 6. 

No caso dos modelos incluindo o EF rígido-ligação, verificou-se que o emprego 

de apenas uma modalidade de controle (ou somente de esforços, ou somente de 

deslocamentos) permitia a produção de resultados inconsistentes (falsa convergência), 

por isso, foram desenvolvidos dois novos critérios conjugados: 

f.  com as opções (a.) e (c.) anteriores; e  

g. com as opções (b.) e (d.) anteriores. 

 

O critério (g.) foi adotado para esses casos. O critério (e) serve como abalizador 

de resultados. Adicionalmente, as diferenças entre o momento de flexão avaliado no nó 

com ligação do EF e o obtido pela curva M-θ foram empregados como parâmetros de 

final de processo. Essa é mais uma novidade, decorrente deste trabalho, que merece 

cuidado especial, visto que não se tem ainda pleno domínio dessa ferramenta, de forma 

a explicar sem maiores ressaltos as razões dos possíveis desvios e diferenças numéricas 

encontradas em alguns casos. Deve-se indicar que nas várias referências citadas no 

capítulo 2, por exemplo, não se informa nada sobre essa questão, tampouco sobre os 

critérios de convergência adotados.  

 A tolerância adotada em todos os resultados obtidos foi fixada em 0,1%, que é 

recomendada por alguns pesquisadores (Clarke, 1994) e se mostra rigorosa. 
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O programa computacional PPLANAVA possui as mesmas considerações de 

controles de iteração da versão anterior ( Alvarenga, 2008) e não será repetida aqui. 

Outras exigências operacionais surgem e serão discutidas com a nova 

implementação da Integração Iterativa dos Esforços Axiais (IIEA), que é abordada na 

próxima seção. 

 

4.4 APLICANDO A INTEGRAÇÃO ITERATIVA (IIEA) 

No capítulo anterior, foram apresentados os fundamentos da IIEA, mas resta a 

questão de como controlar isso no processamento, pois até agora se considerou que 

apenas uma seção tem zona plástica. Ocorre que ambas as seções do EF podem ter 

zonas plásticas, por exemplo, e cabe definir qual o valor de dN a ser corrigido, em cada 

caso, por cada nó, para obter-se o esforço axial Q1 adequado.  

Para bem entender esse comportamento, na Fig. 4.7 (Alvarenga & Silveira, 2008c) 

reproduz-se o tratamento adotado desde 2007 nas versões de PPLANAVX, para se 

definir o valor da correção da IIEA a partir de Q1. As primeiras versões da IIEA 

tomavam a seção com maior zona plástica, ou que havia se escoado naquele instante, 

como a que receberia toda a correção (diferença ∆N) de axiais entre os nós.  

Posteriormente, percebeu-se que essas diferenças poderiam ser geradas em ambos 

os nós (casos de dupla ZP, por exemplo), desenvolvendo os casos da Fig. 4.7 (com os 

estados e alguns exemplos ilustrativos), mas ainda tratando a correção por meio da 

diferença entre nós (∆N = NA – NB). 

A modificação feita em PPLANAVA reside na avaliação da variação do esforço 

axial dNj  calculada com base em jN , que é definido pela expressão: 

na qual as parcelas de esforços gerados pela deformação média (δεm) nas fatias elásticas 

e plásticas, considerando os respectivos módulos (D) são somadas ao esforço axial do 

instante anterior (ω-1) do nó (J). Ou seja, determina-se o esforço axial previsto na 

formulação, como se não houvesse a plasticidade naquele instante e o valor a ser 

ajustado pela IIEA provém da diferença: 

 

∑∑ δε+δε+= −ω
pfat  n

ip
piip mt

efat  n

ie
eiie m

1
jj dAEdAENN  (4.21) 

jjj NNdN −=  (4.22) 
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     Descrição do estado:                                   Diagramas ilustrativos (exemplos):   

• Ambos os nós elásticos: Q1 = NA = NB

• Nó j está elástico: Q1 = Nj   

(outro nó com 1 ou 2 ZPs)

• Ambos os nós têm 1 ZP:

ao plastificar ocorrem (∆NA, ∆NB)

• Nó j tem 1 ZP e o outro 2 ZPs:

(usar o que tem 1 ZP)

( )BA1BBBAAA N  N Q   NNN       NNN ,max=∆+=∆+=

j1jjj NQ        NNN =∆+=

A B

(a) s/ZP

A B

(b) 1 ZP em A (c) 2 ZP em A

A B

(e) 1 ZP em A e B

A B A B

(f) 1 ZP em A e B

A

(g) 2 ZP em A 
  e 1 ZP em B

B

(d) 2 ZP em A

A B

(i) 2 ZP em A 
  e 1 ZP em B

A B

(h) 2 ZP em A 
  e 1 ZP em B

A B

• Ambos os nós elásticos: Q1 = NA = NB

• Nó j está elástico: Q1 = Nj   

(outro nó com 1 ou 2 ZPs)

• Ambos os nós têm 1 ZP:

ao plastificar ocorrem (∆NA, ∆NB)

• Nó j tem 1 ZP e o outro 2 ZPs:

(usar o que tem 1 ZP)

( )BA1BBBAAA N  N Q   NNN       NNN ,max=∆+=∆+=

j1jjj NQ        NNN =∆+=

A B

(a) s/ZP

A B

(b) 1 ZP em A (c) 2 ZP em A

A B

(e) 1 ZP em A e B

A B A B

(f) 1 ZP em A e B

A

(g) 2 ZP em A 
  e 1 ZP em B

B

(d) 2 ZP em A

A B

(i) 2 ZP em A 
  e 1 ZP em B

A B

(h) 2 ZP em A 
  e 1 ZP em B

A B

 
• Ambos os nós com 2 ZPs de mesmo sinal:

(2 ZPs de compressão ou 2 ZPs de tração)

• Ambos os nós com 2 ZPs de sinais opostos:

• Casos mistos com 2 ZPs de mesmo sinal
em 1 nó e de sinais opostos em outro nó

Deve-se considerar Q1 como o valor do
nó j com 2 ZPs do mesmo sinal.

( )BA1 N  N
2

1
 Q  :Média +=

( )BA1 N  ,Nmax Q =

(j) 2 ZP em A 

A B

  e 2 ZP em B
(k) 2 ZP em A 
  e 2 ZP em B

A B

(l) 2 ZP em A 

A B

  e 2 ZP em B

  e 2 ZP em B
(m) 2 ZP em A 

A B

  e 2 ZP em B
(p) 2 ZP em A 

A B

B

  e 2 ZP em B
(n) 2 ZP em A 

A

  e 2 ZP em B
(q) 2 ZP em A 

A B

• Ambos os nós com 2 ZPs de mesmo sinal:
(2 ZPs de compressão ou 2 ZPs de tração)

• Ambos os nós com 2 ZPs de sinais opostos:

• Casos mistos com 2 ZPs de mesmo sinal
em 1 nó e de sinais opostos em outro nó

Deve-se considerar Q1 como o valor do
nó j com 2 ZPs do mesmo sinal.

( )BA1 N  N
2

1
 Q  :Média +=

( )BA1 N  ,Nmax Q =

(j) 2 ZP em A 

A B

  e 2 ZP em B
(k) 2 ZP em A 
  e 2 ZP em B

A B

(l) 2 ZP em A 

A B

  e 2 ZP em B

  e 2 ZP em B
(m) 2 ZP em A 

A B

  e 2 ZP em B
(p) 2 ZP em A 

A B

B

  e 2 ZP em B
(n) 2 ZP em A 

A

  e 2 ZP em B
(q) 2 ZP em A 

A B

 

• Casos inconsistentes (ou erros)
(2 ZPs de axiais de sinais diferentes)

• Casos especiais:

subdividir o EF em 2 EFs novos:

  e 2 ZP em B
(o) 2 ZP em A 

A B

  e 2 ZP em B

A

(r) 2 ZP em A 

B

  e 2 ZP em B
(s) 2 ZP em A 

A B

1 EF c/ 4 ZPs

A B A C BC

1 EF c/ 2 ZPs 1 EF c/ 2 ZPs

= +

B

  e 2 ZP em B
(t) 2 ZP em A 

A

Compressão Tração Elástico

Convenção:

• Casos inconsistentes (ou erros)
(2 ZPs de axiais de sinais diferentes)

• Casos especiais:

subdividir o EF em 2 EFs novos:

  e 2 ZP em B
(o) 2 ZP em A 

A B

  e 2 ZP em B

A

(r) 2 ZP em A 

B

  e 2 ZP em B
(s) 2 ZP em A 

A B

1 EF c/ 4 ZPs

A B A C BC

1 EF c/ 2 ZPs 1 EF c/ 2 ZPs

= +

B

  e 2 ZP em B
(t) 2 ZP em A 

A

Compressão Tração Elástico

Convenção:

 

Figura  4.7 Determinar Q1 nos EFs com diversos tipos de zona plástica (ZP). 
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entre tal valor mais provável ( N ), e o que foi encontrado após a parcela da plasticidade 

que se manifestou naquele instante (ω), quando se acharam os esforços internos. 

Ocorre que o valor (dN) pode ser de crescimento das deformações ou, o que é 

pior, de redução. No primeiro caso, para corrigir as deformações nas fatias emprega-se a 

Eq. 3.105. Entretanto, no caso da redução do esforço, a estimativa de dε calculada com 

a área efetiva elástica naquele instante (a mesma Eq. 3.105) não é adequada. Há uma 

tendência, quando se faz a redução de N, de que os valores de |dN| encontrados a cada 

iteração cresçam, principalmente, quando a plasticidade na seção começa a ficar elevada 

e o |yCGP| da seção cresce. Dessa forma, a variação (dN) cresce numericamente [por 

exemplo, numa iteração para (+), na outra para (-)] e o ciclo iterativo da IIEA diverge.  

Para contornar essa divergência, determinou-se que após sair do módulo 

PPLAN8Ap, quando já se tem um apanhado inicial das consequências das deformações 

em virtude dos deslocamentos do instante (ω) atual, todos os nós dos EFs onde ocorre 

plasticidade são checados. Os valores de Q1 de cada EF mais prováveis são 

determinados como jN . 

Para isso, a parcela dσ, que se perde com a plasticidade, é recuperada empregando 

um valor ∆N para atingir Q1. Uma vez definido Q1, são ajustadas as tensões das fatias, 

de forma a se obter – na precisão adotada (0,1%) – os valores das integrais de (σ dA) 

iguais a Q1, em ambos os nós (as últimas versões de PPLANAVA adotaram 0,01% para 

manter a saída com valores iguais). 

A correção dessas tensões é realizada pelo método de bissecção de Newton, após 

duas tentativas de ajuste direto. Quando, em valor absoluto, ocorre acréscimo de N, esse 

procedimento é suficiente (mais rápido) e, no decréscimo, garante-se chegar numa 

solução. Mesmo assim, ainda existem situações nas quais o processo numérico não 

consegue corrigir, quando próximo ao ponto limite e com elevada plasticidade. 

Alguns aspectos computacionais complementares da IIEA podem ser vistos em 

Alvarenga (2008), um fluxograma e alguns detalhes adicionais em Alvarenga & Silveira 

(2009b). Em geral, a IIEA é empregada nas primeiras iterações de cada passo, sendo 

bastante eficiente. Quando isso não ocorre, é sinal da aproximação de um ponto crítico. 

Deve-se indicar uma informação complementar, relativa à plasticidade com 2 ZPs, 

que é o efeito da excentricidade (yCGP). Virtualmente, à medida que as ZPs crescem, há 

a tendência de surgir acréscimos de esforços (dNj) não provocados pela plasticidade. 
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 A causa disso é a excentricidade, como se mostra nas Figs. 3.15(c-d).  Como o 

esforço axial é equilibrado por ambas as seções do EF, então essa tendência de 

crescimento em um nó, isolado, tem de ser ajustada no nó oposto (onde tende a ser 

menor). Para essas condições, também podem surgir variações do axial no EF. No caso 

dessas diferenças não geradas pelo acréscimo da plasticidade, deve-se usar a média dos 

valores corrigidos (ou prováveis): Q1 = ( 21 NN + )/2. 

A seção seguinte aborda outro aspecto computacional importante relacionado à 

ligação. 

 

4.5 CONTROLE DO COMPORTAMENTO DA LIGAÇÃO 

Simular o comportamento da ligação adequadamente é uma tarefa que requer os 

maiores cuidados. Entende-se aqui por controle não apenas a introdução do modelo com 

seus dados e a sua curva, mas a caracterização do seu estado de carga, os momentos e 

rigidez coerentes, a definição da rotação da ligação, a avaliação do comportamento do 

EF e a interdependência de resultados. 

Algumas dessas atividades são desconhecidas nas formulações já existentes, pois, 

por meio de equações algébricas, retira-se artificialmente o giro próprio da ligação do 

EF (Sekulovic & Salatic, 2001). No caso da zona plástica, isso não é possível, visto que 

os momentos decorrem de integrações de tensões que envolvem plasticidade, tensões 

residuais, excentricidade, enquanto a rotação da ligação é avaliada pela formulação. 

Dispõe-se, como resultado do processo incremental-iterativo em dado instante, um 

ponto (MEF, θr) que não faz parte necessariamente da curva M-θ fornecida (Mr, θr). 

Surge, então, a dúvida de como se proceder. 

Para responder a essa questão de forma mais concisa, esta seção é subdividida nas 

seguintes partes: 

a. curvas de ligação introduzidas; 

b. comportamento geral de uma ligação – diagrama com semi-histerese; 

c. rotações da ligação; e  

d. ligações não lineares. 
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4.5.1 CURVAS DE LIGAÇÃO INTRODUZIDAS 

Ao longo dos estudos realizados para esta tese, foi conhecida uma série de curvas 

M-θ de ligações disponíveis, com várias fórmulas, métodos, parâmetros, etc. Tal 

diversidade permitiu chegar ao consenso de que não teria sentido colocar-se no sistema 

computacional todas essas possibilidades. 

Assim, foram desenvolvidos vários módulos menores, que permitem obter as 

curvas M-θ e, em seguida, introduzi-las no sistema computacional como uma tabela de 

dados. Isso possibilitou maior flexibilidade e a não interferência do estudo das diversas 

possibilidades de ligações no sistema PPLANAVA desenvolvido. 

Mesmo assim, alguns modelos de ligações, por serem tradicionais e terem maior 

emprego nos exemplos da literatura mundial, foram introduzidos diretamente no sistema 

computacional PPLANAVA. São eles: 

a. os lineares, bilineares  e trilineares; 

b. as curvas tabeladas M-θ e Rk-θ; 

c. o polinomial de Frye & Morris (1975);  

d. o potencial de Richard & Abbott (1975) bem como a sua versão simplificada 

(Kishi & Chen, 1987); e  

e. a curva proposta deste trabalho, o modelo RBL. 

 

Essas mesmas curvas têm programas computacionais independentes de geração 

fora do sistema computacional PPLANAVA. Para outras curvas/modelos, como o 

exponencial de Lui & Chen (1988), o modificado de Kishi & Chen (1990), alguns 

diferentes como os de Yee & Melchers (1986), Attiogbe & Morris (1991) com a curva 

de Ramberg & Osgood (1943), também foram desenvolvidos programas menores. 

Realizou-se uma versão do SCDB – “Steel Connection Data Bank”, modernizando 

o programa computacional desenvolvido por Kishi & Chen (1990) (Chen et al., 1996), 

que agora gera tabelas também com unidades do SI (kNm, mm e radianos) e pode-se 

fazer algum estudo maior desses dados. Também alguns programas computacionais 

abordando o método das componentes e outras ferramentas, como o JMRC – “Joint 

Moment Rotation Curves” de Faella et al. (2000) estão operacionais, para uso futuro. 

Na parte de ligações com a base, houve maiores carências: a falta de trabalhos 

publicados e/ou os com poucas informações (artigos incompletos e/ou não acessíveis).  
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Por outro lado, a curva RBL teve, também, uma série de estudos de viabilidade e 

foram desenvolvidos alguns programas computacionais menores para avaliar os seus 

parâmetros, fazer comparações das aproximações, etc. 

Todas as curvas de ligação simuladas em PPLANAVA empregam os mesmos 

parâmetros com que foram definidas, unidades coerentes com o programa já 

desenvolvido e requerem limites básicos: momento último Mu, rotação última θu, 

rigidez inicial ou elástica Rki. Para as ligações que alcançam rotações superiores a 20 

mrad e que sejam flexíveis (η > 0,4), verifica-se o ângulo de rotação não supera o de 

contato (θcn), caso em que se encerra também a análise (ver subseções 2.2.3 e 4.3.1, Fig. 

2.9). Esse ângulo de contato é estimado por: 

considerando um recuo da viga em 12,5 mm, e que o giro da ligação será centrado em 

relação à (d/2), sendo (d) a altura da seção da viga. 

 

4.5.2 COMPORTAMENTO GERAL DE UMA LIGAÇÃO 

Da mesma forma que se definiu um comportamento do material por meio do seu 

diagrama tensão-deformação na subseção 3.2.2 (Challa & Hall, 1994), deve-se 

estabelecer o comportamento da ligação pelo seu diagrama M-θ. 

Assim, acompanhando a Fig. 4.8(a), a ligação está em carga quando um acréscimo de 

rotação (dθ) faz com que tanto o momento quanto a sua rigidez se modifique, segundo a 

curva de dados M-θ, do ponto C para o D, por exemplo. 

 Enquanto não findar o ciclo iterativo, tanto ocorrem acréscimos dθ da mesma 

direção, como variações contrárias, do ponto D para o C, seguindo a forma da curva. 

Como ilustrado na Fig. 4.8(b), depois de obtido um ponto de convergência C, 

tem-se um carregamento até o ponto D e, posteriormente, um acréscimo de rotação no 

sentido contrário, que supera o intervalo dθC-D (= θC – θD), a ligação entra em processo 

de descarregamento elástico atingindo o ponto E, segundo a reta de rigidez inicial (Rki), 

que passa por C. Enquanto não há convergência, é possível qualquer movimentação 

entre os pontos C-D-E. 

Mais complicado se torna quando o valor de dθ, do caso anterior, é tal que o 

momento retorna a zero, no novo ponto E, seguindo a linha de descarregamento de 

rigidez inicial (Rki), como ilustrado na Fig. 4.9(a). A partir daí nasce uma cópia da curva 

M-θ original, porém traçada em sentido contrário.  

[mm] d25θ θ cncn =≈ tan  (4.23) 
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Lembre-se que por serem etapas da análise, só se consegue chegar à convergência 

com duas iterações consecutivas quando os pontos estão muito próximos. Portanto, 

dependendo do valor da rotação (dθ), tanto pode acontecer essa caminhada como pode 

suceder o seu retorno (sentido inverso). 

Suponha-se que haja a convergência na situação anterior, ponto D da Fig. 4.9(a), e 

mais uma vez ocorra acréscimo de carga (dθ), no sentido original. Toda a sequência 

mostrada na Fig. 4.9(b) ocorrerá: descarregamento elástico, segundo a reta de rigidez 

inicial até o ponto onde M = 0 (novo ponto E) bem como a reentrada numa curva de 

carga, paralela à inicial, agora nascendo em E, e atingindo o novo ponto D.  

Mr

0- r
-0C

MC

-0D

d -0

MD

D0- -0-0C r

MC

MD
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d 0-

-0E

EM

kiR Rki

(a) (b)

E

DC C D

carga

descarga

 

Figura  4.8 Comportamento da ligação: 
(a) acréscimo de carga; (b) descarregamento elástico.  
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Figura  4.9 Comportamento da ligação (após reversão): 
(a) carga no sentido oposto; (b) retorno à carga na direção original.  
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Esse tipo de representação e descrição do comportamento é comum nos problemas 

dinâmicos (Popov & Pinkney, 1969), mas também não pode ser desprezado num 

problema estático, como também não foi o diagrama tensão-deformação. A razão 

principal está na própria natureza dos carregamentos combinados e na formação das 

ZPs, que podem modificar as solicitações das ligações, como se verá. 

Anteriormente, admitiu-se o comportamento independente no encruamento do 

material. Agora, de forma similar, considera-se que a ligação possui a curva M-θ oposta 

independentemente do estado de deformação anterior (Stelmack et al., 1986; Chan & 

Chui, 2000). Isso impede o emprego de ligações que sejam assimétricas em relação ao 

eixo da viga, como as mostradas nas Figs. 2.4(d, h, j & p), visto que as curvas M-θ de 

carga e carga-oposta serão diferentes por causa da sua própria geometria.  

Mas, mesmo no caso dinâmico, verifica-se que o trabalho de deformação da 

ligação causa modificações na histerese, que não são consideradas aqui. Por isso 

denominou-se diagrama de semi-histerese. Observe-se que os momentos representados 

no diagrama consideram os sinais positivos nos eixos, embora o mesmo seja válido para 

sinais negativos de M-θ na condição inicial (diagrama oposto). 

 

4.5.3 ROTAÇÃO DA LIGAÇÃO 

Ao se obterem os esforços solicitantes (momentos) pela integração das tensões, 

esses valores devem sujeitar-se ao momento máximo que a ligação suporta para aquela 

condição (rotação). Ou seja, é a rotação da ligação que permite conhecer-lhe o 

comportamento, definindo a rigidez e o momento a ser absorvido. Por conseguinte, é 

necessário, antes de qualquer procedimento, definir qual é a rotação da ligação. 

Aqui já nasce outra questão, relacionada ao conceito de rotação da ligação que 

pode estar conjugada a da viga ou ser independente (própria da ligação). Neste trabalho 

considerou-se a rotação como própria da ligação (αB), supondo-se que a deformação 

dela já incorpora o efeito de painel, a excentricidade, etc., porém não considerando a 

plasticidade na viga. Esse é um ponto de controvérsia que merece o estudo cauteloso e 

que será reavaliado posteriormente. 

Um dos grandes desafios encontrados no desenvolvimento das análises de 

validação dessa formulação e que, assim, também atinge o seu emprego principal, 

refere-se a esse parâmetro-chave, que é a definição do giro próprio da ligação θr, ou 

seja, a sua avaliação. 
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Constata-se que em outras formulações o momento do EF e da ligação possui um 

único valor, e que é diretamente ajustado. Isso não ocorre aqui. 

Partindo unicamente da formulação desenvolvida (Eq. 4.37), chegou-se à relação:  

( )BA

0

1
r dq 2dq

L

q
1dθ +η













+=  (4.24)

 

sendo dqA e dqB os acréscimos de rotações naturais do nó oposto (A) e do nó com 

ligação (B). Deve-se esclarecer que o primeiro termo surge da diferencial de (v0") e 

considera-se o efeito do alongamento do EF. Lembrando da definição de η pela Eq. 

2.7(a) e de ξ pela Eq. 3.38, reescreve-se a Eq. 4.24 da seguinte forma: 

( )
( )g41

dq 4dq2

LR

EI
 

R

dM
dθ BA

vk

v

k

B
r

+

+













ξ≈=  (4.25)

 

em que o termo (g) comparece diretamente pela Eq. 2.3, as rotações (dqA, dqB) têm seus 

multiplicadores elásticos e o denominador (1 + 4g) é o efeito da ligação. 

Essa expressão é claramente válida no regime elástico, mas o mesmo já não 

acontece no regime inelástico. E a coisa se torna mais complexa ainda para as ligações 

não lineares. 

Em primeiro lugar, a ação da IIEA ajustando o esforço axial do EF provoca uma 

modificação nos momentos integrados nos nós [∑σ·y· (y-yCGP) dA], pois aparece um 

momento artificial, pelo aparecimento da excentricidade do yCGP (≠ 0), multiplicada 

pelo acréscimo do axial. Dessa forma, nem todo o acréscimo de momento elástico, que 

seria avaliado pelas rotações naturais (dqA e dqB), resultam corretos no caso da 

existência da plasticidade. Isso significa que nem toda a rotação natural dqj interfere no 

giro próprio da ligação dθr.  

Por outro lado, à medida que a plasticidade toma a seção, os coeficientes 2 e 4 que 

multiplicam, respectivamente, essas rotações devem ser corrigidos ou ajustados. De 

forma similar ao indicado por Chen et al. (1996), para a formulação com rótulas 

plásticas refinadas, adotado também na subseção 3.4.4, pode-se reescrever o momento 

em função das grandezas com plasticidade, empregando:  

( ) BABm3B3AABm3B dq DD3 dq D2 dM ++=  (4.26)
 

em que D3A e D3B são as rigidezes reais das seções dos nós (A, B) do EF com 

plasticidade, sendo a rigidez transmitida D3ABm definida pela Eq. 3.92(a).  
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Definindo-se (ζj = D3j / EIz) o fator de degradação do nó j (A ou B), provocada 

pela sua plasticidade, ou seja, ζB = D3B / EIz (rigidez relativa do nó com ligação em 

relação à original) e ζA = D3A / EIz (à do nó oposto), a Eq. 4.26 transforma-se em: 

( )[ ]BAAAB3B dq 3dq 2 DdM ζ++ζ=  (4.27)
 

Supondo que houve, também, uma plasticidade na seção que tem a ligação, isto é, 

na qual se avaliam os parâmetros (g) e (η), ao determinar-se a relação de decréscimo da 

rigidez nessa condição, pode-se obter um valor de η* corrigido: 

( )[ ]B

B

1η21

η
η

ζ−−

ζ
=*  (4.28)

 

Visualiza-se o efeito de ζB em η* obtido a partir de η, observando-se algumas 

propriedades simples (constatadas na Fig. 4.10): 

a. quando (ζB = 1),  têm-se (η* = η), não há correção (regime elástico); 

b. se (ζB = 0), ocorre o colapso e o parâmetro (η* = 0) é pouco significativo; 

c.  se (η = 0) então (η* = 0), ou seja, só há rotação no nó do EF (não ocorre rotação 

na   ligação); e  

d. se (η = 0,5) logo (η* = 0,5), independentemente de ζB (pode ocorrer qualquer 

plasticidade no nó oposto, que não se modifica a condição de rótula no nó B, 

lembrando-se que a sua inércia se reduz, entretanto continua simétrica). 
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Figura  4.10  Correção de η dada a plasticidade no nó com a ligação. 
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Essas propriedades podem ser explicadas pelo gráfico de correções de η dada a 

plasticidade do nó com a ligação, mostrado na Fig. 4.10. Para o caso (ζB = 0,01), a curva 

segue quase paralela ao eixo horizontal, dando um pulo quando (ζB = 0,5) em que (η = 

0,5). O valor (ζB = 0) seria um ponto de descontinuidade, no qual todos os valores de η* 

seriam também 0, exceto para o ponto (η = 0,5) conforme a alínea (d.) anterior.  

Com essas definições, a Eq. 4.24 pode, então, ser modificada para levar em conta 

a plasticidade dos nós do EF, com a expressão: 

( )





 ζ+
+ζξ= B

A
AAr dq 

2

3
dq  η dθ *  (4.29)

 

Nessa equação, fazendo-se (ζA = 1), chega-se aos mesmos coeficientes (1 e 2) do 

estado elástico. Todavia, se a seção do lado A torna-se uma rótula plástica (D3A = 0), 

então (ζA = 0) e a rotação da ligação será (3·dqB), rotação da seção no caso da viga com 

rótula na extremidade A [lembrando o termo (2g) de η*]. 

As relações anteriores levam em conta o que ocorre com a rigidez das seções, 

porém os próprios momentos nas extremidades são ajustados e modificados pela IIEA, 

de forma não linear. Assim, para se obter boa aproximação, definiu-se o parâmetro (χj) 

como a relação entre os acréscimos de momentos plásticos (dMjp) e os elásticos (dMje) 

na iteração (no nó j, A ou B), ou seja: 

je

jp
j

dM

dM
=χ  (4.30)

 

Assim, chegou-se à primeira expressão para avaliar o ângulo de giro da ligação, 

chamado, genericamente, de método XX:  

( )





 ζ+
+ζξ= BB

A
AAAr dq χ 

2

3
 dqχ η dθ *  (4.31)

 

Em diversos casos, constataram-se valores de dMjp maiores ou com sinal oposto a 

dMje, resultando em parâmetros (χj ≥ 1) ou (χj <0), o que parece não ter qualquer 

significado. Uma vez que essa equação é um pouco empírica, essa definição de (χj) não 

foi muito adequada em alguns problemas analisados, não se podendo saber a priori, 

com certeza, a validade dessa correção e os eventuais exageros cometidos quando dMje 

fica pequeno. (Obs. na programação, η já é calculado diretamente como η*). 

Para definir os valores dessas rotações chamadas de efetivas (dq*
A, dq*

B), 

substituem-se na Eq. 4.24 os termos (dqj e η) por (dq*
j e η*), encontrando-se: 
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( )***

*

BA

0

1
r dq 2 dqη

L

q
1dθ +














+=  (4.32)

 

sendo que as grandezas corrotacionais dq* (dq1
*, dq2

* e dq3
*) não são as produzidas pela 

formulação, mediante os deslocamentos globais, mas pelos acréscimos dos esforços no 

EF na iteração, resolvendo-se o sistema D.q = Q descrito na Eq. 3.86, substituindo (q) 

por (dq*), e (Q) por (dQ*). Assim, as grandezas (dqj
*) estão, agora, relacionadas aos 

esforços internos do EF (dQj
*), por meio da MR básica do EF (D). 

A vantagem desse processo é que os valores (dQj
*) já levam em conta o efeito da 

plasticidade nas seções do EF. Porém, ao se obter os valores de (dqj
*), no caso da 

ligação em B, falta somar em (dqB
*) a própria parcela de giro da ligação, ou seja, (dθr). 

Partindo-se da condição elástica, pode-se considerar a expressão: 

( )[ ]  dθdq2dqηdθ rBALr ++= ***  (4.33)
 

em que se englobou no termo η*
L = η* (1 +q*

1/L0) o estiramento (ξ) do EF, logo, pode-se 

resolver a Eq. 4.33 para (dθr), chegando-se à fórmula aproximada: 

( )
( )*

**
*

L

BA
Lr

η21

dq 2 dq
ηdθ

−

+
=  (4.34)

 

Essa forma de avaliar (dθr) é um pouco mais sofisticada que a proposta XX, e foi 

denominada de método ME, pois depende da MR básica constitutiva do EF. 

E, finalmente, contrapondo-se às duas formas anteriores, avaliou-se também o 

efeito da expressão direta desse ângulo, adotada desde o início da formulação: 

( )

k

BcBd

k

B
r

R

MM

R

dM
dθ

−
==  

(4.35)
 

ou seja, apenas se avalia o acréscimo de momento obtido na iteração (MBd – MBc) e se 

divide pela rigidez da ligação adotada naquele instante, chamado método S. 

As três formas de definir a modificação do ângulo da ligação são avaliadas, e 

encontra-se o ângulo total pela soma ou atualização dessas rotações em cada iteração: 

( )∑
ω

=

=+=
1i

i
rrrcrd dθ dθ θ θ  

(4.36)
 

No início, o processo XX era empregado por PPLANAVA, partindo-se da Eq. 4.24, 

e evoluiu-se até a Eq. 4.31. Mas alguns problemas (com colunas inelásticas e ligação) 

não foram adequadamente resolvidos por esse método, quando então se desenvolveram 

as Eqs. 4.32 e 4.34. Foram feitos diversos ensaios avaliando essas equações e possíveis 

melhorias, e isso gerou questionamentos sobre sua coerência e aplicabilidade, como 
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também, confrontaram-se resultados com os da Eq. 4.35, que é mais simples e se 

apresentou bastante estável numericamente na solução de vários exemplos. 

Além disso, existe sempre a questão de manter incluído o efeito da excentricidade 

no momento obtido pela integração, com a parcela dN·yCGP, causada pelo desvio do 

CGP, e isso ocorre tanto nos casos do processo XX como do ME. Portanto, para 

acompanhar o diagrama de comportamento da subseção anterior, controla-se a rotação 

da ligação (de convergência anterior: θc, atual: θd, acréscimo: dθ) baseando-se nos 

valores obtidos com a Eq. 4.36, aplicando um dos três métodos acima (XX, ME ou S) e 

achando o estado da ligação (carga, descarga elástica e carga oposta).  

Outra necessidade é a correção das tensões decorrentes da flexão pura, quando 

esse momento (integrado na seção) supera ao previsto na curva M-θ não linear da 

ligação para aquela rotação, o que será apresentado na subseção seguinte. 

 

4.5.4  LIGAÇÕES NÃO LINEARES 

Sem dúvida, a parte mais interessante do comportamento da ligação está na sua 

resposta não linear mostrada pelo diagrama M-θ. No caso da técnica das fatias, 

entretanto, isso representa outra desafiadora tarefa computacional. 

Na figura 4.11(a), é indicado um ponto C de equilíbrio da trajetória (MC, θC). No 

incremento posterior, por exemplo, numa fase inicial da solução, pode existir um 

acréscimo de rotação (dθ) tal que, com os deslocamentos e esforços internos resultantes 

do EF com ligação, encontra-se um ponto E (de momento ME). Esse ponto supera o D, 

correspondente ao momento (MD) da curva M-θ para aquela rotação (θD = θC + dθ). Isso 

decorre do fato de se tomar a rigidez da ligação como RkC (correta para o ponto C). No 

entanto, como ilustrado na curva M-θ, a rigidez da ligação se modifica em cada instante, 

e no ponto D a rigidez já será RkD, inferior à primeira avaliação. Ou seja, a rigidez 

instantânea tende a levar o equilíbrio para um ponto fora da curva. 

Isso é melhor do ponto de vista da análise estrutural, pois reduz os demais 

deslocamentos naquele instante e a correção iterativa será mais efetiva no global. 

Entretanto, os momentos dos nós do EF são superiores aos que a ligação permite 

para aquela rotação, o que requer a correção das tensões nas fatias desses nós. 

Naturalmente, recai-se num processo similar ao da IIEA, agora com o momento fletor. 

Essa tarefa computacional significaria outro acréscimo de operações (outro programa e 

realizar a manipulação de todo o arquivo de fatias). 
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Como em toda iteração se faz a avaliação da rotação específica (ρ') do EF e das 

parcelas de tensões decorrentes que geram a flexão, para reduzir essa tarefa 

computacional, adotou-se que ela fosse introduzida numa modificação dessa rotação 

específica dos nós desse EF na iteração seguinte. 

Pode-se escrever o acréscimo do momento de flexão, definido, em geral, pela Eq. 

3.96, relacionado ao campo de deformações da Eq. 3.5, como: 

[ ]{ }∑
=

−′−=
fatias n

1i
i0jCGPijmiijj Ad )y(yρddεy D      dM  (4.37)

 

um somatório nas fatias de área (dA0i), módulo (Dij), variação da deformação média no 

eixo do EF (dεm) e da rotação específica (dρ'), associados à posição da fatia (yi) e do 

CGP (yCGP) no nó (j). 

Primeiro, considerando o regime elástico (Dij = E), existe uma associação entre a 

variação da rotação específica (dρ'j→ dρ'j
#) e o acréscimo de momento no nó do EF, que 

permite definir a correção a ser somada na iteração seguinte: 

( )

CE

DE
j

CE

CECD
jj

dM

dM
ρd

dM

dMdM
ρdρd ′−=

−
′=′#  (4.38)

 

na qual se faz uma proporção dos momentos mostrados na Fig. 4.11(b) 

Essa correção resulta em se aplicar uma parcela de momento fletor equivalente: 

{ }∑
=

′−−=
fatias n

1i
Oi

#
jj CGPiiijj Ad ρd )y(y yD     dM#  (4.39)

 

Do ponto de vista de processamento, a correção da Eq. 4.38 é inserida nas fatias 

somente na iteração seguinte. Todavia, na própria iteração é preciso gerar o vetor de 

esforços internos para se avaliarem as cargas residuais (ou desequilibradas). E isso 

precisa levar em conta momentos coerentes. Logo, o acerto do vetor de esforços 

internos (FI) do EF finaliza a iteração na qual a diferença foi gerada, como se representa 

na Fig. 4.12(a), na qual o nó B com ligação possui plasticidade, e o momento MB
E é 

avaliado supera o da ligação MB
D. O valor da correção dM#

B, da Eq. 4.39, é distribuído 

na própria iteração, conforme: 

a.  o nó com ligação (B), recebe a correção dM#
B; e   

b. o nó oposto (A), a parcela dM#
B/2,  

 

 Já na iteração posterior, as mesmas correções (dM#) serão inseridas na forma de 

rotações específicas (dρ'A
#

, dρ'B
#) dos nós do EF correspondente, ajustando-se, assim, as 

tensões nas fatias. Após o ajuste das fatias, os esforços finais (gerados pela integração 
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das tensões nas fatias) entram no equilíbrio nodal, permitindo corrigir eventuais desvios 

provocados pelas avaliações anteriores (dρ'A
#, dρ'B

# e dM#
B). 

Com a plasticidade, realizar essa correção torna-se mais complexo, já que agora o 

(yCGP) não é nulo, portanto, o efeito da excentricidade do axial acoplado (dN·yCGP) deve 

ser levado em conta e a geração das tensões não está mais relacionada, em proporção 

direta, à rigidez ou à rotação específica (ou seja, a Eq. 4.38 deixa de ser válida). 

A proposta de solução adotada neste trabalho, mantém a distribuição da diferença 

dos momentos (dM#
j), como antes, porém fazem-se dois ajustes complementares. 
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Figura  4.11  Efeito da ligação não linear: 
(a) ponto fora da curva M-θ; (b) processo de correção. 
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Figura  4.12  Correção do efeito da ligação não linear: 
(a) ajuste de momentos no EF; (b) ajuste da rotação específica ρ’. 
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Conforme foi mostrado na Fig. 3.16, variações de momento podem gerar esforços 

axiais e, vice-versa, quando o (yCGP) não mais é nulo, por causa do regime inelástico. 

Ao longo da iteração, também a excentricidade yCGP pode variar, ao aparecerem novas 

zonas (ou fatias) plásticas. Portanto, a correção na iteração seguinte exige que se 

conheçam o estado plástico anterior (ω -1) e qual a situação da rotação específica atual 

(ω), como se indica na Fig. 4.12(b).  

Dessa forma, definem-se duas grandezas relacionadas ao esforço axial e à flexão, 

com o objetivo de acompanhar os efeitos da plasticidade no processo: 

a. coordenada do efeito do axial excêntrico na plasticidade – que avalia o fato do 

(yCGP, Eq. 3.91) variar a cada instante (ω) e, por isso, os acréscimos de axial 

(dNj) surgidos não são aplicados no eixo do EF com ligação, gerando momentos 

excêntricos, que não causam rotação da ligação, dados por: 

( )jj

CGPjj
a
CGPjja

CGPj
NdN

yNdyN
  y

+

+
=  (4.40)

 

na qual se aplica o acréscimo de axial (dNj) no novo CGP, a carga já atuante (Nj) 

na coordenada de CGP anterior e o equilíbrio determina a nova coordenada 

média. Note-se que no início yCGP = 0, ou seja, essa coordenada informa onde 

está aplicado o esforço axial do EF com ligação em regime inelástico; e  

b. coordenada da correção da rotação específica na plasticidade – que considera a 

influência de se corrigir a rotação específica (ou “curvatura inelástica”) em 

ligações não lineares com a  expressão: 

( )jj

CGPjj
b
CGPjjb

CGPj
ρdρ

yρdyρ
  y

′+′

′+′
=  (4.41)

 

A correção feita na rotação específica (dρ'
j) é aplicada no novo CGP, o acréscimo 

atual da rotação específica (ρ'
j) na coordenada do CGP anterior e, a nova 

coordenada, também, é definida por equilíbrio. Ao calcular acréscimos de 

deformação (associados à rotação específica), subtrai-se (yCGP) das distancias 

(yi) das fatias ao eixo do EF (ou seja, isso interfere em todas as deformações e, 

consequentemente, em todos os acréscimos de tensões). 

 

Por conseguinte, o mesmo efeito da plasticidade no esforço axial (haver maior 

giro na seção por causa da excentricidade da seção remanescente elástica) acontece 

também com a rotação específica inelástica.  
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Como na formulação proposta, a grandeza (η) não avalia o estado da plasticidade 

do nó oposto ao da ligação, também a rotação correspondente (qA), empregada para 

definir a rotação específica (ρ'
B) em cada instante, estabelecida na Eq. 3.53, deve ser 

reduzida pelo mesmo fator ζA = D3A/(EIz) apresentado na Eq. 4.27.  

Para finalizar os ajustes do EF com ligação não linear e plasticidade, deve-se 

indicar que, quando aparecem novas fatias plásticas no nó com a ligação, então o ponto 

atingido na Fig. 4.11(b) não será o (E), mas o (F), cujo momento (MF), em geral, será 

menor (mesmo com a IIEA) do que o obtido sem plasticidade (ME) para as mesmas 

condições (rotação dθ).  

Baseando-se nessas considerações, agora a Eq. 4.38 deverá ser reescrita como: 

( )

CF

DF
j

CF

CFCD
jj

dM

dM
ρd

dM

dMdM
ρdρd ′−=

−
′=′#  (4.42)

 

Pode-se questionar se os pontos (E) e (F) poderiam estar sob a curva M-θ. Fica 

claro, pelo próprio processo em que a rigidez inicial é superior à final, que isso é pouco 

provável de acontecer. Mesmo assim, verificou-se que o processo iterativo tende à 

convergência nesse caso. 

Nenhuma das equações ou considerações indicadas nesta última seção está 

disponível na literatura mundial. A maioria dos trabalhos de pesquisa confina a 

plasticidade numa forma concentrada nodal e os efeitos complexos das excentricidades 

são negligenciados, mesmo nas demais aproximações chamadas distribuídas. 

Ao tentar explicar as divergências e inconsistências de vários resultados, pode-se 

perceber tanto a influência do deslocamento do CGP, bem como o aparecimento da sua 

excentricidade modificando a resposta do EF com ligação e o comportamento do 

modelo estrutural. Contudo, esse assunto merece outros estudos e averiguações. Nesta 

tese, apresentam-se apenas algumas partes iniciais, sujeitas a modificações posteriores. 
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5.1  INTRODUÇÃO 

Neste capítulo, apresenta-se o elemento finito rígido-rígido como um caso 

particular, do EF geral desenvolvido no capítulo 3, quando se garante a continuidade na 

extremidade, ou seja, a rigidez da ligação é infinita e faz-se o parâmetro η = 0. Na 

realidade trata-se do mesmo EF que é de emprego mais geral e foi também adotado no 

trabalho anterior (Alvarenga, 2005). 

Na seção seguinte, mostram-se o campo de deslocamentos (vO), as deformações e 

as matrizes de rigidez obtidas para esse EF, reproduzindo parte da formulação numérica 

básica, proposta anteriormente (Lavall, 1996), porém apresentada de outra forma. 

Apenas para demonstrar os progressos realizados na pesquisa, com este EF, serão 

apresentados quatro exemplos de estudo especiais ilustrados na Fig. 5.1: 

a.   reproduz-se a trajetória de equilíbrio da coluna à flexocompressão do 

experimento de Van Kuren & Galambos (1964), com o objetivo de validar-se a 

formulação para um caso de barra; 

b.   produz-se a curva de iteração do esforço normal N e momento fletor M, para 

uma barra à flexocompressão, que segue as ideias de Galambos & Ketter 

(1959) e baseia-se em ensaios experimentais realizados nas décadas de 1950 e 

1960, averiguando diversas condições de cargas limite;  

c.  avalia-se o processo da IIEA – Integração Iterativa do Esforço Axial 

apresentado na seção 3.6, comparando diversas respostas para o problema do 

portal de Chen et al. (1996); e  

d.   analisa-se o portal de Arnold et al. (1968), no qual os resultados obtidos, para 

um conjunto de barras, são confrontados com os experimentais.  

 

Na maioria dos exemplos deste capítulo, bem como nos demais, os modelos 

adotados para o programa computacional incluíram nas imperfeições geométricas a 

curvatura inicial (CI), com a flecha usual L/1000, em que L é a altura da coluna. Sua 

forma é de arco senoidal (previsto na norma), substituída, em alguns casos, pela circular 

(que permite melhor resultado, quando o número de EFs por barra é pequeno).  Em 

geral, as tensões residuais (TR) foram consideradas também, como a de Galambos & 

Ketter (1959), porque reproduzem condições implícitas na norma AISC LRFD (1993). 

A condição de fora de prumo (FP) aparece nos modelos da Análise Avançada 

propriamente, como um dimensionamento, o que não foi o objetivo com este capítulo. 
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Os materiais são considerados elásticos e perfeitamente plásticos, salvo quando 

indicados em contrário. Os dados fornecidos pelos autores dos problemas são repetidos 

e os valores adotados também, com o objetivo de construir-se um banco de provas que 

possa futuramente servir a outros pesquisadores. (Ver apêndice A.11). 

Denomina-se fator (de carga) de colapso (λc) ao menor fator que provoca o 

colapso, tido aqui como ponto limite de carga (seja por flambagem inelástica, seja por 

outro estado limite). Não confundir com o fator de carga última [λp, este relativo à 

formação de mecanismo, plasticidade abundante e colapso da seção ao cisalhamento 

(ver Eq. 4.3)]. Por sua vez, o fator (de carga) de escoamento (λy) é o menor valor, no 

qual aparece pelo menos uma fatia plástica no modelo. 

Adota-se a convenção de sinais de engenharia nos diagramas: tração positiva (����) e 

compressão negativa (����). No contexto desta tese, denomina-se modelo ao conjunto de 

dados fornecido ao programa computacional para realizar-se a análise estrutural. 

No final deste capítulo foram incluídas as referências correspondentes. 
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Figura  5.1 Exemplos analisados: 

(a) coluna de Van Kuren & Galambos (1964); (b) coluna de Galambos & Ketter (1959);  
(c) portal de Chen et al. (1996); (d) portal de Arnold et al. (1968). 
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5.2 FORMULAÇÃO NUMÉRICA DO EF RÍGIDO-RÍGIDO   

A formulação do EF rígido-rígido foi apresentada anteriormente (Alvarenga, 2005 

e 2008) como uma parte independente, cujo desenvolvimento nasce das condições de 

contorno mostradas na Eq. 3.25. Agora, chega-se às mesmas expressões da formulação 

numérica original (Lavall, 1996; Alvarenga, 2005), porém empregando a formulação 

proposta, fazendo-se apenas o índice de giro próprio da ligação η = 0, (ou seja, o índice 

de rigidez nodal g = 0). 

 

5.1.1 CAMPO DE DESLOCAMENTO E DE DEFORMAÇÃO 

Substituindo-se η = 0 na Eq. 3.43, obtém-se o campo de deslocamento vO: 

e na Eq. 3.53, o campo de deformações: 

5.1.2 MATRIZES DE RIGIDEZ 

Empregando a Eq. 3.70 e tomando os coeficientes mostrados na Tab. 3.1 (engaste) 

com η = 0, encontra-se a matriz de rigidez constitutiva básica D: 

e na Eq. 3.72, a matriz de rigidez relativa à curvatura básica H: 

Realizando, então, a transformação com fT (Eq. 3.74), chega-se à matriz de rigidez 

do EF constitutiva, definida na Eq. 3.79 e na primeira linha da Tab. 3.2 (engaste): 

( )

























−−++













+−−













+= 3

0

0

2

2
0

3

2
0

0

2

2
0

3

0

1
O q

8

L
 

4

x
 

L2

x

L

x
q

8

L

4

x
 

L2

x
 

L

x

L

q
1xv  (5.1) 

































++
















−−













 −+

















++=ε

3

0
2

0

2

0
2

0

C

32
2
3

2
2

0

1

0

1

q
L

1

L

x6
q

L

1

L

x6
y

30

qqq2q2

L

q
1

L

q

 (5.2) 















 −

=

m3

m3m3

m2m2m1

0 D4

D2D4

DDD

L

1

simétrico

D  (5.3) 

















−=

4

14

000

30

LQ d1

simétrico

H  (5.4) 



Tese • AR Alvarenga • Cap. 5 – Elemento finito rígido-rígido 

 

240 

 e a de rigidez à curvatura pela Eq. 3.81 e primeira linha da Tab. 3.3 (engaste): 

nas quais os termos dentro das matrizes são dados por: 

sendo definidas na subseção 3.4.4 as propriedades elastoplásticas da seção indicadas por 

D1m, D2m, D3m, respectivamente, e Q1 pela Eq. 3.97 (IIEA). (Ver apêndice A.7). 

Comprova-se que as equações anteriores são as mesmas da formulação numérica 

original para o EF rígido-rígido (Lavall, 1996; Alvarenga, 2005).  

Agora serão apresentados os exemplos de validação dessa formulação. 
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5.3 COLUNA DE VAN KUREN & GALAMBOS (1964) 

Esse EF rígido-rígido é o mais empregado em todos os modelos. Após a 

introdução da IIEA (Alvarenga, 2005; Alvarenga & Silveira, 2008c), essa formulação 

numérica conseguiu produzir vários resultados de qualidade, de maneira geral, 

comparando-se com os resultados teóricos da literatura mundial. 

Agora, faz-se um confronto dessa parcela da formulação numérica, com alguns 

ensaios experimentais, o que não será possível para os demais EFs desta tese. 

 A validação inicia-se com um ensaio experimental de barra a flexocompressão. 

Esse exemplo simples é considerado um banco de provas para as formulações 

inelásticas de segunda ordem que se propõem realizar a Análise Avançada. 

Por causa da discrepância de dados, nesse estudo ilustrado na Fig. 5.2, utilizaram-

se dois modelos. No primeiro modelo, chamado 1A, a coluna analisada possui os dados 

adotados por King et al. (1992), seguindo estudos de El-Zanaty et al. (1980), que não 

informou os valores adotados na sua tese, tampouco comentou sobre desvios ou 

tolerâncias nas grandezas indicadas. 

Adicionalmente, existem diferenças com relação às medidas, às unidades e aos 

arredondamentos quando considerados, que também são fontes de inevitáveis desvios, 

tanto neste exemplo quanto em outros.  

O perfil da coluna é o laminado 4 WF 13, representado na Fig. 5.3(a), sendo 

adotada a seção do I equivalente da Fig. 5.3(b). A Tabela 5.1 mostra as propriedades 

geométricas da seção, destacando os valores das espessuras ajustadas para manter as 

propriedades de área bruta (Ag) e inércia (Iz), visto que a seção do laminado possui um 

raio (entre a alma e a aba) que não é considerado na geometria com retângulos. 

0 <      < 100 %

coluna:  4 WF 13
material: aço ASTM A 7
E = 20300 kN/cm         

L  / r  = 112z

2

Dados:
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Figura  5.2 Coluna de Van Kuren & Galambos (1964). 
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Figura  5.3 Perfil da coluna 4 WF 13:  
(a) laminado original; (b) seção equivalente; (c) TR de Galambos & Ketter (1959). 

 

A carga P é aplicada inicialmente (fixa) como valor de 0,158 Ny (corresponde a 

94,09 kN) e posteriormente o momento cresce segundo o fator de carga λ, empregando-

se o valor de referencia M0 = Mp = 2471 kNcm de forma incremental.  

Indica-se que não são consideradas nesta análise nem a curvatura inicial (CI) nem 

o fora de prumo da coluna, mas as tensões residuais (TR) de perfis laminados 

americanos, como proposto por Galambos & Ketter (1959), mostradas na Fig. 5.3(c). 

O modelo submetido ao programa computacional PPLANAVX foi realizado com 8 

EFs, 9 nós, cada seção subdividida com 200 fatias nos flanges e 36 na alma. 

Sem incluir a curvatura inicial, encontrou-se o escoamento com λy ≥ 49,3% e o 

colapso com λc ≥ 87,9%. King et al. (1992) empregaram o método da rótula-plástica, 

refinada ou não, e a resistência de coluna (com as fórmulas empíricas do AISC), 

determinando o colapso com 91% e 88%, respectivamente. 

Já El-Zanaty et al. (1980) apresentaram sua curva com ZP, que supera a do ensaio, 

e outra indicando o uso de uma carga lateral de 4,45 N aplicada no meio-vão como 

simulando a CI, quando então a trajetória fica sob a experimental, mas não forneceram 

os seus pontos limites de carga. Colocando CI com δ0 = L/1000, o fator de carga de 

colapso obtido reduziu-se para λc ≥ 86,3%, que é bem inferior ao experimental. 

As trajetórias de equilíbrio relacionando o momento M0 e a rotação φB do nó 9 (da 

Fig. 5.2) são mostradas na Fig. 5.4(a) para os casos estudados por King et al. (1992), 

que praticamente reproduziram El-Zanaty et al. (1980). Com os mesmos dados, 

apresentam-se as curvas 1A da própria tese (PT), feitas com Controle de Carga (CC) e 

de Deslocamento (CD). Aplicando o CC encontrou-se, para φB = 68,48 (74,77) mrad, o 

fator λ = 87,9 (88%, colapso), respectivamente. Já com CD, o fator de carga máximo 

obtido foi λ = 87,997% quando φB = 72 mrad (ver Tab. 5.3). 
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Tabela 5.1  Propriedades da seção 4 WF 13 da coluna. 
Dimensões da seção I [mm] Módulo resistente 

espessuras Refe-
rência altura 

d 
largura 

b aba t alma a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 
elástico 

Wz  [cm3] 
plástico 
Zz  [cm3] 

AISC 1978 4,16 in 4,06 in 0,345 in 0,28 in 3,83 in2 11,3 in4 5,46 in3 6,28 in3 
Convertido 105,66 103,12 8,763 7,112   24,710 470,3 89,47 102,91 

PT (1) = =    8,844 (2)    7,354 (2) 24,709 = 89,03 102,52 
Notas: 1) PT: própria tese; 2) valores aproximados de forma a manter a área bruta Ag e a inércia Iz.  
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Figura  5.4 Trajetória de equilíbrio da coluna experimental: 

(a) com resultados de King et al. (1992) e El-Zanaty et al. (1980);  
(b) com método da zona plástica: Chen & Toma (1994). 
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Desenvolveu-se uma versão (FLEXCOMP.bas) do programa computacional 

“BCIN.for” de Chen & Toma (1994), que adota outro método da zona plástica. Para 

FLEXCOMP, adotou-se o incremento de 1 mm das flechas e de 0,05% do momento M, 

com os dados do modelo 1A. A seção tem 20 fatias no flange, 80 na alma; com 21 

pontos de integração. O colapso ocorreu com λc ≥ 87,95%. Modificando-se para 9 

pontos, obteve-se a  λc ≥ 88,02%, confirmando os resultados obtidos na PT. 

Posteriormente, essa estrutura foi reestudada com o chamado modelo 1B, por 

PPLANAVA (2009), considerando os dados experimentais de Van Kuren & Galambos 

(1964), conforme: L/rz = 112,3, cargas: Ny = 591,82 kN, P0 = 93,508 kN, M0 = 2464 

kNcm, módulo E = 20278 kN/cm2; além das propriedades indicadas na Tab. 5.2. 

Na Fig. 5.4 (b), comparam-se os resultados 1B com o experimental e mostram-se 

os resultados de FLEXCOMP (Chen & Toma, 1994) também. 

O modelo 1B usando CC, tem escoamento ainda com λy ≥ 49,3% e possui um 

salto dinâmico maior do que em 1A, ao passar de λ = 87,8 para 87,9% (colapso), com as 

rotações: φB = 69,47 e 104,27 mrad, respectivamente. Empregando-se o CD, chega-se à 

carga última com φB = 110 mrad (λ = 77,65%) e a carga limite atinge λ = 87,83% 

quando φB = 72 mrad; mas as modificações são muito pequenas em relação ao CC. 

Na técnica das fatias, a plasticidade se deteriora mais lentamente (por causa da 

posição da fibra) no início, posteriormente, esse efeito torna-se contrário e a carga limite 

ocorre num ponto um pouco após o máximo experimental (φBlim = 72 > 65 mrad), o que 

também pode ser explicado pelo encruamento no último. O ensaio experimental 

encontrou Mm = 2181 kNcm e a PT 2164 kNcm (99,2%!). Pode-se considerar um 

excelente resultado para os dois controles (CC e CD), como ilustrado na Tab. 5.3. 

A diferença (0,1% no colapso) entre os modelos 1A e 1B é muito pequena, sendo 

os demais resultados bastante coerentes com os encontrados pelo programa anterior 

PPLANAVX (2005-7), comprovando que, em alguns casos (como as colunas), ambas as 

versões alcançam o mesmo desempenho, como foi informado. 

Para finalizar esta seção, na Fig. 5.5 apresenta-se a distribuição da plasticidade ao 

longo da barra e na seção mais crítica, que é o nó 8, entre o EF (7) e o (8), que possui 

75,8% das fatias plásticas. Note-se que a plasticidade tomou mais de 50% da extensão 

da coluna, predominando a compressão, como se poderia supor, e o efeito local do 

momento ocorreu no nó 8 para este modelo com 8 EFs. 
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Tabela 5.2  Propriedades da seção 4 WF 13 experimental. 
Dimensões da seção I [mm] Módulo resistente 

espessuras Refe-
rência altura  

d 
largura 

 b aba t alma a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 
elástico 

Wz  [cm3] 
plástico 
Zz  [cm3] 

Medido 4,16 in 4,06 in – – 3,79 in2 – 5,44 in3 6,23 in3 
Convertido 105,66 103,12 – – 24,45 – 89,15 102,09 

PT = = 8,848 (2) 7,050 (2) = 469,2 88,76 102,00 
Notas: 1) PT: própria tese; 2) valores aproximados de forma a manter a área bruta Ag e a inércia Iz. 

 

Tabela 5.3  Resultados da análise numérica. 

Modelo Controle 
Rotação 
θ [mrad] 

Fator de 
carga 

λ  [%] 

Momento 
M (3) 

[kNcm] 
Observação 

    68,45 87,9 2172,0 pré-colapso 
    CC (4) 

    74,77 88,0 2174,5 colapso 1A (1) 
CD    72,00    87,997 2174,2 carga limite 

    69,47 87,8 2163,4 pré-colapso 
CC 

 104,27 87,9 2165,9 colapso 
  72,00 87,832 2164,1 carga limite 

1B (2) 
CD 

110,00 77,648 1913,3 carga última 
experimental  65,00 88,5 2181,0 carga limite 

Notas: 1) M0 = 2471 kNcm; 2) M0 = 2464 kNcm; 3) M = λ M0; 4) PPLANAVX (2005). 
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z z
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Figura  5.5 Zonas plásticas na coluna de Van Kuren & Galambos (1964): 
(a) percentual de fatias plásticas; (b) seção crítica no nó 8;  

(c) convenção: (����) tração, (����) compressão. 
 

Todavia, comprova-se também que o ponto limite é de instabilidade, visto que o 

momento último (na trajetória descendente) representa apenas 77,6% de M0. Nessa 

condição, a deformação plástica máxima é de εp = -6,8 mm/m, enquanto no ponto limite 

foi de apenas εp = -2,7 mm/m. 
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5.4 COLUNA DE GALAMBOS & KETTER (1959) 

Este exemplo é quase uma extensão do anterior, no qual se estuda as Curvas de 

Interação de Galambos & Ketter (1959), que foram produzidas de forma numérica, 

gabaritada com resultados experimentais de Van Kuren & Galambos (1964), depois 

aproximadas por equações empíricas e posteriormente adotadas pelas normas 

americanas do AISC (ASD, 1989; LRFD, 1986 e 1993).  

Agora a barra mostrada na Fig. 5.6 sofre flexão do momento M e compressão da 

carga axial P, em ambas as extremidades, sendo o menor esforço aplicado fixo, 

enquanto no outro se faz o processo incremental com o fator λ, até atingir o colapso.  

É incluído o efeito de curvatura inicial (CI), com δ0 = L/1000, em forma senoidal, 

com as tensões residuais (TR) quando introduzidas. Essas imperfeições são atributos 

mínimos, considerados no dimensionamento das normas (em geral, de uma forma 

implícita, por meio do módulo tangente Et).  

Pela relação entre os esforços (N = P, M) atuantes externos e as cargas nominais 

de escoamento à compressão (Ny) bem como do momento plástico da seção (Mp), 

traçam-se as curvas desejadas (N/Ny×M/Mp). Essas curvas de interação são mostradas 

em diversas fontes (Al-Mashary & Chen, 1991; Liew et al., 1993; Chen & Toma, 1994; 

Hajjar et al., 1997; etc.), porém, quase sempre, com tensões de escoamento anteriores 

(para aço ASTM A7, de σy = 22,76 kN/cm2, tomava-se E = 20692 kN/cm2). 

Na própria tese, o material suposto elástico perfeitamente plástico, adotou-se o 

aço ASTM A 36, de σy = 25 kN/cm2, com o módulo E = 20000 kN/cm2. 
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Figura  5.6 Coluna de Galambos & Ketter (1959). 
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Tabela 5.4  Propriedades da seção 8 WF 31 da coluna. 
Dimensões da seção  I [mm] Módulo  resistente 

espessuras Refe-
rência altura  

d 
largura 

 b aba t alma a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 
elástico 

Wz  [cm3] 
plástico 
Zz  [cm3] 

AISC 1978 8,00 in 7,995 in 0,435 in 0,285 in 9,13 in2 110 in4 27,5 in3 30,4 in3 
Convertido 203,20 203,07  11,049  7,239 58,903 4578,54 450,64 498,16 

PT = =  11,270 (2)    7,268 (2) = 4577,30 450,50 498,50 
Notas: 1) PT: própria tese; 2) valores aproximados de forma a manter a área bruta Ag e inércia Iz. 
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                                       Dimensões [mm]                                           Tensões Residuais [kN/cm2] 

Figura  5.7  Perfil da coluna 8 WF 31: 
(a) laminado original; (b) seção equivalente; (c) TR de Galambos & Ketter (1959). 

 

Nas figuras 5.7(a-b), mostra-se o perfil laminado com a seção equivalente, na Tab. 

5.4 apresentam-se as propriedades geométricas da seção original e também os valores 

ajustados adotados no modelo da PT. 

No modelo adotado, empregou-se 8 EFs, sendo avaliadas duas condições: sem e 

com tensões residuais (TR), indicadas na Fig. 5.7(c). São TR lineares, do tipo indicado 

por Galambos & Ketter (1959), com o valor máximo σr máx = 0,3 σy. Essas tensões 

residuais constituem um padrão adotado pelos exemplos contidos na literatura 

americana (Chen et al., 1996) que são seguidos nesta tese. 

 O número de fatias na condição com TR para as abas foi de 200, e 20 em caso 

contrário; na alma, foram adotadas 36 fatias em ambos os casos. 

Para comparar os resultados, empregou-se a versão desenvolvida do programa 

“BCIN.for” de Chen & Toma (1994), adotando os mesmos dados. FLEXCOMP 

executou um mínimo de 20 iterações por passo, tolerância de 0,1%, com 40 fatias na 

aba e 40 na alma e analisou 21 seções (nós). 

 As curvas de interação para esbeltez L/rz = 60, 80 e 100 são mostradas na Fig. 

5.8(a) sem TR e 5.8(b) com TR, destacando-se a concordância com as de FLEXCOMP, 

embora os resultados obtidos registrem pequenas diferenças.  
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Figura  5.8 Curvas de interação de Galambos & Ketter: 
(a) sem tensões residuais; (b) com tensões residuais. 

 

Indica-se que esses resultados foram produzidos pela versão 2005/7 do 

PPLANAVX, que possui maior tendência ao colapso por compressão dada a IIEA 

anterior [isso em relação à versão atual (PPLANAVA)]. Mesmo assim, os resultados 

ficam muito próximos dos encontrados por Zhou et al. (1990), no caso, incluindo TR. 
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Para comparação, foi avaliado o caso similar ao do exemplo da seção 5.2, que 

possui momento numa extremidade apenas, com P = 0,8 Ny (1072,5 kN), L = 352,6 cm 

(L/rz = 40) e os demais dados seguem os da Tab. 5.3, adotando os mesmos valores 

originais do aço ASTM A7, ou seja, E = 20762 kN/cm2 e σy = 22,76 kN/cm2. 

Os valores obtidos pelo programa computacional PPLANAVX (2005) foram: fator 

de carga λc ≥ 21,2% (21,128), flecha vertical δy = 0,479 cm (0,460) e rotação máxima 

(no nó onde atua M0 =11346 kNcm) φB = 8,146 mrad (8,884), que estão próximos dos 

produzidos por FLEXCOMP (em parênteses) nas mesmas condições. Comparando-se as 

respostas com as de Galambos & Ketter (1959): o momento de colapso 2383,3 kNcm 

(crítico) é inferior a 2416,7 kNcm, obtido por FLEXCOMP ou PPLANAVX. Há uma 

discrepância geral de valores (da ordem de 3%), que se explica pela falta de maiores 

recursos na época (1959), quando se desprezou a deformação axial, que tem a mesma 

ordem de grandeza da transversal e, assim, interfere também nos resultados.  

Finalizando, na Fig. 5.9 faz-se um diagrama das fatias plásticas no colapso, para 

casos de esbeltez L/rz: 60 e 100. Observa-se que a plasticidade é maior na seção mais 

robusta e torna-se mais concentrada, quando não se consideram as TRs. Todavia, 

quando se introduzem as TRs, a plasticidade se torna extensa (ao longo de toda a barra), 

e para momento pequeno (β = 0,1) ocorrem apenas ZPs de compressão. Já quando o 

axial é pequeno (λ = 0,1), ocorrem ZPs também de tração, embora as outras sejam bem 

maiores. Isso ressalta como é importante considerar as TRs nos modelos. 

9

1 1

9

1

9 9

1

= 0,1 = 0,1= 0,1 = 0,1 = 0,1 = 0,1= 0,1 = 0,1
c/ TR c/ TR c/ TR c/ TR

(a) (b)

9

1

9

1

9

1

9

1

 
Figura  5.9 Zonas plásticas das colunas de Galambos & Ketter (1959) 

(a) esbeltez L/rz = 60; (b) esbeltez L/rz = 100; (c) convenção: (����) tração, (����) compressão. 
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5.5 PORTAL DE CHEN ET AL. (1996) 

O portal ilustrado na Fig. 5.10 foi proposto por Chen et al. (1996) e investigado 

sob diversas formas por esses pesquisadores. Esse exemplo será explorado também para 

avaliar a ação da IIEA (Alvarenga, 2005 e 2008) mostrando suas melhorias e as 

alternativas existentes para empregar essa técnica das fatias (Lavall, 1996). 

Para acompanhar a norma americana, que é empregada nas verificações, a 

curvatura inicial (CI), no sentido indicado, com arco de círculo, e as tensões residuais de 

Galambos & Ketter (1959) foram introduzidas como imperfeições explícitas. O modelo 

adotado para análise por zona plástica emprega 18 EFs, sendo 6 para cada barra.  

As seções dos perfis adotados foram ajustadas, com as propriedades indicadas na 

Tab. 5.5. As cargas no enunciado original são P1 = 356 kN e P2 = 267 kN. Aplicaram-se 

cargas maiores de forma que o programa computacional pudesse encontrar o fator de 

colapso independentemente, mantendo-se apenas a relação dada (P2 = 75% P1). 

Esse portal é inicialmente avaliado nas diversas considerações de análise plástica, 

com os resultados fornecidos em Chen et al. (1996) e, a seguir, apresentam-se os 

resultados dos casos de zona plástica estudados, como visto na Tab. 5.6. 
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Figura  5.10 Portal de Chen et al. (1996). 
 

Tabela 5.5  Propriedades das seções do portal de Chen et al. (1996). 
Dimensões da seção  I [mm] Módulo  resistente 

espessuras Refe-
rência altura  

d 
largura 

 b aba t alma a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 
elástico 

Wz  [cm3] 
plástico 
Zz  [cm3] 

18WF50 457,2 190,5 14,478  9,017 94,84 33298,0 1456,8 1655,1 
PT = = 14,655 (2)    9,116 (2) = 33299,3 1456,7 1652,8 

21WF83 543,6 212,3 21,209   13,081 156,77 76170,4 2802,2 3211,9 
PT = = 21,652 (2)  12,957 (2) = 76169,9 2802,6 3210,2 

Notas: 1) PT: própria tese; 2) valores aproximados de forma a manter área bruta Ag e inércia Iz. 
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Tabela 5.6 Análises do portal de Chen et al. (1996). 

λc  
(8) Forças [kN] Momentos de flexão [kNm] 

Método 
[ ] H VA VG MA MB MC MD ME 

Rig. plást. (1) 0,972   89,9 396,5 360,4     0,0 411,0 797,2 687,5 411,0 
ERP 2ªord. (2) 0,933   83,3 380,5 346,2     9,4 375,4 790,3 678,7 380,7 
ERP Ref. (3) 0,936   74,9 381,3 347,1     8,1 337,7 711,1 610,3 342,6 
ZP média (4) 0,950   85,0 387,1 352,7   15,2 393,5 792,5 682,3 397,6 
ZP direto (5) 0,920 113,4 485,4 213,2 125,8 388,6 757,9 652,8 390,8 
PT (2005) (6) 0,866  84,9 347,8 326,6 40,64 342,7 720,1 605,4 392,7 
PT (2008) (7) 0,946  84,8 385,4 351,3 13,34 391,4 788,2 678,9 395,9 

Notas: 1) método plástico clássico; 2) método elástico com rótulas plásticas de 2a ordem; 3) idem 2, 
refinado; 4) zona plástica com média Q1 = (NA+NB)/2 (Lavall, 1996); 5) ZP com NA ≠ NB direto, 

(valores encontrados na integração); 6) zona plástica com IIEA anterior (Alvarenga, 2005); 7) IIEA versão 
2008; 8) valores de λc dos casos 1 a 3 (Chen et al., 1996), ajustados para os dados de ZP. 

 

Tabela 5.7  Análises de ZP do portal de Chen et al. (1996). 

Esforços axiais [kN] 
EF 6 (coluna A-B) EF 13 (coluna E-F-G) 

Método da 
zona plástica 

λc 

[ ] 
NA NB Q1 dN NA NB Q1 dN 

média (1) 0,950 401,4 374,0 387,7 27,4 322,1 383,7 352,9   61,6 
direto (2) 0,920 441,7 376,1 408,9 65,6 342,2 132,6 237,4 209,7 
PT (2005) (3) 0,866 348,8 348,8 348,8   0,0 327,3 327,3 327,3    0,0 
PT (2008) (4) 0,946 386,5 386,5 386,5   0,0 351,0 351,0 351,0    0,0 
Notas: 1) zona plástica com média Q1 = (NA+NB)/2 (Lavall, 1996), 2) ZP com NA ≠ NB direto, (valores 

encontrados na integração), 3) zona plástica com IIEA anterior (Alvarenga, 2005), 
 4) IIEA versão 2008 (Alvarenga, 2008). 

 
Na tabela 5.7, destacam-se os esforços axiais NA e NB encontrados, nos estudos 

com ZP, indicando os resultados obtidos com a IIEA (2005 e 2008); a introdução dos 

esforços obtidos na integração sem qualquer ajuste ou correção (direto); e, também, o 

valor médio que corresponde à Q1, adotado por outros pesquisadores. 

Agora, é feita a primeira comparação de resultados pela Fig. 5.11, que ilustra duas 

trajetórias de equilíbrio em função do fator de carga λ. O deslocamento vertical do 

ponto C (nó 9) (embora não seja máximo, que é o do nó 10), na Fig. 5.11(a), mostra que 

as respostas produzidas acompanham as obtidas por Chen et al. (1996). Já o 

deslocamento horizontal do ponto F (nó 15), que é o de maior valor, representado na 

Fig. 5.11(b), elucida a diferença entre os resultados dos métodos de ZP. 

Observe que este exemplo é um caso típico de formação de mecanismo plástico de 

viga, para o qual a versão anterior de PPLANAVX (2005) sempre mostrou um resultado 

pior, visto que a correção dN era incluída sempre na parte de maior plasticidade. Por 

isso, acelera a degradação da ZP no nó mais solicitado, o que, quando a plasticidade 

cresce (se distribuindo ao longo da barra) na flexão, pode-se tornar inadequado. Essa é a 

condição de pior resultado para a versão da IIEA anterior (2005). A versão atual ajusta a 

plasticidade no local e da forma necessária. 
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Figura  5.11 Trajetórias de equilíbrio do portal de Chen et al. (1996): 
(a)vertical no ponto C; (b) horizontal no ponto F. 

 

Sobre os diversos tipos de análise, fazem-se as seguintes observações: 

a.  Chen et al. (1996) indicaram uma deflexão vertical máxima aproximada do 

ponto C de δyC ≈ 5,6 cm (2,2 in), empregando o método ERP refinado;  

b. o emprego dos valores oriundos diretamente da integração do axial (NA e NB) 

provocou uma trajetória bastante irreal e apresentou, além disso, valores bastante 

diferentes do aceitável. Esse cálculo foi realizado com passos de 1%, embora 

isso não modifique o comportamento antes observado; a MRG ficou singular na 

rotação z do EF que contém o ponto C e encontrou-se o deslocamento vertical 

δyc = 4,0 cm (λc = 92%); 

c.  o processo com o valor médio Q1 atingiu o mesmo fator de carga. Neste caso, a 

trajetória de deslocamentos não é tão diferente, visto que o desvio é interno, e na 
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média tais valores estariam corretos, embora não nas tensões e deformações das 

fatias. Esse cálculo foi paralisado com o fator 95%, quando o critério de 

convergência não foi atendido em 1200 iterações, tendo alcançado  δyc = 6,9 cm 

(λc = 94,9%); 

d. a versão anterior da IIEA encontrou sobrecarga de memória no EF 13 (próximo 

ao ponto F), com um fator de carga bem menor (λ = 86,6%) e o deslocamento 

menor δyc = 3,4 cm, num colapso prematuro; 

e.  a versão atual da IIEA controla melhor a formação das ZPs nos casos em que o 

efeito de momento fletor é maior e, também, não converge com 1200 iterações, 

mas com evidentes sinais de colapso (com o controle iterações avaliado em 

100%, enquanto na convergência tal controle seria de 0,1%). Determinou-se a 

flecha δyc = 6,2 cm (λc = 94,6%), nesse caso. 

 
Para ver-se melhor a diferença entre a aplicação do valor médio Q1 e do processo 

da IIEA, nas Figs. 5.12(a-b), representam-se os comportamentos dos EFs 6 e 13, que 

correspondem às extremidades superiores das colunas, sendo que os nós (B) do EF 6, e 

(A) do EF 13 estão conectados à viga. Verifica-se que as trajetórias da versão com a 

média apresentam uma condição de desequilíbrio na qual a barra com maior M/Mp 

possui no final o menor N/Ny, enquanto na outra extremidade do mesmo EF a relação 

N/Ny é maior. Pode-se dizer que houve uma passagem artificial de carga axial do nó 

mais carregado à flexão, para o menos carregado, o que não pode ser aceitável.  

Já as trajetórias dos EFs com a IIEA estão em mesmo nível de carga (N/Ny) 

independentemente do que sucede com M/Mp, como se espera. A diferença mais 

marcante pode ser acompanhada na trajetória do nó (B) do EF 13, cujos 

comportamentos são bem distintos. Isso ressalta que, neste exemplo, o efeito tende a ser 

local, nos esforços do EF, no seu comportamento e dimensionamento apenas. (Obs. para 

a coluna: Ny = 2352 kN e Mp = 41046 kNcm). 

Nas figuras 5.13(a-b), pode-se comprovar a formação de mecanismo plástico 

clássico, chamado “colapso de viga”, que com a ZP deixa de ser algo nos pontos de 

momento máximo para estender-se ao longo das barras. Fica evidente, porém, o colapso 

das seções: no topo das colunas B (nó 7), E (nó 13) e ponto C da carga P1 (nó 9). 

Deve-se comentar que nos diversos casos de formação de mecanismo em que a 

flexão comanda o processo, os resultados obtidos pela versão anterior de PPLANAVX 

(2005-7) sempre apresentaram diferenças de (3-5)% em relação ao esperado.  
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Figura  5.12 Diagramas de interação para colunas do portal de Chen et al. (1996): 
(a) EF 6 coluna A-B; (b) EF 13 coluna E-G; (c) com IIEA (—), com média (- -). 
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Figura  5.13 Zonas plásticas do portal de Chen et al. (1996): 
(a) percentual na estrutura; (b) as seções críticas; (c) convenção: (����) tração, (����) compressão. 

 

A atual versão parece conseguir obter um resultado melhor nesse trecho, ao fazer-

se a correção do esforço axial, recuperando a diferença mais provável que se tenha 

originado quando ocorre o escoamento, em casos de zonas duplas com flexão. 

Nas análises em que a flambagem comanda o processo, as duas versões tendem a 

produzir resultados próximos, pois conseguem detectar melhor a instabilidade, mesmo 

em casos de dupla zona plástica (à compressão), como será visto no próximo capítulo, 

que foi desenvolvido integralmente com a versão anterior do IIEA (2005-7), e com 

excelentes resultados. 

 



Tese • AR Alvarenga • Cap. 5 – Elemento finito rígido-rígido 

 

255 

5.6 PORTAL DE ARNOLD ET AL. (1968) 

O portal representado na Fig. 5.14, já foi estudado por outros pesquisadores, 

incluindo El-Zanaty et al. (1980), Galambos (1982), Shen & Zheng (1995). 

Além de ter seções diferentes para as colunas e a viga, também os materiais são 

distintos (ver a Tab. 5.8). Embora a geometria seja considerada sem imperfeições, as 

tensões residuais de Galambos & Ketter (1959) para laminados americanos foi adotada.  

Este exemplo foi analisado duas vezes. Na primeira vez, empregaram-se as 

propriedades das seções equivalentes adotadas com base nos perfis indicados em 

Galambos (1982), convertida em unidades do SI, apresentadas na Tab. 5.9. 

Constatou-se que tais propriedades eram superiores às medidas no ensaio 

experimental (Arnold et al., 1968), sendo o cálculo refeito para as propriedades 

corrigidas. A diferença encontrada nos perfis I compostos de retângulos, similares aos 

mostrados na Fig. 5.7(b), entre os valores nominais e os medidos, foi então retirada dos 

valores-padrão tabelados dos laminados (da Tab. 5.9). Essa diferença (redução) é 

indicada de forma sumária na Tab. 5.10. 
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Figura  5.14  Portal de Arnold et al. (1968). 

 
Tabela 5.8  Propriedades dos materiais do portal. 

Aço ASTM σy 
(3,4) σu 

(3) σr  
(3) E (1,3) Es 

(3, 5) εy [mm/m] εs [mm/m]) 
A 36 26,6 45,0   7,98 20337 476 1,31 18,78 (2) 
A 441 38,7 56,6 11,62 20389 487 1,90 18,28 (2) 
Notas: 1) Adotado E = 20300 kN/cm2; 2) a deformação última (εu) não foi informada; 3) em [kN/cm2]; 
4) Shen & Zheng (1995) indicaram σy = 26,59 e 38,73; 5) módulo tangente Et = (E.Es)/(E+Es), módulo 

plástico (ou de endurecimento) Es = (E.Et)/(E-Et). 
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Arnold et al. (1968) citaram o deslocamento máximo aproximado de ∆E = 17,78 

cm, com a carga máxima de H = 74,8 kN. Baseados em mecanismo plástico, previram 

um valor teórico maior: H = 94,3 kN e justificaram que houve a redução da resistência 

por instabilidade. Shen & Zheng (1995) indicaram a carga máxima do ensaio H = 75,17 

kN e a da sua teoria, com o chamado método “NIM”, H = 75,87 kN.  

Não existem muitos detalhes sobre o modelo empregado ou valores obtidos nas 

outras referências de maneira geral. Seria natural o emprego de 5 EFs para o estudo 

desse portal. No modelo desta tese, foram adotados 20 EFs, sendo 6 em cada coluna e 8 

EFs na viga. Atingiu a carga H = 77,3 (73,8) kN, com a seção teórica (a experimental, 

em parêntesis), respectivamente. 

As trajetórias de equilíbrio do portal, considerando o deslocamento horizontal do 

ponto E, são traçadas na Fig. 5.15. Os resultados de El-Zanaty et al. (1980) também 

foram reproduzidos empregando o método elástico com rótulas plásticas (de primeira 

ordem e de segunda) bem como a análise inelástica da sua tese, que é do tipo zona 

plástica, porém não considera o deslocamento do centro de gravidade plástico (CGP). 

Nessa figura, são indicados, também, os resultados do ensaio experimental e as 

duas análises com zona plástica desta tese, com as seções padrão bem como as 

reduzidas. 

Tabela 5.9 Propriedades das seções do portal. 
Dimensões da seção  I [mm] Módulo  resistente 

espessuras Refe-
rência altura  

d 
largura 

 b aba t alma a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 
elástico 

Wz  [cm3] 
plástico 
Zz  [cm3] 

10 I 25,4 10,00 in 4,66 in 0,491 in 0,310 in – – – 28,0 in3 
Convertido 254 118,36 12,471 7,874 48,10 5140 404,7 458,8 

PT = = 12,567 (2) 8,019 (2) = = = 464,1 
5 WF 18,5 5,12 in 5,025 in 0,420 in 0,265 in – – – 11,4 in3 
Convertido 130,05 127,63 10,668 6,731 35,87 1094,7 167,4 186,8 

PT 130,81 127,76 11,139 (2) 6,825 (2) = = = 190,4 
Notas: 1) PT: própria tese; 2) valores aproximados de forma a manter a área bruta Ag e a inércia Iz. 

 
Tabela 5.10  Propriedades das seções reduzidas dos perfis do portal. 

Dimensões da seção  I [mm] Módulo  resistente 
espessuras Refe-

rência altura  
d 

largura 
 b aba t alma a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 
elástico 

Wz  [cm3] 
plástico 
Zz  [cm3] 

10 I 25,4 (3) 254,00 118,36  12,474   7,874 47,565 5098,8 401,5 459,9 
Redução (4)       0,389     35,9   

PT 254,00 118,40 12,463 (2) 7,944 (2) 47,711 5104,1 401,9 460,6 
5WF18,5 

(3) 130,05 127,63 10,668  6,731 34,550 1044,9 160,7 182,4 
Redução (4)       0,831     34,6   

PT 130,81 127,76     10,599 (2) 7,271 (2) 35,039 1060,1 162,1 184,5 
Notas: 1) PT: própria tese; 2) valores aproximados para obter a área bruta Ag e a inércia Iz  equivalentes;  

3) valores obtidos com I de retângulos para os dados de El-Zanaty et al. (1980);  
4) correções para reduzir os valores indicados na Tab. 5.9 (padrão). 
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Comprova-se que, com o ajuste de propriedades das seções, os resultados 

acompanharam bem os inelásticos com ZP de El-Zanaty et al. (1980), situando-se logo 

abaixo da curva experimental. Por outro lado, empregando as seções originais dos 

perfis, supera-se a curva experimental, (já que as propriedades são maiores). 

Note-se que Arnold et al. (1968) indicaram o comportamento elástico do portal 

até a introdução da carga vertical total. Entretanto, no modelo numérico adotado, 

constatou-se o escoamento com 94,7% (92,7%) da carga aplicada, na opção 

experimental, (original em parêntesis), respectivamente. 

Na figura 5.16(a), ilustra-se o estado final das fatias de plásticas no colapso do 

modelo, identificando-se claramente a formação do mecanismo com 5 ZPs, ou seja, um 

colapso dito sobrecompleto, porque bastariam 4 ZPs (ou RPS, rótulas plásticas) para 

formar-se o mecanismo de colapso combinado ou o de andar.  

Verifica-se, pelas seções indicadas na Fig. 5.16(b), relativas aos nós mais 

solicitados em situação pré-colapso, que a plasticidade está bem avançada, mas ainda 

não se formou uma seção em estado último (totalmente plástica). Os nós (1 e 7) da 

coluna esquerda ainda têm alguma região elástica, enquanto os nós (15 e 20) da coluna 

direita e nó (9) do meio-vão da viga se encontram em situação mais grave. 

Por outro lado, o salto no deslocamento lateral do nó E de 10,17 (9,77) cm para 

12,46 (17,08), aproximadamente, comprovam a perda de instabilidade antes do colapso 

por final da resistência, (modelo original em parêntesis). 

A carga limite ocorre ligeiramente antes do mecanismo se completar, com o 

escoamento generalizado na seção do ponto C, como foi indicado antes. 

Esses resultados foram produzidos pela versão de 2008, embora em outros 

exemplos se tenha constatado que ambas as versões reproduzem os mesmos resultados. 

A última versão em operação de PPLANAVA (2010) reproduz também esses 

resultados, com mínima diferença em relação à versão de 2008. Esse exemplo foi 

exaustivamente reproduzido nos ensaios das diversas versões e testes da IIEA, 

auxiliando sobremaneira no diagnóstico de falhas e ajustes necessários do programa 

computacional. 

Tendo-se comprovado a funcionalidade do programa computacional e da 

formulação básica, com resultados de qualidade, no próximo capítulo, estuda-se o EF 

rígido-rótula, que é um passo em direção ao estudo do efeito das ligações. 
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Figura  5.15  Trajetória de equilíbrio do portal de Arnold et al. (1968). 

 

(b)

(a)

20
,4

47,2 51,8
50,5
 1,4

50,9

44,5

39
,7

49
,0

49
,5

47
,3

47
,5

29
,4

13
,5

 4
,6

 1
,6

29,1

51,2

53,2 41,1

50,9
53,0

 8,5

nó  1 nó  7 nó 15 nó 20 

nó  9  

Figura  5.16  Zonas plásticas do portal de Arnold et al. (1968): 
(a) percentual na estrutura; (b) as seções críticas; (c) convenção: (����) tração, (����) compressão. 

 

 

 



Tese • AR Alvarenga • Cap. 5 – Elemento finito rígido-rígido 

 

259 

5.7  REFERÊNCIAS  

AISC ASD (1989), Allowable stress design - Specification for structural steel buildings, 9ª Ed., Chicago, 
Illinois. 

AISC LRFD (1986), Load and resistance factor design specification for structural steel buildings, 1ª Ed., 
Chicago, Illinois. 

AISC LRFD (1993), Load and resistance factor design specification for structural steel buildings, 2ª Ed., 
Chicago, Illinois. 

Al-Mashary, F. & Chen, W.F. (1991), “Simplified second-order inelastic analysis for steel frames”, The 

Structural Engineer, Vol. 69, No. 23(3), pp. 395-399. 

Alvarenga, A.R. (2005), “Aspectos importantes na análise avançada com zona plástica de portais planos 

de aço”, Diss. de Mestrado, PROPEC/EM-UFOP, Ouro Preto/MG. 

Alvarenga, A.R. (2008), “Estudos sobre ligações com análise avançada através da zona plástica em 

pórticos planos de aço”, Ex. de Qualificação, PROPEC/EM-UFOP, Ouro Preto/MG. 

Alvarenga, A.R. & Silveira, R.A.M. (2008c), “Integração iterativa do esforço axial na análise inelástica 
com zona plástica”, Anais do XXIX Iberian Latin-American Congress on Computational Methods in 

Engineering, Maceió/AL. 

Arnold, P., Adams, P.F. & Lu, L.W. (1968), “Strength and behavior of an inelastic hybrid frame”, ASCE 

J. Struct. Engineer., Vol. 94, No. 1, pp. 243-266.  

Chen,W.F. & Toma, S. (1994), Advanced analysis of steel frames - Theory software and applications, 
C.R.C. Press, Boca Raton. 

Chen, W.F., Goto, Y. & Liew, J.Y.R. (1996), Stability design of semi-rigid frames, John Willey and Sons,  
Nova Iorque. 

El-Zanaty, M.H., Murray, D.W. & Bjorhovde, R. (1980), “Inelastic behavior of multi-story steel frames”, 
Structural Engineering Report, No. 83, Univ. Alberta, Canadá. 

Galambos, T.V. (1982), Structural members and frames,  Dept. Civil Engineering, Univ. Minnesota, 
Mineapolis. 

Galambos, T.V. & Ketter, R.L. (1959), “Columns under combined bending and thrust”, ASCE  J. Eng. 

Mechanics,  Vol. 85, No. 2, pp. 1-30. 

Hajjar, J.F. & outros (1997), Effective length and notional load approaches for assessing frames stability 

– Implications for American steel design, ASCE, Nova Iorque. 

Lavall, A.C.C. (1996), “Uma formulação teórica consistente para a análise não-linear de pórticos planos 

pelo método dos elementos finitos considerando barras com imperfeições iniciais e tensões residuais na 

seção transversal”, Tese de Doutorado, EESC/USP, São Carlos / SP. 

Liew, J.Y.R., White, D.W. & Chen, W.F. (1993), “Second-order refined plastic-hinge analysis for frame 
design Part I-II”, ASCE J. Struct. Engineer., Vol. 119, No. 11, pp. 3196-3237. 

King, W.S.; White, D.W. & Chen, W.F. (1992), “Second-order inelastic analysis methods for steel-frame 
design”,  ASCE J. Struct. Engineer., Vol. 118, No. 2, pp. 408-428. 

Shen, Z.Y. & Zheng, W.G. (1995), “A new numerical integration method for the analysis of steel 
structural stability”, Pacific Steel Structures Conference 4 PSSC, Vol. 1, pp. 543-550. 

Van Kuren, R.C. & Galambos, T.V. (1964), “Beam-column experiments”, ASCE J. Struct. Engineer., 
Vol. 90, No. 2, pp. 223-256. 



Tese • AR Alvarenga • Cap. 5 – Elemento finito rígido-rígido 

 

260 

Zhou, D.P., Duan, L. & Chen, W.F. (1990), “Comparison of design equations for steel beam columns”, 
Structural Engineer. Review, Vol. 2, No. 1, pp. 45-53; em Liew et al. (1993) ed. 

 



6  
ELEMENTO FINITO  
RÍGIDO-RÓTULA 

 

 

 

 

SUMÁRIO 

 

Seção Título Pag. 

6.1 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 

Introdução 

Formulação numérica do EF rígido-rótula ........................  

Coluna de Hajjar et al. (1997)  

Coluna de Lu & Kamalvand (1968) .................................. 

Portal de Kanchanalai (1977) 

Portal de Hajjar et al. (1997) ............................................. 

Referências  

262 

264 

266 

270 

277 

283 

298 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tese • AR Alvarenga • Cap. 6 – Elemento finito rígido-rótula 

 

262 

6.1  INTRODUÇÃO 

Neste capítulo desenvolve-se o elemento finito (EF) rígido-rótula como mais um 

caso particular do EF geral, apresentado no capítulo 3, agora para a condição de rigidez 

da extremidade com ligação ser nula. 

Como se mostrou no capítulo 2, de fato não existe tal rigidez nula, mas uma 

ligação bastante flexível. Entretanto, por ser uma condição limite inferior da rigidez tem 

um papel relevante ao permitir a exploração com a Análise Avançada de problemas que 

marcaram o desenvolvimento dos métodos elásticos e inelásticos de segunda ordem, 

como no estudo da coluna-escora (Siat-Moy, 1986). 

Na seção seguinte, obtêm-se de forma simplificada as partes da formulação 

numérica correspondentes, como o campo de deslocamentos, de deformações e as 

matrizes de rigidez. Para isso emprega-se (η = 0,5) nas equações básicas do capítulo 3. 

A validação aborda quatro exemplos de estudo especiais, ilustrados na Fig. 6.1: 

a. determina-se a carga de flambagem elástica ou inelástica, da coluna simples na 

Fig. 6.1(a), estudada por Hajjar et al. (1997), para reproduzir a curva do AISC 

LRFD (1993). O modelo emprega nas extremidades o EF rígido-rótula e os 

resultados se comparam com os anteriores (Alvarenga & Silveira, 2005); 

b. avalia-se o comportamento da coluna à flexo-compressão, como estudaram Lu 

& Kamalvand (1968), cujos resultados foram utilizados posteriormente por 

Foley & Vinnakota (1999) para validar sua formulação inelástica. Analisam-se 

dois tipos de carga provocando a flexão, sendo uma concentrada no meio-vão e 

outra distribuída, como representado na Fig. 6.1(b); 

c. o emprego da coluna tipo escora, ou birrotulada, que constitui uma “solução 

econômica e comum na prática” (Kanchanalai, 1977), é estudado na estrutura do 

portal da Fig. 6.1(c). Os diagramas, correspondentes à interação entre a carga 

vertical de compressão das colunas (incluindo o efeito da escora) e o momento 

atuante são primórdios das atuais normas americanas (Galambos et al., 1998); e 

d. verifica-se a influência dessa coluna escora no dimensionamento à flambagem, 

analisando o portal, proposto por Hajjar et al. (1997), que é similar ao estudado 

no controverso “paradoxo do fator k” (Siat-Moy, 1986). O estudo desse portal 

descrito na Fig. 6.1(d) fornece algumas conclusões interessantes para as normas 

(Alvarenga & Silveira, 2008a). 
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 Esses trabalhos possuem aplicação na validação de resultados obtidos por 

diversos tipos de formulações inelásticas, pois algumas dessas soluções são 

consideradas “exatas” pela comunidade científica mundial (Chen & White, 1993).  

Os resultados desta tese acompanham razoavelmente as respostas previstas por 

esses pesquisadores, constituindo assim uma fonte de consulta, para auxiliar os 

trabalhos de pesquisa e validações a serem desenvolvidos no futuro, formando um 

conjunto de banco de provas (“benchmark problems”, ver apêndice A.11). Note-se que 

as equações de interação consideram os esforços axiais (N) nas seções das barras, 

enquanto, em alguns exemplos, aplicam-se cargas verticais (P), que diferem desses 

valores nos pórticos, dado o efeito de tombamento e a deformação axial (que nem 

sempre são considerados). Por isso, essas grandezas são, às vezes, confundidas (P ≈ N). 
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Figura  6.1  Exemplos analisados: 
(a) coluna de Hajjar et al. (1997); (b) coluna de Lu & Kamalvand (1968); 

(c) portal de Kanchanalai (1977); (d) portal de Hajjar et al. (1997). 
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6.2 FORMULAÇÃO NUMÉRICA DO EF RÍGIDO-RÓTULA  

Apresentam-se agora partes complementares da formulação numérica geral do 

capítulo 3, lembrando-se, também, de que essa formulação foi apresentada de forma 

independente (Alvarenga, 2008; Alvarenga & Silveira, 2008b), quando se empregou 

para obter a expressão de vO, o sistema da Eq. 3.25 como condições de contorno, porém 

substituindo a última expressão pela Eq. 3.24.  Essa última parcela representa (vO″ = 0), 

ou seja, o momento na extremidade B é nulo (MB = 0). Portanto, o sistema construído 

para o EF rígido rótula é dado por: 

e da expressão de (vO) em termos dos deslocamentos (vA, vB, θA e θB) determinam-se as 

constantes (c, d, e & f) e se reproduz a formulação anterior (Alvarenga, 2008b). 

Aqui, obtêm-se os mesmos resultados, porém empregando a condição η = 0,5 

diretamente, o que será mostrado nas subseções seguintes. 

Note-se que o EF rígido-rótula é similar ao elemento rótula-rígido, assim as 

mesmas deduções são aplicadas, alterando-se apenas a ordem dos nós, por isso, o último 

se deixa como um exercício ao leitor. 

 

6.2.1 CAMPO DE DESLOCAMENTO E DE DEFORMAÇÃO 

Substituindo η = 0,5 na Eq. 3.43, obtém-se o campo de deslocamento vO: 

e na Eq. 3.53, o campo de deformações:  

Verifica-se imediatamente que não há a participação da rotação q3, ou seja, o giro 

próprio da rótula é independente (qualquer), portanto, a função Ψ3 = 0. 
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6.2.2 MATRIZES DE RIGIDEZ 

Partindo-se da Eq. 3.70 e considerando os coeficientes da Tab. 3.1 com η = 0,5 

(rótula), chega-se à matriz de rigidez constitutiva básica D: 

e pela Eq. 3.72, na matriz de rigidez relativa à curvatura básica H:  

Fazendo, então, a transformação fT (Eq. 3.74), reescreve-se a matriz de rigidez do 

EF constitutiva, dada pela Eq. 3.79 e a última linha da Tab. 3.2, com η = 0,5 (rótula): 

 e a de rigidez à curvatura com a Eq. 3.81 e a última linha da Tab. 3.3 (rótula): 

nas quais os termos dentro das matrizes são dados por: 

sendo definidas na subseção 3.4.4 as propriedades elastoplásticas da seção indicadas por 

D1m, D2m, D3m, respectivamente, e Q1 pela Eq. 3.97 (IIEA). (Ver apêndice A.7). 

Tendo visto a parte complementar dessa formulação para o caso do EF rígido-

rótula, serão apresentados, agora, os exemplos de validação. 
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6.3 COLUNA DE HAJJAR ET AL. (1997) 

Neste exemplo, trata-se da coluna birrotulada simples, ilustrada na Fig. 6.2(a), 

sujeita à compressão. O objetivo é encontrar a carga de flambagem elástica ou inelástica 

no plano de análise (supondo-a travada na outra direção) que depende da extensão L. 
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Figura  6.2  Coluna birrotulada de Hajjar et al. (1997):  
(a) coluna de Hajjar et al. (1997); (b) modelo MS com 8 EF rígido-rígido; 
(c) modelo MC com 6 EF padrão e 2 EFs com rótulas nas extremidades. 

 

Para comparar, adotam-se dois modelos teoricamente equivalentes, conforme: 

a. MS modelo sem EF de rótula: com 8 EFs tipo tradicional (rígido-rígido), porém 

os apoios são rótulas, ou seja, liberados ao giro, representado na Fig. 6.2(b); e  

b. MC modelo com EF de rótula nas extremidades e 6 EFs tradicionais na parte 

intermediária, sendo os apoios travados ao giro, como ilustrado na Fig. 6.2(c). 

 

Do ponto de vista da engenharia, esses modelos são equivalentes, o que os obriga 

a possuir resultados idênticos ou muito próximos. A seção transversal da coluna é do 

perfil 8 WF 31, que já foi adotada no exemplo 5.4, com as mesmas dimensões e tensões 

residuais (TRs) indicadas na Fig. 5.7 e propriedades na Tab. 5.4. Nesse exemplo,  

considera-se também o efeito de curvatura inicial (CI) e encontra-se o fator de carga (λ) 

que corresponde à flambagem. 

São avaliados dois casos de esbeltez: L/rz = 100 e 50, sendo os resultados 

correspondentes confrontados com os valores previstos pelo AISC LRFD (1993) e 

tratados por Hajjar et al. (1997). A curva de flambagem completa, com demais valores 

da esbeltez L/rz, é apresentada em Alvarenga & Silveira (2005). 
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Figura  6.3  Trajetórias de equilíbrio das colunas. 
 

As trajetórias de equilíbrio representadas na Fig. 6.3 relacionam os deslocamentos 

horizontais do nó da meia-altura da coluna (δE, o mais significativo), com o fator de 

carga λ, para as considerações representadas por MS da Fig. 6.2(b) ou MC da Fig. 

6.2(c), e empregando ambos os valores de esbeltez L/rz. 

É notório que, em ambos os modelos empregados (MC e MS), não houve diferença 

significativa nos deslocamentos obtidos.  

Cabe agora avaliar os resultados separadamente, conforme: 

a. esbeltez L/rz = 100: corresponde a uma situação praticamente elástica, ou seja, 

manifesta-se uma pequena plasticidade, provocada por causa das TRs 

principalmente. Em ambos os modelos empregados (MC e MS), obteve-se o 

fator de carga de colapso (λc = 0,594), com uma grande dificuldade de 

convergência (mais de 1000 iterações), e posterior colapso. O resultado 

considerado “exato” pela comunidade científica mundial, empregando outra 

abordagem de zona plástica (Kanchanalai, 1977), fornece o fator limite (N/Ny = 

λ = 0,591), obtido para flambagem no menor eixo de inércia. As recomendações 

da norma AISC LRFD (1993) assumem que tais valores podem ser usados nas 

duas direções. E, assim, aplicando as equações conservadoras da norma 

americana para essas condições, chega-se a (λ = 0,589), embora o valor 0,591 

seja repetidamente mencionado em Hajjar et al. (1997); e  

b. esbeltez L/rz = 50: no qual a plasticidade parece determinar o caminho à 
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flambagem, dita inelástica. Constatam-se, também, insignificantes diferenças 

nos deslocamentos, atingindo o colapso com λc = 88,1%. O fator de carga limite 

pelas equações do AISC LRFD (1993) é 87,6%, e o “exato” pode ser estimado 

por proporção [λc = (0,876/0,589)×0,591 = 0,879] ao valor previsto na norma 

americana, que confere razoavelmente com o resultado obtido. 

 

Além disso, em ambos os casos estudados, tanto os deslocamentos como os 

esforços, as deformações, as fatias plastificadas, etc., têm diferenças insignificantes, o 

que indica que ambos os métodos (MS e MC) produzem os mesmos resultados, 

validando por tanto a formulação apresentada. 

É interessante avaliar o comportamento da plasticidade nas colunas, ilustrado na 

Fig. 6.4 das fatias plásticas no colapso. Para a esbeltez maior (L/rz = 100), aparece uma 

única zona plástica que abrange 6 EFs centrais, simétrica ao meio-vão, atingindo 25,2% 

da seção. Já para a esbeltez menor (L/rz = 50) ocorre uma plasticidade mais acentuada, 

ao longo de toda barra, com 2 ZPs. A primeira parece um crescimento da ZP da esbeltez 

maior, com o máximo no meio-vão de 46,3%. A segunda ZP, menor, decresce para o 

meio vão até 6,4%. Observe-se que em ambos os extremos, têm-se o percentual igual 

para as 2 ZPs (18,4%), de cada lado (simétrico). 

A plasticidade maior no centro da coluna expõe o efeito secundário Pδ majorando 

a flexão da barra, acelerando a flambagem e comprovando premissas estabelecidas no 

desenvolvimento das equações americanas (Hajjar et al., 1997). 

Na figura 6.5, representam-se as seções dos nós da coluna robusta (L/rz = 50), nas 

quais se verifica que as zonas plásticas das extremidades são simétricas. Caminhando 

para a parte central, a aba inferior tem sua plasticidade reduzida, sobrando apenas nas 

bordas, enquanto a ZP superior vai se expandindo até tomar toda a aba e no final um 

pedaço pequeno da alma, na seção do meio-vão da barra. A partir daí o processo inverso 

repete-se em direção à outra extremidade. 

Fica claro, portanto, a influência das tensões residuais (TRs), provocando o 

escoamento de forma marcante nos extremos das abas dos laminados, onde as TRs são 

de compressão. Isso é também um indicativo de eventuais problemas de flambagem 

local das abas (que deve ser verificado, quando a seção não é compacta, conforme 

previsto no item 3.2.3(f.) e no apêndice A.1. 
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Figura  6.4  Zonas plásticas das colunas: 
 percentual na: (a) flambagem elástica; (b) inelástica; (c) convenção: (����) compressão. 
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Figura  6.5   Fatias plásticas nas seções da coluna com L/rz = 50. 
Nota: convenção: (����) compressão. 
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6.4 COLUNA DE LU & KAMALVAND (1968) 

A avaliação conjugada da plasticidade e da estabilidade de barras passou a ser 

mais entendida a partir dos trabalhos de Lu & Kamalvand (1968), dentre outros, que 

fizeram a determinação do colapso integrando numericamente as equações diferenciais, 

após subdivisão do vão em vários segmentos, considerando as relações de momento, 

curvatura e axial (M-N-Φ) da seção, apresentadas por Moses (1964).  

Posteriormente, esses problemas foram reproduzidos por Foley & Vinnakota, 

(1999) com o objetivo de validar sua formulação numérica também, empregando o 

método da zona plástica (ZP), porém com outra abordagem. Originalmente, deseja-se 

determinar a máxima carga concentrada no meio-vão (Q) e a máxima uniformemente 

distribuída (q), que a coluna pode resistir, sujeita a uma carga fixa de compressão P, 

como ilustrado nas Figs. 6.6(a-b), respectivamente. 
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Figura  6.6  Coluna escora de Lu & Kamalvand (1968): 
(a) carga concentrada Q; (b) distribuída q; (c) modelo MS; (d) modelo MC. 

 

Consideram-se os mesmos dados de material, da seção, da coluna e as tensões 

residuais do exemplo anterior, sem incluir imperfeições geométricas. 

Repete-se a mesma técnica empregada no exemplo anterior, com os dois modelos: 

a. MS modelo sem EF de rótula: com uma malha de 10 EFs-padrão, como adotado 

por Foley & Vinnakota (1999), na qual os apoios são fixo e deslizante, 

representados na Fig. 6.6(c); e  

b. MC modelo com EF de rótula nas extremidades: tendo 8 EFs-padrão na parte 

intermediária e os apoios são travados ao giro, como ilustrado na Fig. 6.6(d).  
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Esse procedimento é necessário porque a última modelagem (MC) não dispõe dos 

valores das rotações (φA) dos apoios, que é o deslocamento selecionado para apresentar 

os resultados disponíveis da literatura.  

Assim, primeiramente, procura-se comprovar os resultados do MS, obtidos pelo 

programa computacional PPLANAVX (2005/7), com os fornecidos pelos pesquisadores 

já citados, seguindo a Fig. 6.7(a) para o caso da carga Q, e a Fig. 6.7(b) para o caso da 

distribuída no vão q.  

Nessa figura 6.7, são apresentadas as trajetórias de equilíbrio que relacionam o 

fator de carga (λQ = Q/Qy ou λq = q/qy) em relação à rotação (ϕA) do nó 1, apoio inferior 

da coluna, representado nas Figs. 6.6(c-d). Admitindo que o momento máximo atuante 

na barra seja o plástico reduzido (Mpr), definido por: 

em que Zz e Wz, são os módulos de resistência, plástico e elástico, respectivamente, 

obtêm-se os valores de Qy e qy:  

Esses valores de referência (Qy e qy) são importantes para se comparar os 

resultados dos pesquisadores citados, embora, eles não os forneçam diretamente. Para os 

dados do problema, com as expressões 6.9 e 6.10(a-b), encontram-se os valores limites: 

Mpr = 9084,8 kNcm, Qy = 68,7 kN e qy = 25,98 kN/m.  

Cumpre indicar que, no processamento dos modelos do PT, foram adotadas as 

cargas de referência: Q0 = 50 kN, q0 = 20 kN/m e os fatores de carga λ produzidos 

foram convertidos aos equivalentes λQ e λq, pelas expressões:  

Nas figuras 6.7(a-b) apresentam-se os resultados desta tese, que se aproximam dos 

de Foley & Vinnakota (1999) e estão ligeiramente inferiores aos obtidos por Lu & 

Kamalvand (1968). A diferença dos primeiros em relação aos últimos pode ser 

justificada pela sua técnica momento/axial/curvatura, similar ao “BCIN.for” (Chen & 

Toma, 1994), na qual se desprezavam as deformações axiais. Também havia menos 

recursos tecnológicos (computador, ferramentas numéricas, etc.) em 1968, comparando-

se com o estágio de desenvolvimento da ciência atual.  

Mpr = Mp – Mr = Zz σy – Wz σr ≈ (Zz – 0,3Wz) σy (6.9) 
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Figura  6.7  Trajetórias por rotação da coluna de Lu & Kamalvand (1968): 
 (a) carga concentrada na meia-altura, (b) carga distribuída na altura; processos da 
própria tese (PT): (c) CC – controle de carga; (d) CD – controle de deslocamento. 

 
Foley & Vinnakota (1999) atribuíram as suas discrepâncias às pequenas diferenças 

no modelo de TRs. e nas propriedades geométricas avaliadas da seção transversal. 

Os resultados desta tese mostram um leve desvio no topo da trajetória em relação 

aos de Foley & Vinnakota (1999), que é maior no caso da carga concentrada.  

Verifica-se que essa diferença se manteve mesmo na versão mais moderna de 

PPLANAVA (2009), que ambas as versões de MS (2005), com controle de carga (CC) e 

(2009) com controle de deslocamentos (CD), obtêm o mesmo resultado. 
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Nesta tese adotou-se 436 fatias (com 10 × 20 = 200 na aba e 36 na alma) em cada 

seção (nó), enquanto Foley & Vinnakota (1999) adotaram uma malha menor, com 

apenas 66 fatias (sendo 3 × 9 = 27 na aba e 12 na alma). 

Os fatores relativos a λQ (= Q/Qy) apresentam maiores divergências que os valores 

de (λq = q/qy), por causa da imperfeita distribuição de carga (depende do número de 

EFs) e da plasticidade, que é menos concentrada (mais alongada) para o caso da 

distribuída. Isso destoa do modelo de distribuição de cargas infinitesimal (perfeito). 

Diversos valores da esbeltez L/rz (20, 40, 60, 80 e 100) são estudados pelos 

pesquisadores indicados, mas adotou-se no exemplo o valor de L/rz = 60, pois apresenta 

valores médios de deslocamentos e também um efeito de plasticidade marcante. 

Lu & Kamalvand (1968) propuseram determinar o limite do momento M, como 

uma aproximação linear do diagrama, que foi posteriormente adotada pela norma 

americana AISC com sucesso (ASD, 1972 e 1976; depois, incluindo um tratamento 

estatístico no LRFD, 1986), gerando a fórmula empírica de interação: 

na qual (Nd, Md) são os esforços atuantes na seção, (Nm) a carga axial de flambagem 

inelástica isolada, (Ne) a carga de flambagem elástica de Euler da barra correspondente, 

e o fator de correção (Cm) do efeito dos momentos, que procura aproximar-se dos 

resultados experimentais.  

Esses pesquisadores estudaram os dois casos de cargas anteriores, para norma, nas 

condições de engaste e rótula (embora aqui tenha sido avaliado apenas o último tipo de 

apoio). Foi, então, estabelecido o fator Cm com base na expressão: 

sendo o coeficiente de ajuste αm = 0,2 (0) para carga concentrada (distribuída entre 

parêntesis), nos apoios com rótulas. Apenas para complementar, adota-se αm = 0,6 ( 0,4) 

para as cargas correspondentes nos engastes (Lu & Kamalvand, 1968). 

Empregando essas fórmulas empíricas, encontram-se os valores QLIM = 48,14 kN 

e qLIM = 17,57 kN/m. Os fatores limites correspondentes do AISC, também indicados 

nas Figs. 6.7(a-b), podem ser calculados com as expressões: 

( )
( )

1
NN1

MMC

N

N

ed

prdm

m

d
≤

−
+  (6.12) 

Cm = 1 – αm Nd/Ne  (6.13) 

λQ  =  QLIM/Qy = 48,14/68,70 = 0,7012  

λq  =  qLIM/qy = 17,57/25,98 = 0,6763 
(6.14a-b) 
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Figura  6.8  Trajetórias por flecha da coluna de Lu & Kamalvand (1968): 
(a) carga concentrada na meia-altura; (b) carga distribuída na altura. 

 

Para avaliar os modelos de EFs com rótula (MC), apresentam-se nas Figs. 6.8(a-b) 

as trajetórias de equilíbrio considerando o deslocamento horizontal (δE) do nó situado 

no meio-vão, com o fator de carga λ. Tanto na versão com CC (2005) como na CD 

(2009) a semelhança de resultados é evidente. 

Comprova-se que tanto esses fatores de carga como demais deslocamentos, os 

esforços, as tensões, as deformações nas fatias, o estado último, etc., apresentaram 
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discrepâncias irrisórias, parecendo-se uma cópia. (não há diferença até a quarta casa 

decimal nos deslocamentos e até a segunda decimal nos esforços, por exemplo). 

Nessa figura 6.8, destaca-se, também, a resposta obtida por PPLANAVA (2009) 

empregando o controle dos deslocamentos. Ambos os modelos (MS e MC) foram 

reprocessados com os dados anteriores e reproduziram os mesmos resultados. 

Na tabela 6.1, mostram-se algumas diferenças quanto às rotações obtidas. No caso 

do método MS se tem deslocamentos nodais calculados; mas, no MC do EF com rótula, 

conhece-se o giro de corpo rígido do EF, o que apresenta, assim, um valor um pouco 

diferente. Além disso, comprova-se a eficácia do controle do deslocamento: enquanto 

CC informa que 95,9% ≤ λc ≤ 96% para carga (Q) e 83,8% ≤ λc ≤ 83,9%, para (q); o CD 

dá um valor mais próximo: λc ≈ 95,941% e 83,858%, respectivamente, e segue a 

trajetória descendente, como se percebe nas Figs. 6.8(a-b). O controle CD não 

conseguiu convergir no modelo MS com δE = 7,2 cm, carga uniforme q (λ = 75,43%) na 

trajetória descendente, enquanto no MC ocorreu plasticidade reversa. Para a carga Q o 

modelo MC detectou colapso ao corte, com λ = 62,0% e  δE = 8 cm. 

Para melhor entender o comportamento desses modelos, deve-se verificar a 

propagação da plasticidade ao longo da coluna, acompanhando a Fig. 6.9 de zonas 

plásticas dos EFs dos modelos, construída representando o estado da coluna-escora no 

último passo de carga que convergiu antes do ponto limite (pré-colapso). 

Para as duas condições de carga, observa-se que apenas uma zona plástica (ZP) de 

compressão se desenvolveu. Enquanto no caso da carga concentrada da Fig. 6.9(a), a ZP 

é mais compacta, com 5 nós avaliados, no da distribuída, são afetados mais EFs, com 7 

nós avaliados na Fig. 6.9(b). 

 

Tabela 6.1 Resultados da análise da coluna de Lu & Kamalvand (1968). 

Rotação φA [mrad] 
Carga 

Processo 
incremental 

(1)
 MS 

(2)
 MC 

(3)
 

Fator de 
carga 

λ [%] 
(4)

 

Desloc. 
δE [cm] 

Observação 

14,400 14,241    95,900 2,697 pré-colapso 
CC 

19,464 32,436 96,000 6,765 colapso 
14,852 14,252 95,941 2,800 carga limite 

Q  
CD 

32,291 36,216 57,408 8,000 carga última 
17,517 17,270 83,800 3,099 pré-colapso 

CC 
19,017 29,466 83,900 5,701 colapso 
17,990 17,740 83,858 3,200 carga limite 

q 
CD 

34,700 34,456 60,430 7,000 carga última 
Notas: 1) CC – controle de carga, CD – controle de deslocamento; 2) deslocamento calculado;  

3) rotação de corpo rígido do EF com rótula; 4) λ = Q/Q0 ou q/q0, com Q0 = 50 kN e q0 = 20 kN/m. 
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Figura  6.9  Zonas plásticas da coluna de Lu & Kamalvand (1968) 
percentual na estrutura:  (a) com carga concentrada; (b) com carga distribuída; 

seção do nó central: (c) com carga concentrada; (d) com carga distribuída;  
(e) convenção: compressão (� � � �  a, b; ���� c, d). 

 

Os valores percentuais de fatias plásticas nas seções seguem uma distribuição 

parabólica em ambos os casos, chegando próximo a 50% da seção, no ponto médio da 

altura (o do deslocamento máximo). Na situação pré-colapso, verifica-se que a 

plasticidade da alma é maior (41,7%) para a carga concentrada que na distribuída, 

(30,6%), como se retrata nas Figs. 6.9(c-d).  
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6.5 PORTAL DE KANCHANALAI (1977) 

Kanchanalai (1977) resolve o problema do portal representado na Fig. 6.10, com 

rótulas nas bases, uma coluna rigidamente ligada à viga e uma coluna-escora, ou seja, 

com rótula também no topo. Ambas as colunas são de seção perfil 8 WF 31, mas a viga 

não tem seu perfil indicado, embora seja estabelecida a relação de rigidez viga × coluna 

GD = 2.  A esbeltez L/ rz = 20, define a altura das colunas (L = 20 rz = 176,3 cm).  

 = L /1000 = 0,18 cm

P =   N       N  = 1472,5 kN

viga:       WF 16 x 36
G  =           L /r  = 20

E = 20000 kN/cm         
material: aço ASTM A 36

c
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0

0 <    ,    < 100 %
0

2

y

y y

A

B

C

D

    = 0,3           = 25 kN/cm         y
2

r y

H

EF rot-rig
L

=
 1

76
,3

 c
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Figura  6.10  Portal com rótulas de Kanchanalai (1977). 
 

Nesta tese, adotou-se a seção do perfil 16 WF 36 para a viga, pois é o laminado 

americano de inércia mais próxima. Considera-se que o vão da viga B é bem maior que 

L, e que GC = ∞, no caso da base com rótula. Fazendo B = 8 L (B >> L), obtém-se: 

encontrando agora: 

Nesse portal, atuam cargas verticais nas colunas P = λNy, com Ny = 1472,5 kN 

(esmagamento da seção) e uma horizontal no topo H= βHy, sendo Hy = Mp/L = 70,7 kN 

que causa a formação de rótula plástica (RP) em D, pelo momento Mp = 12462 kNcm. 

O objetivo é determinar a curva de interação dada por H·L/Mp × N/Ny (N≈ P), para 

a flexão com flambagem no eixo de maior inércia do perfil, ou seja, a relação entre o 

momento fletor e o esforço axial para uma estrutura simples, na qual se forma apenas 

uma ZP (ou RP teórica), no ponto D, da ligação rígida entre a coluna e a viga.  

Os dados considerados estão na Fig. 6.10, incluindo-se os efeitos das tensões 

residuais (TR) e da curvatura inicial (CI) δ = L /1000, nos padrões americanos. 
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As características da coluna são as mesmas da Fig. 5.7 e da Tab. 5.4; já a viga teve 

suas dimensões de espessura ajustadas, conforme mostrado na Tab. 6.2, para garantir 

valores de área e inércia do laminado original. 

Na solução, Kanchanalai (1977) emprega a mesma estratégia desenvolvida por 

Galambos & Ketter (1959) e Lu & Kamalvand (1968), considerando a relação de 

flexão/axial/curvatura M-N-Φ do perfil, já incluindo TR e CI, implicitamente. Em cada 

passo é assumida uma curva inicial para a solução, baseada nas condições de equilíbrio 

e compatibilidade dessas grandezas, em cada estação; mas não se considera a 

deformação axial. O processo corretivo ajusta a deformada, sob axial constante, e o 

incremental no momento determinará o colapso. Equivale ao processo descrito em Chen 

& Toma (1994) para os programas “FRAMP.for” e “FRAMH.for”, num problema mais 

simples que os resolvidos por Chen & Zhou (1987). 

No modelo desta tese, adotou-se uma malha de 20 EFs, sendo 6 para cada coluna, 

8 na viga (7 EFs-padrão e 1 EF rótula-rígido). Na presença de carga horizontal, a 

curvatura inicial (CI) limitadora é a da Fig. 6.10: com a coluna C-D para a direita “+)” e 

A-B qualquer “(+” ou “-)”. Para cargas verticais apenas (β = 0), a carga limite não se 

altera caso ambas as CIs sejam para fora ou para dentro, o que se modifica apenas é a 

direção da deformada correspondente. 

Reproduz-se na Fig. 6.11 o diagrama de interação proposto por Kanchanalai 

(1977), correspondente à situação de cargas P iguais nas colunas (P1 = P2 = λP), e 

sobrepõem-se os valores encontrados nesta tese. O eixo das abscissas (x) considera o 

momento primário no portal, M = H·L, dado pela expressão:  

Nota-se que essas curvas são bem parecidas, porém os valores desta tese são 

inferiores aos de Kanchanalai (1977) e próximos dos calculados pela equação de 

interação viga-coluna (VC) do AISC LRFD (1986) com kfl = 3,9 (Hajjar et al., 1997).  

Essas diferenças podem ser justificadas considerando-se, primeiramente, que a 

viga foi estimada, por uma relação Iv/Lv. A viga provoca o aparecimento de um valor 

adicional de compressão na coluna estrutural (não escora), por efeito de pórtico. Assim, 

embora as cargas aplicadas sejam iguais (P), os valores das reações verticais e dos 

normais nas colunas são diferentes, o que Kanchanalai (1977) não considerou. 

 

yp H

H

M

LH
=

⋅
=β   (6.17) 
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Tabela 6.2 Propriedades da seção 16 WF 36 da viga. 

Dimensões da seção  I [mm] Módulo  resistente 
espessuras Refe-

rência altura  
d 

largura 
 b aba  t alma  a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 
elástico 

Wz  [cm3] 
plástico 
Zz  [cm3] 

AISC 1978  15,9 in 6,99  in  0,43  in  0,295  in  10,6 in2 448 in4 56,5 in3 64,0 in3 
Convertido 403,80 177,60 10,922   7,493  68,39 18647 925,8 1048,7 

PT = = 11,013 (2) 7,667 (2) = = 923,6 1047,6 
Obs. 1) PT: na própria tese; 2) valores aproximados de forma  a manter a área bruta Ag e a inércia Iz;  

3) selecionou-se uma seção que possui Iz suficiente para não ocorrer plasticidade na mesma. 
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Figura  6.11  Diagrama de interação para o portal de Kanchanalai (1977). 
Nota: FE = fator de escala. 

 

Por exemplo, no portal com β = 20%, ponto (D) da Fig. 6.11, constata-se que 

somente a carga horizontal H = 14,14 kN, gera as reações verticais -VA= VB = ± 1,74 

kN. No passo pré-colapso, todavia, as reações horizontais são maiores: HA = 9,80 kN e  

HB = -23,94 kN (resulta no mesmo H). Já as verticais são VA= 770,40 kN e VB = 778,67 

kN. Dessa forma, enquanto tem-se o valor nominal P = 52,6% Ny = 774,5 kN, que 

Kanchanalai (1977) considerou idêntico em ambas as colunas. No portal real, acha-se a 

diferença ∆V = 4,17 kN (acréscimo de 0,54%), sendo que VA é menor e VB maior de 

∆V, em relação a P.  Como P afeta tanto a estabilidade (efeito P∆) como os momentos 

(ou seja, H), o colapso identificado torna-se mais premente e as reações horizontais 

crescem também (relação 1,69 = 23,94/14,14).  
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Além disso, deve-se citar que nas considerações do AISC LRFD (1986), 

abalizadas em Kanchanalai (1977), supõe-se que o escoamento seja uniforme ao longo 

da a coluna, de forma a garantir-se que ela ainda é prismática (Hajjar et al., 1997). Essa 

premissa torna-se questionável quando se realiza uma análise com zona plástica, na qual 

se comprova que tal propagação do escoamento não é uniforme como suposto. Isso não 

parece ser tão “exato” e foi indicado antes (Alvarenga, 2005). 

Pela figura 6.12, confirma-se que essa propagação da plasticidade é bastante 

variável, depende do valor de H aplicado (ou β), e determina, de outra forma, o valor 

máximo de (λ = N/Ny) ou de (β = H/Hy), com os seguintes comportamentos: 

a. a região (a) da Fig. 6.11: inicia-se com λ = 0, único local onde a formação de 

mecanismo plástico ocorre, com β = 1, e se estende até λ ≤ 10% (β ≥ 85%). 

Nessa região ocorre a plasticidade assimétrica, com 2 ZPs na mesma seção, 

sendo uma à compressão (maior) e outra à tração (menor), indicando maior 

flexibilidade da coluna, também, visto que esta se plastifica em até 3 EFs. Essas 

2 ZPs indicam a presença de Mpr (reduzido) na seção e o colapso acontece por 

formação de mecanismo associado à flambagem de pequena compressão, como 

ilustrado na Fig. 6.12(a). Ressalte-se que, exceto para λ = 0, ocorrerá a 

flambagem inelástica previamente à formação do mecanismo (Hajjar et al., 

1997; Alvarenga, 2005);  

b. na região (b) da Fig. 6.11: verifica-se um estado intermediário, que corresponde 

a uma única ZP maior, no topo da coluna estrutural. Essa plasticidade induz o 

aparecimento precoce da instabilidade dessa coluna, como já citado (Alvarenga 

& Silveira, 2008b); e  

c. na região (c) da Fig. 6.11: quando o valor β ≤ 25% (ou seja, λ ≥ 70%), tem-se o 

domínio da flambagem inelástica, em que se notam 2 ZPs nos perfis da coluna 

C-D, que são assimétricas, acompanhando aproximadamente a forma da CI ao 

longo de toda sua extensão. Verifica-se que para β ≤ 15% ocorre plasticidade 

também na coluna escora A-B, como mostra a Fig. 6.12(c). Isso proporciona 

redução adicional da carga limite, que Kanchanalai (1977) não identificou. 

Naturalmente, a plasticidade é maior na coluna C-D dada à presença do 

momento fletor, e ali ocorre a instabilidade, que causa o colapso. Note-se que 

essas ZPs formadas na escora só não são assimétricas nas extremidades, como 

visto na Fig. 6.4(b) da seção 6.3. 
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Figura  6.12  Zonas plásticas no portal de Kanchanalai (1977): 
(a) β = 100%, mecanismo plástico puro; (b) β = 40%, flambagem associada à plasticidade; 

 (c) β = 0%, flambagem inelástica pura; (d) percentual de fatias plásticas da coluna C-D (β = 20%) 
no ponto D; (e) convenção: (����) tração, (����) compressão. 

 

44,4 % Ag31,3 % Ag 23,3 % Ag 23,3 % Ag90,7 % Ag 56,3 % Ag

(a) (b) (c) (d) (e) (f)  

Figura  6.13  Zonas plásticas nas seções dos portais: 
coluna C-D: (a) β = 100, (b) β = 40, (c) β = 0, (d) β = 20%; coluna A-B: β = 0%  

(e) meio-vão; (f) extremos; (g) convenção: (����) tração, (����) compressão. 
 

Na figura 6.12(d), exemplifica-se a variação da ZP ao longo da barra. No colapso 

da coluna C-D com β = 20%, a plasticidade se estende por 5 EFs, ou seja, 5 nós tiveram 

seu centro de gravidade plástico não mais coincidindo com o CL do EF (yCGP ≠ 0), 

propriedades menores, e consequentemente, deformações maiores que as previstas por 
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outras aproximações. Fica também ilustrado que a plasticidade não se manifesta apenas 

no topo da coluna, mas em grande parte da sua extensão. 

Complementando a análise desse exemplo, nas Figs. 6.13(a-d) mostram-se as 

fatias plásticas das seções no topo da coluna C-D, que correspondem aos diagramas com 

ZP das Figs. 6.12(a-d), respectivamente. Já a escora A-B, na situação da Fig. 6.12(c), 

tem fatias plásticas de forma assimétrica em toda extensão, inclusive no nó da meia-

altura visto na Fig. 6.13(e), exceto nos extremos [A e B, Fig. 6.13(f)] quando é 

simétrica. A parcela de fatias plásticas (23,3%) da seção, todavia, não se altera. 

Na Figura 6.13(b), indica-se uma pequena ZP à tração, sendo que na parte mais 

extensa do diagrama tem-se apenas 1 ZP de compressão. Em algumas situações, no 

colapso, a maior parte da alma também fica plástica à compressão, similar ao que se 

representa na Fig. 6.13(d). 

Observe-se que a direção da CI da coluna A-B não modifica os resultados, porém 

invertendo a curvatura de C-D, as cargas limites crescem. Por exemplo, para o ponto D, 

β = 20%, encontrou-se λ = 53,1% > 52,6%; embora essa diferença seja pequena. A 

influência da CI será estudada melhor no capítulo 8. 
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6.6 PORTAL DE HAJJAR ET AL. (1997) 

No estudo dos coeficientes de comprimento efetivo de flambagem kfl, de forma a 

apresentar conceitos da Estabilidade, Hajjar et al. (1997) analisaram o portal da Fig. 

6.14. De fato, investiga-se a influência da deslocabilidade dessa estrutura, pois a viga W 

24 x 76, que se mantém elástica ao longo de toda a análise, possui uma ligação flexível 

no ponto D com a coluna direita (C-D). Aqui, essa ligação será modelada como uma 

rótula perfeita. A estabilidade do portal, então, é garantida pela flexibilidade da coluna 

esquerda (A-B), de perfil W 14 x 74, que está rigidamente ligada à viga. Dessa forma, o 

problema recai no controverso “paradoxo do fator k” (Siat-Moy, 1986), que deve ser 

visto como um cuidado que se requer no emprego de equações aproximadas. 

P P =     P
2 P

 = L /1000 = 0,25 cm

= 25 kN/cm         

P  =   N        0 <    < 100 %

viga:             WF  24 x 76

E = 20000 kN/cm         
material: aço ASTM A 36

= 0,3      y r

Dados:

2

y

2

B= 1097,3 cm

L
=

 4
26

,7
 c

m

P =     P
1

coluna esq.:  WF  14 x 74
y

0,43 cm0

0

0,43 cm0
coluna dir.:   WF  10 x  68
                     WF  14 x  74
                     WF  30 x  99
                     WF  36 x 135

A

B

C

D

EF rig-rot

(+) (-/+)

 

Figura  6.14  Portal com rótulas de Hajjar et al. (1997).  
 

Esse problema demonstra uma das utilizações do EF rígido-rótula neste capítulo, o 

estudo das colunas-escoras, que é subdividido nas seguintes partes: 

a. seguindo Hajjar et al. (1997), estuda-se a influência da seção da coluna C-D no 

dimensionamento desse portal com αP = 1 e βP = 0,5 (ou seja, P2 = P1/2); 

b. avalia-se o que ocorre na Análise Avançada dessa estrutura, para 0 ≤ βP ≤ 1, 

com αP = 1, ou seja,  a carga P1 ≥ P2, e a flambagem ocorre para a esquerda; 

c. repete-se o item (b.), mas agora 0 ≤ αP ≤ 1, com βP = 1, ou seja, a carga P2 ≥ P1 

de forma a se ter a flambagem ocorrendo para a direita; e  

d. conclusões dessas análises. 

 

Esse modelo foi realizado também com 20 EFs, 6 em cada coluna e 8 na viga, dos 

quais 1 EF rígido-rótula na extremidade direita e o restante do tipo-padrão.  
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6.6.1 REPRODUZINDO O PROBLEMA ORIGINAL  

Estuda-se a influência da rigidez da coluna da direita (C-D) variando-se sua seção 

correspondente de forma que a inércia da coluna ICD = γz IAB, com os fatores γz dados 

por {0,5/1/5/10}, sendo IAB a inércia Iz da seção W 14 x 74 da outra coluna. 

As propriedades consideradas dos perfis selecionados, com suas dimensões de 

espessura ajustadas, são indicadas na Tab. 6.3. Nesse caso, não se indicam os dados dos 

perfis originais, pois o objetivo agora não é a confrontação de resultados numéricos 

(quantitativos), mas de comportamento (qualitativos). Os dados de materiais e demais 

características são fornecidos também na Fig. 6.14.  

Deseja–se determinar a carga limite do portal, com duas cargas verticais. Na 

coluna A-B P1 = λNy, com Ny = 3516 kN (esmagamento da seção), enquanto a carga na 

C-D é P2 = 50% P1 = λNy/2. Inclui-se a curvatura inicial (CI) e as tensões residuais (TR) 

da norma AISC, adotadas em todo o capítulo. Note-se que é necessário definir a direção 

da CI que provoca a menor carga limite, sendo esta mostrada também na Fig. 6.14. 

As trajetórias de equilíbrio desse portal são traçadas na Fig. 6.15, acompanhando o 

deslocamento horizontal (na direção x-) em relação ao fator de carga em P1 (= P = N). 

Observe-se que apesar da enorme variação de inércia da coluna C-D, isso altera muito 

pouco a capacidade de carga do portal, que não supera λ = 78%. 

Além disso, o efeito da CI para essa estrutura representa pouca influência (Pδ) no 

aumento dos deslocamentos. No caso da coluna C-D, modificar a CI de direção, da 

esquerda “(–“, indicado na Fig. 6.14) para a direita “+)” não altera o fator limite (78%), 

como visto na seção anterior, porque é birrotulada. Embora essa imperfeição tenha de 

ser introduzida. Já a CI da coluna A-B é direcionada, conforme a deformada, em “+(“  

ou “–)”. Para este caso, as CIs da forma e sinais: (+/-( e (+/+) governam. 

Assim, comprova-se que modificar a rigidez da coluna escora (C-D), para essas 

condições de carga, não altera a flambagem inelástica da coluna A-B, ou seja, o 

dimensionamento; logo, o coeficiente de flambagem kAB não se alterou. Há uma ínfima 

variação na carga limite e na trajetória, que se deve ao fato de os deslocamentos 

transversais serem um pouco maiores na direção governante, quando a coluna C-D é 

mais rígida, pois ela se deforma menos na direção axial e transfere mais carga também; 

mas essa variação é desprezível (sem qualquer interesse prático). 

Nesse problema, o que determina a capacidade do portal é a carga de flambagem 

da coluna A-B apenas, acrescida de um pequeno efeito Pδ.  
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Figura  6.15  Trajetórias de equilíbrio do portal de Hajjar et al. (1997).  
 

Tabela 6.3 Propriedades geométricas adotadas nos perfis do portal. 
Dimensões da seção  I [mm] 

espessuras Perfil altura 
d 

largura 
b aba  t alma  a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 

Módulo 
plástico 
Zz  [cm3] 

Relação 
γz [] 
Iz/IAB 

24 WF  76 607,1 228,3 17,637 11,187 114,5   87408 3288,2 – 
14 WF  74 360,7 256,5 20,027 11,818 140,6   33090 2053,8 1,000 
10 WF  68 264,2 256,5 19,915 11,969 129,0   16399 1398,4 0,496 
30 WF  99 754,4 266,7 17,187 13,342 187,7 166076 5108,3 5,019 
36 WF135 904,2 304,8 20,384 15,272 256,1 324658 8338,1 9,811 
Notas: 1) as espessuras (t, a) foram ajustadas para manter a área bruta Ag e a inércia Iz dos laminados;  

 2) a coluna C-D possui Iz próximo da relação γz adotada por Hajjar et al (1997). 
 

Tabela 6.4 Cargas de colapso do portal de Hajjar et al. (1997).  
Deslocamento nó 13 Carga N/Ny (1) P = N  Perfil da 

coluna C-D 
γz [] 
Iz/IAB  ∆D [cm] (2) ∆D/ ∆DAB λc (3) λc/λAB [kN] 

kAB 
(4) 

10 WF  68 0,496 1,684 97,5 77,5 100,1 2724,9 2,493 
14 WF  74 1,000 1,727 100,0 77,4 100,0 2721,4 2,499 
30 WF  99 5,019 1,799 104,2 77,1   99,6 2710,8 2,518 
36 WF135 9,811 1,758 101,8 76,8   99,2 2700,3 2,537 

Notas: 1) N = P, Ny = 3516 kN: e,  2) deslocamento no passo 0,1% antes do colapso; 3) indicada  
a carga limite λ inferior (máxima sem colapso); 4) kAB = 4,938(-ln λc) 

0,5. 
 

Na tabela 6.4, elucida-se o comportamento dessas trajetórias, mostrando que os 

valores de ∆x do ponto D (∆D, nó 13), o maior deslocamento horizontal, bem como os 

do fator de carga λc de colapso, estão muito próximos em todos os casos estudados.  

Hajjar et al. (1997) empregando as expressões fornecidas pelo AISC LRFD (1986) 

com os dados desse problema, determinaram o coeficiente de comprimento efetivo kfl 

da seguinte forma: 
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Assim, para a coluna A-B com 76,8% ≤ λc ≤ 77,5%, os coeficientes de flambagem 

kAB no eixo z (maior inércia), encontra-se 2,54 ≥ kAB ≥ 2,49, respectivamente. Hajjar et 

al. (1997) com o processo de dimensionamento, pelo ábaco de Julian & Lawrence 

(1959), para Iz = 43700 cm4, GA = ∞ (≈ 9000) e GB = 1,95 encontraram kAB = 2,62 que 

supera um pouco ao desta tese (máx. +5,2%, o ábaco é favorável à segurança). 

Por outro lado, sem qualquer avaliação adicional, fica claro que a coluna C-D e as 

modificações de sua inércia não alteram esse comportamento, bem como a estrutura é 

estável em relação a esta coluna para o valor βP = 0,5 (Hajjar et al., 1997). 

Seguindo Siat-Moy (1986), empregando a mesma Eq. 6.18 para a coluna C-D, 

como P2 = 0,5 P1, λc (C-D) = 0,5λc (A-B), chega-se, então, a 38,4% ≤ λc ≤ 38,8% do 

qual se obtém, enfim, os coeficientes aparentes 4,80 ≤ kCD ≤ 4,83. Conforme Alvarenga 

& Silveira (2008b), o coeficiente adequado é kCD = 1, já que não ocorre, efetivamente, a 

flambagem dessa coluna para o carregamento indicado.  

Nesse caso, não se avaliou o efeito P∆, que não pode ser desprezado em estruturas 

com escoras, portanto os resultados aqui são adequados apenas quando a estrutura for 

travada, não havendo qualquer “fora de prumo” (ou deslocamento horizontal no topo). 

 

6.6.2 PORTAL COM CARGA MAIOR NA COLUNA ESQUERDA 

Para se obter melhor visão do comportamento desse portal, deve-se fazer a Análise 

Avançada, na qual a imperfeição geométrica do fora de prumo (FP), que avalia o efeito 

P∆, tem de ser considerada; recomendando-se ∆0 = L/500 (White & Hajjar, 1991; Chen 

& White, 1993). 

Nas análises seguintes, serão consideradas as colunas com a mesma seção (14 WF 

74). As cargas são P1 = N = P (αP = 1), P2 = βP P, sendo 0 ≤ βP < 1 (P1 > P2). Com isso a 

flambagem inelástica ocorrerá para a direção esquerda. Deve-se ajustar a configuração 

geométrica imperfeita inicial (CI +FP) para determinar-se a carga limite mínima. 
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Figura  6.16  Flambagem na direção x- do portal de Hajjar et al. (1997):  
(a) Modelagem da CI e FP; (b) deformada no colapso, para β= 54%, FE = 40×. 

 

A imperfeição geométrica (CI+FP) mais crítica é a representada na Fig. 6.16(a), 

sendo a CI da coluna C-D em qualquer direção, forma (+/+) ou (+/–(. Essa configuração 

geométrica inicial imita sua deformada no instante de colapso, representada na Fig. 

6.16(b) (Alvarenga, 2005). 

As trajetórias de equilíbrio são representadas na Fig. 6.17, constatando-se que as 

cargas de colapso maiores (λ= N/Ny) ocorrem para os menores valores de βP, como 

esperado. As deflexões máximas praticamente dobraram de valor em relação às obtidas 

apenas com a CI da Fig. 6.15, partindo de aproximadamente L/250 para atingir L/105, 

sem a presença de qualquer carga horizontal no portal, elucidando o efeito P∆. Note-se 

que a condição βP = 0,5 com a rigidez relativa IV/IC = 2,638 nas duas colunas, 

corresponde ao estudo da subseção 6.6.1, porém agora incluindo o FP. 

Empregando-se as Eqs. 6.18(a-c), detecta-se a perda de estabilidade da coluna A-

B provocada pela carga de compressão na coluna C-D como consta na Tab. 6.5.  
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Figura  6.17  Trajetórias de equilíbrio para P1 = P (flambagem x-). 
 

Tabela 6.5 Condição de flambagem na direção x-. 
βP 
[%] 

λ= N/Ny 
(1)

 Colapso  

 P1 = Pmax 
[kN] 

P2 = βP P 
[kN] 

P1/P1max 
[%] λAB (2) kAB (3) λCD (4) kCD 

(3) 

   0 0,787 2767,1       0,0 100,0  67,2 2,416  ? (5) ? (5) 
25 0,733 2577,2   644,3   93,1  76,5 2,750 178,9 6,431 

   50 (6) 0,679 2387,4 1193,7   86,3  85,5 3,073 142,7 5,129 
61 0,655 2303,0 1404,8   83,2  89,3 3,211 131,5 4,728 
75 0,626 2201,0 1650,8   79,5  94,0 3,379 119,4 4,292 

100  0,577 2028,7 2028,7   73,3 101,8 3,660 101,8 3,660 
Notas: 1) N = P, Ny = 3516 kN; 2) λAB = 137,34(-ln λc) 

0,5; 3) kfl = λz / 27,82;  
4) λCD = 137,34[-ln (βP λc)] 

0,5; 5) indefinido; 6) original de Hajjar et al. (1997). 
 

Enquanto a coluna A-B isolada absorveu 78,7% de Ny e o portal resiste 2767 kN, 

conjugada à coluna C-D, ambas suportam uma carga máxima de 4058 kN, metade para 

cada uma (2029 kN), que representa uma perda de 27% (da capacidade de A-B isolada). 

Observe-se que o coeficiente de flambagem indicado na Tab. 6.5 varia no 

intervalo 2,4 ≤ kAB ≤ 3,7; enquanto Hajjar et al. (1997), baseados na avaliação da 

capacidade do andar (LRFD, 1993), obtiveram o valor intermediário kAB = 3,21 

(chamado “prático”) e encontraram também o coeficiente kCD = 4,54. 

Por outro lado, realizando uma análise de flambagem do sistema, Hajjar et al. 

(1997) indicaram o valor teórico kAB = 3,18 chegando a kCD = 4,49 para βP = 0,5. Isso 

corresponde à situação da tabela kAB = 3,073 e kCD = 5,129 > 4,54 > 4,49! Inadequado? 

Empregando-se a Análise Avançada, verifica-se que quando as colunas possuem a 

mesma carga (βP = 100%), com uma participação conjunta, isso exige um coeficiente de 
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flambagem maior (kAB = kCD = 3,66 > 3,21), embora o autor não concorde com o uso 

dessa aproximação para a coluna-escora (kCD = 3,66?). 

Já no caso de a carga atuante na escora C-D não ser igual à da coluna A-B (no 

problema é de 50%), para se adotar o valor kAB = 3,21 que indicaram, a carga P2 deve 

ser inferior a βP = 61% P1 em A-B, ou seja, P2 ≤ 1405 kN, o que representa kCD= 4,73 

próximo aos coeficientes kCD informados antes (4,49 teórico e 4,54 prático). Desde que 

βP = 50% < 61%, kAB = 3,21 > 3,18 > 3,07 conclui-se que há um superdimensionamento 

ou uma boa margem conservadora incluída na norma. 

 

6.6.3 PORTAL COM CARGA MAIOR NA COLUNA DIREITA 

Estuda-se, agora, a capacidade da escora C-D tomando as cargas P2 = P (βP = 1), 

P1 = αP P, sendo 0 ≤ αP < 1 (P1 < P2), (N = P), e a geometria com imperfeições iniciais 

opostas, da Fig. 6.18(a), provocando a flambagem na direção x+, representada pela 

deformada na Fig. 6.18(b). A curvatura inicial tem a forma de ) –/+) ou ) –/– (. 

Observe-se que a carga P2 sozinha não causa a flambagem do conjunto, mas pode 

provocar a flambagem individual da coluna C-D ou a sua maior dependência de A-B.  

Para se entender o efeito das imperfeições iniciais no comportamento desse portal, 

os fatores de colapso são listados na Tab. 6.6, para as diferentes configurações deste 

estudo. A configuração da Fig. 6.16(a) continua dominando para valores de αP ≥ 85%. 

Somente a partir daí, a configuração da Fig. 6.18(a) passa a determinar o menor fator de 

carga de colapso. Verifica-se um fator de carga de colapso muito elevado (acima de 

94,8%) quando αP ≤ 31,25%. Nesses casos, a CI da barra A-B, pode ter qualquer direção 

“(+” ou “–)” que a carga limite obtida não se altera. A justificativa é que agora a coluna 

A-B fornece o apoio horizontal suficiente para garantir a flambagem inelástica da escora 

C-D, (com kCD ≈ 1), como a barra birrotulada, que de fato é. Nesta tese, recomenda-se 

adotar sempre k = 1, para as escoras! 

No trecho com 37,5 ≤ αP ≤ 75%, têm-se a parte mais interessante, na qual a 

degradação pela plasticidade na escora C-D é tão elevada que provoca o colapso em A-

B, antes que a coluna C-D atinja a flambagem inelástica. 
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Figura  6.18  Flambagem na direção x+ do portal de Hajjar et al. (1997): 
(a) modelagem da CI e FP; (b) deformada no colapso para βP = 54%, FE = 40×. 

 

Isso ocorre porque A-B não é mais capaz de absorver o momento gerado pelo esforço 

horizontal induzido que C-D exige para atingir a sua flambagem; e assim, A-B entra em 

flambagem inelástica antes. Isso pode ser avaliado como uma flambagem do sistema ou 

conjugada (conjuga a plasticidade de C-D e A-B, para o colapso de A-B). Nessas 

condições, a configuração da deformada mais crítica é a representada na Fig. 6.18(b), 

sem outras opções.  

As trajetórias de equilíbrio relacionando os deslocamentos do ponto D para as 

mesmas relações αP de cargas e configurações geométricas iniciais (CI+FP) diferentes 

são mostradas na Fig. 6.19. 

As cargas de colapso são parecidas, porém, as trajetórias têm maiores diferenças, 

quando a relação αP é pequena (αP → 0). Para αP maiores, a trajetória é semelhante, 

embora a maior diferença no colapso seja com αP = 0,5. 

No caso do FP, a direção é determinada pelo pior efeito:  

a. direção x–: instabilidade da coluna A-B dada a própria carga; ou, 

b. direção x+: instabilidade da coluna C-D por efeito P∆  conjugado à plasticidade.  
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Tabela 6.6 Estudo das imperfeições para carga limite. 
CI (2) Carga P1 = αP P (3,4) FP 

(1) AB CD 
Fig. 

0 25,0 31,3 37,5 43,8 50,0 54,4 62,5 75,0 85,0 100 
x– + –/+ 6.16a 95,5 95,7 95,8 96,0 90,5 85,4 82,1 76,5 69,2 64,1 57,7 

+ + – 94,4 89,6 85,2 82,3 77,4 70,7 66,0 60,0 
x+ 

– + 6.18a 
95,1 94,9 94,8 

93,1 88,2 83,7 80,8 75,7 68,9 64,2 58,1 
Notas: 1) FP fora de prumo: x– “\  \” , x+ “/  /”; 2) CI: curvatura inicial: AB “–)”,“ +(“, CD “–(”,“ +)”;  

3) P2 = P (= N) = λ Ny, Ny = 3516 kN; 4) os valores que governam estão destacados (█). 
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Figura  6.19  Trajetórias de equilíbrio para P2 = P (flambagem x- ou x+). 
 

Veja-se que os menores valores de αP correspondem a maiores valores dos fatores 

de carga, se atinge quase a carga de esmagamento Ny e os maiores αP aos menores 

fatores, como esperado. Por exemplo, para αP = 25%, tem-se λc= 94,9% comprovando a 

esbeltez da barra C-D, obtida com kCD = 1 (λCD = 27,8).  

Note-se ainda, que mesmo quando as trajetórias representam estados finais 

diferentes, as diferenças entre os fatores de carga de colapso são pequenas, variando de 

(0,4 a 1,7)%, ou seja, é questionável se a influência é relevante do ponto de vista de 

engenharia. 

Como no caso anterior, apresenta-se na Tab. 6.7 na qual se determinam as 

menores cargas limites dentre as três possibilidades mostradas na Tab. 6.6 e os 

coeficientes de flambagem kAB e kCD correspondentes, aplicando-se as Eqs. 6.18. 

O colapso na direção x+ prevalece enquanto αP ≥ 85%, correspondendo a uma 

degradação da coluna C-D com flambagem própria ou induzindo a flambagem 

conjugada da coluna A-B. 
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Tabela 6.7 Condição de flambagem com P2 = P (direção x- ou x+). 

αP 
[%] 

FP 
(1) 

Colapso 
λ = 

N/Ny 
(2) 

P2 = 
Pmax 
[kN] 

P1 = 
αPP 
[kN] 

P2/ 
P2max 
[%] 

λAB 
(3) kAB 

(4) λCD 
(5) kCD  

(4) 

   0,0 0,951 3343,7       0,0  100,0 ? (6) ? (6) 30,79 1,107 
 25,0 0,949 3336,7   834,2 99,8 164,7 5,922 31,42 1,130 
 37,5 0,931 3273,4 1227,5 97,9 140,9 5,065 36,73 1,320 
 43,7 0,882 3101,1 1356,7 92,7 134,0 4,818 48,67 1,749 
 50,0 0,837 2942,9 1471,4 88,0 128,2 4,608 57,94 2,082 
 62,5 0,757 2661,6 1663,5 79,6 118,8 4,271 72,47 2,605 
 75,0 

x+ 

0,689 2422,5 1816,9 72,4 111,6 4,011 83,83 3,013 
 85,0 0,641 2253,8 1915,7 67,4 107,3 3,847 91,59 3,292 

  100,0 
x– 

0,577 2028,7 2028,7 60,7 101,9 3,661 101,9 3,661 
Notas: 1) onde indicados x– e x+, considera-se o menor valor de λ; 2) N = P, Ny= 3516 kN;  
3) λAB = 137,34[-ln (αP λc)] 

0,5; 4) kfl = λz / 27,82; 5) λCD = 137,34(-ln λc) 
0,5; 6) indefinido. 

 

A partir desse ponto (αP < 85%) ocorrerá somente a flambagem do pórtico e na 

direção preponderante x–, como visto na subseção anterior. Essa tabela conjugada à 

Tab. 6.5 serve de base para as conclusões da subseção seguinte. 

 

6.6.4 CONCLUSÕES SOBRE O ESTUDO DO PORTAL 

Agora, avalia-se o comportamento da estrutura na direção da flambagem x– ou x+, 

relacionada à configuração geométrica preponderante, para a determinação da carga de 

colapso mínima, associada às cargas P1 e P2 aplicadas no portal. Para tanto, define-se o 

parâmetro de carga γP = P2 / (P1 + P2) = βP / (αP + βP), que varia entre: 

a. 0: corresponde a P2 = βP = 0, só a coluna A-B recebe carga P1 = αP Ny;  

b. 0,5: corresponde a cargas iguais nas colunas, P1 = P2 = P, ou (αP = βP); e  

c. 1: corresponde a P1 = αP = 0, só a coluna C-D carregada por P2 = βP Ny. 

 

Analisando-se a Fig. 6.20, assim construída, podem ser identificadas três regiões 

de comportamento bem distintas: 

a. domínio da flambagem do portal (em L), com a instabilidade da coluna A-B 

conjugada, ou não, aos efeitos da plasticidade, em que P1 > P2 no geral, partindo 

de λc = 78,7% chega ao mínimo de λc = 57,7%, estendendo-se até o ponto P 

(aproximadamente γP = 54%, onde P1 ≥ 85% P2). Essa primeira região mostra 

uma queda em forma parabólica da carga limite, mais tênue para γP ≤ 25% e 

mais abrupta próximo de γP ≈ 50%. Note-se que em todos os casos só ocorre 

plasticidade na coluna A-B, próximo à ligação com a viga, no ponto B; 
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b. intermediária às regiões (a) e (c), que é a mais interessante, pois se apresenta a 

possibilidade de se ter a flambagem nas duas direções (com pequenas diferenças 

de fator de carga), e na qual ocorre, em maior ou menor grau, plasticidade nas 

duas colunas. Pode-se entender que a plasticidade da escora C-D gera um 

momento central maior e acelera a sua curvatura na direção da flambagem 

isolada, que não chega a ser atingida, como se viu na subseção anterior 

(Alvarenga & Silveira, 2008a). Enquanto isso, por meio de efeitos secundários 

P∆, o esforço horizontal induzido aumenta a plasticidade na coluna A-B, cresce 

e degrada mais rapidamente o portal, que então entra em colapso por flambagem 

da coluna A-B, antecipando o provável mecanismo a ser formado no ponto B; e  

c. a outra extremidade, a partir de γP = 72,5%, tem-se o domínio puro da 

flambagem inelástica da escora C-D, com o fator de carga praticamente 

inalterado λc ≈ 95% (kfl ≈ 1!), onde o sentido da CI da coluna A-B (ou da C-D) 

não interferem no problema (sinal + ou –). Diferente da região anterior, aqui 

ocorre plasticidade apenas na coluna C-D, de maneira geral em toda a extensão 

da barra e com o mesmo formato. A carga P1 não mais influencia na resposta. 

 

Assim, a direção da deformada é estabelecida a partir das condições do 

carregamento, em que a instabilidade pode se manifestar de formas diferentes, por causa 

da presença da plasticidade, ou seja, pode-se chegar a uma nova conclusão: 

a plasticidade pode alterar os modos de flambagem, excitados pelo carregamento 

da estrutura, numa dada direção, em função da presença de uma (ou mais) coluna(s)-

escora na estrutura. 

Para avaliar o efeito do carregamento da estrutura na flambagem das barras 

isoladas, como é tradicional no dimensionamento das normas, apresenta-se na Fig. 6.21, 

na qual se tem a variação dos coeficientes de flambagem aparentes: kAB e kCD, conforme 

obtidos nas Tabs. 6.5 e 6.6, por meio das Eqs. 6.18(a-c), em função da variação das 

cargas, definida pelo parâmetro γP. Nesse instante, despreza-se o efeito da curvatura CI 

(+/+) nos resultados, já que não os governa e, no máximo, equipara-se ao caso CI )–/+) 

para altos valores de γP. 

Poder-se-ia supor que, quanto maiores forem os coeficientes kfl, mais restritivos 

serão, já que a carga final suportada pelo perfil será menor no dimensionamento 

resultante. Entretanto, o emprego descuidado de fórmulas pode trazer surpresas! 
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Figura  6.20  Direção da flambagem do portal de Hajjar et al. (1997).  

0 10 20 30 40 50 60 70 80 90 100
Relação entre as cargas  γP = P2 /(P1+P2) [%]

0

1

2

3

4

5

6

C
oe

fi
ci

en
te

 d
e 

fl
am

ba
ge

m
 k

fl

kAB FP x- CI (+/-(

kAB FP x+ CI )-/+)

kCD FP x- CI (+/-(

kCD FP x+ CI )-/+)

kCD ≅ 1

kAB

kCD
kAB

(c) Dir. x+ governa
      (b)
Dir. x- ou x+
  indiferente

(a) Dir. x- governa

72,5

 

Figura  6.21  Coeficiente de flambagem kfl do portal de Hajjar et al. (1997).  
 

Quando o fator de carga γP é inferior a 0,2 ou superior a 0,8 então kCD ou kAB, 

respectivamente, tende ao infinito. Observa-se que as normas limitam a esbeltez 

máxima em L/rz = 200, o que resulta neste exemplo na restrição kmax ≤ 7,18. Verifica-se 

que os valores elevados de kfl não tem sentido como restrição nesta análise, visto que 

em ambos os casos a estrutura é estável e suporta as cargas previstas. 

Portanto, são os menores valores de kfl que controlam a resposta estrutural, 

havendo também três regiões distintas de comportamento, conforme: 
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a. kAB é menor que kCD e define a flambagem da coluna A-B, pelo FP na direção 

x–, governando até γP = 54%; 

b. região intermediária, com possibilidade de flambagem nas duas direções;  

c. com γP > 72,5%, coeficientes kCD ≈ 1 (tendem para 1 e são menores que kAB),  

em que ocorre a flambagem inelástica da coluna C-D isolada, ou seja, o 

coeficiente kAB ≥ 5 apenas confirma que a coluna A-B não governa o 

dimensionamento e é um valor bem inferior ao limite (7,18).  

 

Na hipótese de só haver a carga P2 na coluna C-D (ou seja, γP = 1), não se poderia 

construir o portal com valores de kAB tão elevados. Isso não é verdade! A variação de 

kAB pelas Eqs. 6.18(a-c) apenas sinaliza que a carga máxima não é controlada pela 

coluna estrutural A-B e, por essa razão, a carga aplicável em C-D será maior, calculada 

com kCD = 1. Isso se torna bem claro no trecho à esquerda do gráfico, no qual kCD tende 

para infinito, mas, antes disso, kAB, com valores cada vez menores, determina o colapso 

da estrutura, quando γP tende a zero. Observe-se que quando kCD for superior a 7,18 

(L/rz > 200) e a coluna C-D não tiver carga (ou seja, γp = 0), não se poderia construir o 

portal! Mais uma vez chega-se a um absurdo. Portanto, kCD não teria nenhum efeito 

prático e o portal pode ser construído plenamente com as colunas e cargas previstas. 

Assim, fica demonstrado que não há sentido em se empregar kCD diferente de 1, 

uma vez que o “paradoxo” para a coluna-escora é um caso de mau uso de equação. 

Porém, isso não retira o mérito de Siat-Moy (1986), afinal, desse e de outros 

questionamentos, desenvolveu-se a tecnologia que resultou na Análise Avançada. 

Note-se, portanto, que no emprego de fórmulas como as Eqs. 6.18, para 

determinar o coeficiente kfl, podem-se achar valores incoerentes do ponto de vista de 

engenharia, cujo sentido é apenas dizer quem governa o dimensionamento das colunas 

do portal, envolvendo a atuação das cargas e a estabilidade das colunas individualmente.  

O efeito da plasticidade nos EFs desse portal também pode ser estudado, com base 

no parâmetro γP, conforme representado na Fig. 6.22, considerando as três regiões de 

comportamento antes apresentadas, da seguinte forma: 

a. valores baixos de γP ≤ 40,8%,  acompanhando-se a Fig. 6.22(b), na qual a 

plasticidade se manifesta na coluna da esquerda apenas, sendo a flambagem na 

direção x-, que provoca uma zona plástica (ZP)  no lado interno próximo ao 

ponto B, no topo da coluna A-B. No caso mais grave (γP = 0), da Fig. 6.22(a), 
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aparece também uma ZP inferior nesta coluna. Quando  γP ≥ 50% começa a ser 

possível, tanto a flambagem para o lado x– como para o x+, representado na Fig. 

6.22(c), em que a ZP está no topo, porém do lado externo, que não corresponde 

ao caso mais crítico, o qual permanece sendo o do lado x–, com a ZP do lado 

interno da Fig. 6.22(b). Em geral, nesse trecho só há plasticidade na coluna A-B; 

b. para γP > 54%, a tendência passa a ser flambagem na direção x+, com uma ZP 

na parte externa próxima ao topo da coluna A-B, e a coluna C-D, dadas as 

maiores cargas nela impostas, começa a apresentar 2 ZPs ao longo de toda a 

barra. A marca deste trecho é a presença de plasticidade nas duas colunas e a 

possibilidade de flambagem nas duas direções, ilustrado na Fig. 6.22(d); e  

c. quando γP ≥ 75% a plasticidade surge apenas ao longo da escora C-D, com 2 

ZPs, ocorrendo a flambagem inelástica (kAB ≈ 1) como visto na Fig. 6.4 da seção 

6.3. O início desse trecho corresponde à carga horizontal mínima que causa a 

flambagem inelástica da coluna A-B, conjugada à plasticidade em C-D. Essas 

condições correspondem às ZPs indicadas nas Figs. 6.22(e-f). 

 

Na figura 6.23, elucidam-se algumas das seções das zonas plásticas representadas 

nos portais da Fig. 6.22. A plasticidade da coluna A-B é mais localizada em uma única 

aba e, às vezes, atinge pequena parte da alma, dada a combinação de flexão compressão, 

como visto nas Figs. 6.23(a-b), para os casos nos quais  γP  < 50%. Já a manifestação da 

plasticidade na coluna escora C-D engloba ambas as abas, com 2 ZPs, sendo simétrica 

nas extremidades rotuladas, como visto na Fig. 6.23(d) e assimétrica na meia-altura, na 

qual atua o momento máximo, como visto na Fig. 6.23(e), ou em casos mais graves, 

como na Fig. 6.23(c). 

Confirma-se que a viga se mantém elástica em todas as análises, mesmo no 

colapso e nenhuma plasticidade foi nela encontrada, por isso não foi representada. 

Esta última seção foi resumida em trabalhos que foram publicados por Alvarenga 

& Silveira (2008a, 2008b) e constituem uma possível contribuição sobre o problema das 

colunas-escoras para a norma brasileira. 

Tendo comprovado os bons resultados dessa parte da formulação numérica, 

baseando-se na coerência das respostas ora encontradas, comparadas com as anteriores, 

entra-se no capítulo seguinte, para validação da formulação para o elemento finito com 

ligação propriamente dito. 
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Figura  6.22  Zonas plásticas do portal de Hajjar et al. (1997).  
Casos: (a) γP = 0; (b) γP = 40,8%; (c) γP = 50%; (d) γP = 69,6%; (e) γP = 80%; (f) γP = 1; 

(g) convenção: (����) compressão. 
 

(a) (b) (c) (d) (e)  

Figura  6.23  Seções com fatias plásticas do portal de Hajjar et al. (1997). 
Percentual: (a) 37,2%; (b) 36,5%; (c) 64,2%; (d) 51,1%; (e) 61,1%;   

(f) convenção: (����) compressão. 
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7.1  INTRODUÇÃO 

Neste capítulo, desenvolvem-se os exemplos para a validação da formulação 

apresentada no capítulo 3, com a participação efetiva da ligação. Indica-se que a maior 

parte da literatura existente carece de exemplos e material simples de consulta, o que 

assim passou também a ser um objetivo com esta parte da tese. 

Ao se trazer a participação da ligação, na solução do problema estrutural, 

aparecem imediatamente dois tratamentos distintos, baseados no seu comportamento: 

a. os modelos de ligações com comportamento linear: mais simples, nos quais a 

sua rigidez não se altera ao longo da análise; e  

b. os modelos não lineares: nos quais existem diversas aproximações e a rigidez 

varia em cada instante da análise, como se mostrou no capítulo 2. 

 

Existe uma combinação desses dois tipos de modelo de ligação com os tipos de 

análise. Para facilitar essa caracterização dos exemplos abordados neste capítulo, as 

seguintes abreviações serão adotadas: 

a. AELL –  Análise Elástica, Ligação Linear; 

b. AILL –  Análise Inelástica, Ligação Linear; 

c. AELN –  Análise Elástica, Ligação Não linear; e  

d. AILN –  Análise Inelástica, Ligação Não linear. 

 

Na validação da formulação numérica abordam-se quatro exemplos, porém esses 

são tratados de diversas maneiras e com diferentes objetivos: 

a. determina-se o comportamento de uma viga simples mostrada na Fig. 7.1(a), 

com duas ligações idênticas nas extremidades, abordando dois tipos de carga: 

i. carga concentrada no meio-vão, e 

ii. carga distribuída uniforme ao longo de todo o vão. 

   Essas vigas serão estudadas de diversas maneiras, fazendo-se a redução de 

rigidez da condição engaste (rigidez dita infinita) até a rótula (rigidez dita nula); 

b. determina-se a carga de flambagem elástica de uma coluna com duas ligações 

idênticas nas extremidades (Chen & Lui, 1991; Hajjar et al., 1997) quando se sai 

da condição de rigidez máxima (engaste) e se atinge a condição mínima de 

rótula. Neste estudo, considera-se tanto a coluna na condição travada ou 

indeslocável quanto na situação de ser deslocável na extremidade superior, [ver 
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a Fig. 7.1(b)]. Os resultados são confrontados com os valores fornecidos em Li 

& Li (2007). Um estudo de convergência para avaliar as necessidades e 

capacidades de modelagem deste EF com ligação é também realizado; 

c. estuda-se o portal de Yau & Chan (1994), ilustrado na Fig. 7.1(c) com ligação 

rígida ou linear, regime elástico ou não (AELL e AILL). Esse problema também 

foi abordado por Machado (2005); e  

d. procura-se reproduzir os resultados do portal de Chan & Chui (2000), 

abordando ligações não lineares em ambos os regimes (AELN e AILN).  

 

Além disso, neste capítulo apresenta-se também uma avaliação dos três tipos de 

método de determinação do ângulo de rotação da ligação indicados na subseção 4.5.3. 

Nos exemplos, indicam-se quais destes métodos foram empregados:  

a. S – simples;  

b. XX – aproximado; e   

c. ME – com MRE.  

(a)

L = 800 cm

kR Rk

B = 352,4 cm

Rk Rk

Rk Rk

Rk

kR Rk

Rk

L
 (

va
r.

)

(b) (d)

(c)

L
 =

 3
52

,4
 c

m

B = 500 cm

L
 =

 3
50

 c
m

kR

Rk

 

Figura  7.1  Exemplos analisados:  
(a) viga simples biligada; (b) coluna de Hajjar et al. (1997);  

(c) portal de Yau & Chan (1994); portal de Chan & Chui (2000). 
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Menciona-se, também, que em outros problemas estudados, não incluídos nesta 

tese, encontraram-se dificuldades numéricas ou resultados bastante diferentes dos que 

constam na literatura. A principal razão dessa diferença provém aparentemente de como 

se está relacionando a curva M-θ fornecida com os dados do problema. Embora isso não 

seja comentado na literatura, existem duas formas de tratar a rotação θ: 

a. como o giro próprio da ligação (θ =  θL = αB), independentemente da viga, que é 

a consideração adotada aqui; e    

b. como o giro total do nó (viga + ligação: θ = θV + θL), como faz a maioria dos 

pesquisadores (Liew et al., 1997; Silva, 2009). 

 

Neste trabalho, considerou-se a primeira opção (a), mas deve-se notar que algumas 

vezes o giro da viga (θV) é muito pequeno, de forma que a hipótese (a) pode ser 

confundida com a (b). Já quando esses valores individuais são distintos, a resposta final 

tende a desviar-se mais do que o esperado. 
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7.2 VIGA SIMPLES 

Estuda-se, aqui, a viga da Fig. 7.2, que está sujeita a dois tipos de carga: a 

concentrada no meio-vão (Q) e a distribuída (q) no vão. Diferente de outros exemplos, a 

seção da viga não é de nenhum perfil-padrão, embora os laminados 16 WF 40 ou o IPE 

400A tenham características próximas. Podem-se comparar as propriedades das três 

seções na Tab. 7.1. Com a tensão de escoamento σy = 25 kN/cm2, a seção proposta 

atende às limitações da subseção 3.2.3(f), para não ocorrer a flambagem local (alíneas i. 

b/t = 10 ≤ 21,64; e, ii. da/a = 46,25 ≤ 106,6) e considera-se MP = 28501,3 kNcm. 

 Os dados complementares serão fornecidos posteriormente de acordo com as 

análises desenvolvidas: 

a. obter a linha de viga (Batho & Rowan, 1934), tipo AELL; 

b. comportamento de diversas ligações não lineares (AENL); 

c. dimensionamento, considerando a plasticidade (AILL); e  

d. efeito combinado (AINL). 

Rk

(b)

L = 800 cm

Q

q

Q =     Q        q =     q

0 <         ,        < 100 %qQ

0Q q 0

   = 0,3        

material: aço ASTM A 36

    = 25 kN/cm         

Dados:

E = 20000 kN/cm         

viga:  I 400 x 150 x 15 x 8

y
2

r

2

y

Q  = 320 kN   q  =  40 kN/m 
0 0

A B
C

B
C

A

R k Rk

R k

(a)

L = 800 cm
 

Figura  7.2  Viga biligada simples: 
(a) carga concentrada Q; (b) carga distribuída q. 

 

Tabela 7.1 Propriedades da seção da viga. 

Dimensões da seção I [mm] Módulo resistente 
espessuras Referência altura  

d 
largura 

 b aba t alma a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 
elástico 

Wz [cm3] 
plástico 
Zz [cm3] 

PT (1) 400,0  150,0 15,00 8,00 74,60 20061 1003,0 1140,0 
16WF40 (2)

  16 in 7 in 0,505 in 0,305 in 11,8 in2 518 in4 64,7 in3 73,0 in3 
Convertido 406,4 177,8 12,83 7,75 76,13 21560 1060,2 1196,2 

IPE400A(3) 397,0 180,0 12,00 7,00 73,10 20290 1022,0 1144,0 
Notas: 1) PT: na própria tese, com o perfil adotado; perfis laminados similares: 2) americano (AISC 

LRFD, 1993); 3) europeu (DIN 1025-5, 1994). 
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7.2.1 LINHA DE VIGA COM MODELO ELÁSTICO 

No problema tipo AELL, foram adotados 8 EFs no modelo, arbitrando-se diversos 

valores para a semiflexibilidade nodal η, definida na Eq. 2.7(a), e resolvendo a Eq. 2.3 

para Rk, encontrando-se a rigidez da ligação pela expressão: 

Confrontaram-se os resultados dessa análise com os do programa computacional 

VGASLIGA.bas desenvolvido, que calcula flechas e rotações, pelo método da viga 

conjugada, empregando as ideias de Monforton & Wu (1963) e equações de 

Cunningham (1990).  Confirma-se a exatidão das respostas na Tab. 7.2. Note-se que os 

casos extremos (η = 0 e = 0,5) correspondem à hipótese de viga biengastada e 

birrotulada, respectivamente. A solução de VGASLIGA é direta, com 1000 pontos de 

integração; enquanto em PPLANAVX (2008) foram gastas de 5 até 21 (máx., η = 0,2) 

iterações para resolver o problema. 

Com os momentos nas ligações MA/B e as rotações respectivas θA/B, pode-se 

visualizar esses resultados na Fig. 7.3, construindo o diagrama chamado de linha de 

viga (Batho & Rowan, 1934), introduzido na seção 2.5. 

Para os dados do problema, se encontram os momentos de engaste: 

 

Tabela 7.2 Esforços e deformações da viga simples. 

Parâmetros (a) Carga concentrada Q (b) Carga distribuída q 

Momentos [kNcm] Momentos [kNcm] η g 

Rigidez 
Rk 

[kNm/rad] 
MA/B MC 

∆yC 
(2) 

[cm] 
θA/B 

(3) 
[mrad] MA/B MC 

∆yC 
(2) 

[cm] 
θA/B 

(3) 
[mrad] 

0,00 0,000 (5)  ∞   -31999 31999 2,127 0,00 -21000 11000 1,064 0,00 
0,01 0,005 982874 -31676 32322 2,192 0,32 -20787 11212 1,106 0,21 
0,05 0,028 180545 -30315 33683 2,463 1,68 -19895 12105 1,284 1,10 
0,10 0,063 80242 -28443 35555 2,836 3,55 -18666 13333 1,529 2,33 
0,15 0,107 46808 -26351 37645 3,253 5,63 -17293 14705 1,803 3,70 
0,20 0,167 30091 -23998 39998 3,722 7,98 -15749 16250 2,110 5,23 
0,25 0,250 20061 -21332 42664 4,254 10,63 -13999 17999 2,243 6,98 
0,30 0,375 13374 -18284 45710 4,861 13,67 -11999 19999 2,858 8,97 
0,35 0,583 8597 -14767 49225 5,562 17,18   -9692 22306 3,318 11,27 
0,40 1,000 5015 -10064 53326 6,380 21,27   -6999 24998 3,855 13,96 
0,45 2,250 2229   -5817 58170 7,346 26,10   -3818 28178 4,489 17,13 
0,50 124,8 (4)     40     -128 63855 8,479 31,77       -84 31911 5,234 20,85 
0,50 ∞ (5)       0          0 63982 8,505 31,90          0 31995 5,250 20,93 

Notas: 1) Momentos nos apoios (A/B) sinal (–) tração superior, no meio-vão (C) (+) tração inferior;  
2) flecha yC (+) para baixo; 3) rotação no apoio θ (A/B) sinal -/+ respectivamente (horário, anti-);  

4) com η = 0,499; 5) com apoios rígidos ou rótulas (sem EF com ligação). 

( ) ( )
kNm/rad 3003001  

21
    

L

EI
 

42
R k ,

η

η−
=

η

η−
=  (7.1) 

[kNcm]   21333
12

qL
M      32000

8

QL
M

2

qQ ====  (7.2a-b) 
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e as rotações de extremidade da viga birrotulada (Batho & Rowan, 1934): 

Verifica-se que, no caso da carga distribuída, aparece uma pequena diferença 

entre os resultados computacionais e a linha teórica, que os supera. Isso é explicado 

porque no modelo numérico a carga uniforme é aproximada como um conjunto de 

cargas nodais equivalente. Assim, o resultado será tão próximo do “uniforme” quanto 

mais nós e EFs se inserir no modelo (Mq = 21333 > MA/B= 21000 kNcm, quando η = 0). 

O assunto quantidade de EFs do modelo será abordado na subseção 7.3.2. 

Observe-se, também, que as linhas tracejadas com os pontos de η = valor, 

constantes para a carga Q, interceptam os da carga q, como se espera. 

Repete-se aqui o estudo da Fig. 2.28, relativo ao melhor aproveitamento da seção 

da viga, utilizando-se ligações semirrígidas no dimensionamento da Fig. 7.4, porém 

com ambos os casos de carga. Aplicam-se as fórmulas correspondentes (Kotlyar, 1996), 

comprovando mais uma vez a resposta obtida nesta tese.  

Verifica-se que para a carga Q a viga está subdimensionada, exigindo uma seção 

1,5 vezes mais resistente, ou seja, Mp ≥ 42750 KNcm, para η ≤ 0,25. Já com a 

distribuída q, a seção é aprovada desde que η ≤ 0,45 (não pode ser birrotulada!). 

Conforme apresentado em Alvarenga & Silveira (2009a), existem duas soluções 

econômicas: a. o ponto P onde MA/B ≈ MC (mesmo valor); e, b. a linha R (η ≈ 0,3), que 

corresponde aproximadamente à troca entre os valores de momentos apoio (MA/B) × 

meio-vão (MC) em relação à viga biengastada.  

 
7.2.2 VIGA ELÁSTICA E MODELO DE LIGAÇÃO COM TRECHOS LINEARES 

Nesta subseção, trata-se da AELN da viga biligada, já que o regime elástico da 

viga é a forma mais simples de avaliar o comportamento dos modelos de ligação 

implementados computacionalmente. 

No modelo bilinear e no trilinear, foram empregados, propositadamente, curvas 

M-θ que possuem pontos comuns das lineares, por isso o comportamento final desses 

casos será o mesmo, o que permite uma rápida validação. Isso se espelha na Fig. 7.5(a) 

para o modelo bilinear e Fig. 7.5(b) para o trilinear, respectivamente. 

No primeiro caso, faz-se uma transição da flexibilidade de η = 0,10 para 0,25; e 

no último, há três valores: {0,10/0,25/0,40} conforme dados indicados na Tab. 7.3. Por 

conseguinte, a trajetória M-θ de equilíbrio da solução passa por pontos correspondentes 

[mrad]  21,269 
EI24

qL
     31,903 

EI16

QL

z

3

q

2

Q ==θ==θ  (7.3a-b) 
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à transição e atinge ao mesmo estado final, correspondente à última semiflexibilidade η; 

ou seja, atinge as flechas da Tab. 7.2: a. para bilinear: 4,254 cm (Q), 2,243 cm (q); e, b. 

para trilinear: 6,38 cm (Q), 3,855 cm (q). 
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Figura  7.3   Diagrama da linha de viga.  
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Figura  7.4  Avaliação do dimensionamento da viga simples.  
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Figura  7.5  Efeito da curva M-θ com trechos lineares na viga elástica 
modelos: (a) bilinear; (b) trilinear.  

 

Tabela 7.3 Dados da curva M-θ para modelos bilineares e trilineares. 

Parâmetros (a) Bilinear (1) (b) Trilinear (2) 

Momento [kNcm] Rotação [mrad] Momentos [kNcm] Rotação [mrad] 
η g 

Rigidez 
Rk1 

[kNm/rad] 
MQ Mq θQ θq MQ Mq θQ θq 

0,10 0,063 80242 11378   7467 1,418 0,931   5689   3733 0,709 0,465 
0,25 0,250 20061 21333 14001 10,63 6,980   8534   5600 4,254 2,792 
0,40 1,000 5015 – – – – 10666   7000 21,27 13,96 

Notas: 1) bilinear: Rk2 = 10801,4 kNm/rad; 2) trilinear: Rk2 = 8023,6 e  Rk3 =  1253,3 kNm/rad. 
 

Para os resultados da Fig. 7.5, o controle incremental (fator de carga λ) passou 

pelos pontos de transição (20 e 40%) do diagrama M-θ. Situação mais complexa é 
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quando ocorre o salto sem a passagem pela transição – por exemplo, partir de λ = 35% e 

atingir 45%, saltando o valor 40% da transição. Note que a rigidez só muda após ser 

dado o passo de carga (não no próprio instante). Para η = 0,25 e carga Q, o momento 

correto final é 21333 kNcm. Porém, saltando λ = 40%, encontra-se MA/B = 21410 (mín., 

ou 21951 kNcm, máx.), referentes a empregar (ou não) a rigidez anterior fixa no passo. 

Corrigindo a rigidez da ligação com o processo descrito na subseção 4.5.4, encontra-se 

MA/B = 21327,1 kNcm. O desvio reduz de (0,36 a 2,9%) para -0,03%. Isso indica que: 

a. deve-se ter cuidado com passos incrementais que majorem as rotações acima de 

4% em média, de cada vez; 

b. não é possível manter a rigidez da ligação constante durante o passo 

incremental, pois ela é ajustada no processo também; e  

c. tornam-se questionáveis os resultados que foram produzidos sem observar esses 

cuidados com a rigidez da ligação e o comportamento do EF. 

 
7.2.3 VIGA ELÁSTICA COM LIGAÇÕES NÃO LINEARES 

Nesta subseção, que complementa a anterior, estuda-se o emprego de outras 

curvas não lineares, adotando a ligação de Rathbun (1936) da Fig. 2.25 (capítulo 2). 

Apenas a hipótese da carga concentrada Q no meio vão é analisada, e o tipo é 

AELN. Comprovar-se-á que os modelos de curvas implementadas estão sendo seguidos 

de forma adequada pelo programa computacional PPLANAVA. Para isso, na Fig. 7.6 

mostram-se os diagramas de curvas M-θ, que são abreviadas por: 

a. FM – modelo polinomial de Frye & Morris (1975), na subseção 2.4.2;  

b. KC – potencial de Kishi & Chen (1987), na subseção 2.4.3; 

c. LC – exponencial Lui & Chen (1986), modificado posteriormente por Kishi & 

Chen (1987), na subseção 2.4.4; 

d. MT – curva M-θ experimental na Fig. 2.25 (Rathbun, 1936); 

e. RT – curva Rk-θ experimental na Fig. 2.45 (Rathbun, 1936); 

f. RS – modelo linear com rigidez secante definida no ponto final da trajetória; e  

g. RBL – modelo de rigidez bilinear na Fig. 2.47, proposto nesta tese. 

 

As curvas FM, KC, LC e MT têm seus dados e parâmetros fornecidos pelo 

arquivo “SCDB” (Chen et al., 1996). Esses dados foram verificados reproduzindo-se as 

curvas [(M) em kNcm] e comparando-se os valores convertidos aos existentes nas suas 

tabelas originais, encontrando resultados coincidentes. 
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Os parâmetros do “SCDB” foram os mesmos fornecidos ao PPLANAVA para as 

curvas FM e KC. As curvas experimentais e LC foram introduzidas por tabelas, sendo 

os pontos intermediários interpolados diretamente pelo sistema computacional. 
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Figura  7.6  Curvas M-θ não lineares da viga elástica: 
(a) FM, LC, KC; (b) MT, RBL e RS.  
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O modelo RS é linear com a rigidez secante (Obs. g = 63,25): 

e o modelo RBL emprega os parâmetros ajustados ao ponto P13 na Fig. 2.47(a). 

Na figura 7.6, mostram-se em linhas cheias essas curvas, geradas por programas 

isolados (fora de PPLANAVA) na forma de tabelas. No processo de solução, o programa 

computacional convergiu em cada passo incremental para os pontos de equilíbrio, cujos 

valores M-θ estão destacados por pontos. Dessa forma, conclui-se que, efetivamente, as 

curvas M-θ foram acompanhadas na solução. 

Todos os exemplos foram finalizados quando a rotação na ligação superou o valor 

último previsto, que é θu = 29,84 mrad.  

Para ter-se uma medida da influência dos diversos modelos no processo de 

solução, apresenta-se a Tab. 7.4, na qual são indicados alguns resultados básicos, 

obtidos com o fator de carga λ = 90%, próximo da rotação última prevista. Verifica-se 

que pelo fato de a conexão ser muito flexível, mesmo para uma curva M-θ mais 

imprecisa, como a FM, a variação no fator de carga final foi muito pequena, e a maior 

discrepância ficou por conta do momento no apoio, que também é muito pequeno, e um 

maior momento estimado no meio-vão, mas também sem maiores consequências. 

Entretanto, cabe destacar a boa precisão dos modelos exponenciais de LC, bem 

como da curva proposta, o que demonstra que essa ideia é viável, embora a curva RBL 

tenha sido ajustada diretamente à curva M-θ de Rathbun (1936). 

Pode-se considerar que para momentos muito pequenos na ligação (flexível) a 

forma da curva M-θ não parece provocar grandes diferenças de comportamento no 

regime elástico. 

 

Tabela 7.4 Efeito das ligações não lineares na viga elástica. 

Momentos [kNcm] 
Pesquisador / curva θA/B 

[mrad] 
RkA/B 

[kNm/rad] MAB MC 
∆yC 
[cm] 

λmax 
[%] 

M- θ (1)  28,500 25,756 233,16 57354,6 7,6101 94,2 Rathbun 
(1936) Rk- θ (2) 28,504 25,356 233,84 57353,9 7,6102 92,9 

RBL (PT) 28,503 30,720 232,82 57354,9 7,6103 94,2 
Frye & Morris (1975) 28,589 15,397 180,78 57406,9 7,6230 93,9 
Lui & Chen    (1986) 28,511 21,235 233,57 57354,2 7,6107 94,1 
Kishi & Chen (1987) 28,519 24,903 224,73 57363,0 7,6124 94,6 
Rigidez secante (3) 28,483 79,289 225,84 57361,9 7,6099 94,2 
Notas: 1) para (M-θ) adota-se a rigidez média entre os 2 pontos da curva experimental; 2) para Rk-θ, 

emprega-se a variação linear ao longo dos pontos, 3) rigidez secante é dada pela Eq. (7.4) Rks = Mu/θu  

e colocada para avaliar esta simplificação. 

kNm/rad 79,289]mrad[ 29,84 ]kNm[ 3662θM  R uuks === ,  (7.4) 



Tese • AR Alvarenga • Cap. 7 – Elemento finito rígido-ligação 

 

312 

7.2.4 VIGA INELÁSTICA COM LIGAÇÕES LINEARES 

A introdução da plasticidade resulta numa dificuldade numérica maior quando a 

ZP atinge o EF com ligação. Corrigiu-se o método XX primeiro, passando da avaliação 

do ângulo de giro próprio da ligação feito pela Eq. 4.23 para a Eq. 4.30. Constatou-se 

que, mesmo assim, esse método não funcionava tão bem com a plasticidade na 

compressão, e então foi substituído pelo método ME, em geral, obtendo-se bons 

resultados. Nos resultados desta seção, não se consideram as tensões residuais e o 

modelo é AILL. 

Pode-se fazer uma verificação básica comparando-se os valores calculados para os 

casos extremos [biengaste (η = 0) e birrótula (η = 0,5)] com aqueles obtidos com 

ligações cujo Rk foi determinado com a semiflexibilidade η = 0,01 e 0,499. Assim, 

aplicam-se valores de η muito próximos das condições ideais, mas diferentes de uma 

rigidez infinita e da nula, respectivamente. 

Verifica-se que para ambas as cargas (Q e q) os resultados obtidos são muito 

próximos, quase idênticos, como destacam as Figs. 7.7(a-b), respectivamente. 

Como dito, no regime elástico a simulação de carga distribuída por diversas 

cargas nodais gera alguns desvios. De forma similar, verifica-se que o fator de carga de 

colapso na viga com biengaste, que deveria ser o mesmo (próximo de 90%) atinge 

88,9% para a carga concentrada (Q) e 88,6% para a de carga distribuída (q). No caso da 

birrótula, deveria se aproximar da metade do anterior, ou seja, 45%. Para a carga (Q) 

obteve-se 44,5%; já para (q), 44,4%. 

Novamente, o método da zona plástica (ZP) mostra que não há aquele fechamento 

completo da rótula plástica (RP) previsto nos modelos concentrados para que se inicie a 

plasticidade no meio-vão. A ZP forma-se de maneira mais gradual, aparece no meio-vão 

num dado instante, após uma dada degradação da extremidade, e posteriormente 

crescem juntas até o final. Observe-se que no colapso, em vários casos com η ≤ 0,15 

(ligações quase rígidas), o estado último é o de cisalhamento (Eq. 4.3) da seção com a 

ligação, e isso ocorre após a parte central atingir uma plasticidade elevada também. 

Outro aspecto é que as trajetórias com a carga distribuída são mais suaves e 

curtas, enquanto para a concentrada as trajetórias parecem ser longas (maior extensão); 

embora com a mesma carga atuante (Q = 320 kN = q·L = 40 kN/m·8m). 

No caso da viga biengastada (ou com ligação mais rígida) e carga distribuída, 

existe um terceiro trecho intermediário da trajetória, menos inclinado, que corresponde 
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à plasticidade no EF com ligação, mas antes de chegar ao trecho horizontal (patamar) a 

plasticidade já se manifesta na região central também. À medida que η cresce até 0,20; 

esse trecho vai desaparecendo e a trajetória fica mais brusca. 
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Figura  7.7  Trajetórias de equilíbrio da viga simples inelástica: 
(a) carga concentrada Q; (b) carga distribuída q. 
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Tabela 7.5 Esforços e deformações no colapso da viga simples. 

(a) Carga concentrada Q (b) Carga distribuída q 
Momentos 
[kNcm] (3) 

Momentos 
[kNcm] (3) 

η 
Rigidez 

Rk 
[kNm/rad] 

MA/B MC 

∆yC   
[cm] 

θA/B 
[mrad] 

λQ 
MA/B MC 

∆yC 
[cm] 

θA/B  
[mrad] 

λq 

0,00 (2)           ∞        28381 28381 5,628   0,000 88,7 28147 22475 2,526   0,000 79,2 
0,01 (1) 982874 28379 28383 5,685 0,289 88,7 28150 22984 2,608   0,286 79,9 
0,05 (1)  180545 28369 28392 5,973 1,571 88,7 28143 24846 2,916   1,559 82,8 
0,10 (1)     80242 28264 28370 5,524   3,523 88,6 28120 26725 3,417   3,504 85,7 
0,15 (1)     46808 28078 28364 5,533   5,999 88,3 28040 27507 4,009   5,991 86,9 
0,20 (1)     30091 27557 28372 5,778   9,159 87,4 20062 28124 5,252   9,326 87,8 
0,25 (1)     20061 25120 28377 6,099 12,524 83,6 28089 28374 7,003 14,002 88,2 
0,30 13373 20002 28375 6,397 14,958 75,7 25450 28313 6,798 18,350 82,6 
0,35 8597 17327 28423 7,989 20,154 71,5 16612 28243 6,445 19,323 70,1 
0,40 5015 11630 28424 8,439 23,189 62,6 10608 28234 6,574 21,154 60,7 
0,45 2229   4852 28358 7,132 21,766 51,9   5487 28297 7,363 24,614 52,8 
0,50 (5)             40     115 28420 9,135 28,740 44,6     130 28402 9,648 32,301 44,6 
0,50 (2)                0         0 28444 9,708 30,125 44,5         0 28404 9,710 32,509 44,5 
Notas: 1) para η ≤ 0,25 há plasticidade no EF com ligação (█); 2) extremos (η = 0 ou 0,5) como engaste 

ou rótula nos apoios; 3) Mp = 28500 kNcm; 4) λQ= Q/Q0, λq= q/q0, q0 = 80 kN/m; 5) com η = 0,499. 
 

A viga com a ligação midirrígida η = 0,25 mostra um comportamento misto entre 

o que ocorre com η = 0,20 de transição mais abrupta e o η = 0,30 onde há apenas os 

dois trechos antes descritos.  

As trajetórias nas Figs. 7.7(a-b) não atingiram ao estado limite último, sendo 

representado até 88% da carga aplicada determinada pelo PPLANAVX (2007). 

Na tabela 7.5, mostram-se os resultados correspondentes da viga no estado pré-

colapso, para algumas semiflexibilidades (η). Por não incluir as TRs, esse exemplo 

permite observações interessantes. Em geral, confirma-se esse colapso pelos momentos 

MA/B ou MC próximos ao momento plástico da seção (MP = 28500 kNcm). Para a carga 

concentrada (Q), o momento da ligação vai sendo reduzido, mas até η ≤ 0,15 essa 

variação é pequena em relação ao engaste, com o colapso λ ≥ 88%. Para a carga 

distribuída (q), à medida que η aumenta, cresce o momento e o escoamento no meio-

vão. Isso distribui a plasticidade que predomina na ligação para o engaste, havendo, 

assim, melhor aproveitamento da viga para η = 0,25 quando se atinge λ = 88%. Quando 

η ≥ 0,35 a ligação tem menor influência para ambos as cargas (Q e q), apenas afetando a 

plasticidade (e sua expansão) na região do meio-vão. 

Os esforços e as deformações indicados na Tab. 7.5 foram determinados também 

considerando o colapso da seção por cisalhamento (Eq. 4.3). Sem essa consideração, os 

valores de λQ e λq seriam todos da ordem de 88%, para as ligações mais rígidas, nas 

quais a plasticidade aparece também no EF com ligação (η ≤ 0,25). 
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7.2.5 VIGA INELÁSTICA COM LIGAÇÕES NÃO LINEARES 

Por fim, avalia-se o comportamento do EF com ligação não linear e a plasticidade 

simultaneamente (AILN). Para essa hipótese, requer-se que a ligação seja capaz, ou 

bem, tal ligação deverá suportar o momento plástico da seção e atingir rotação superior 

à da rótula-plástica correspondente, conforme previsto na subseção 2.2.5 e Fig. 2.10. 

Nem sempre se encontra na literatura exemplos dessa natureza. Sua inclusão nos 

exemplos e estudo servirá como material de consulta e outra contribuição desta tese. 

Dessa forma, adota-se uma curva M-θ que atenda às seguintes condições: 

a. momento máximo superior ao plástico da viga, Mm ≥ MP = 28500 kNcm; e  

b. rotação superior a θp ≈ 2∆yC/L = 2×5,628/800 = 14,07 mrad, considerando a 

deformação plástica da viga biengastada para o mesmo carregamento (Q). 

 

Escolheu-se, então, a ligação do tipo chapa de topo estendida, com reforçadores de 

coluna, por ser uma das mais rígidas que permitirá o estudo proposto. Aqui surgem as 

primeiras dificuldades: achar uma ligação compatível e ensaiada, determinando quais os 

parâmetros são válidos para a modelagem. 

Dentre as disponíveis, adotou-se a curva M-θ V-39 “SCDB” (Chen et al., 1996) 

referente ao ensaio “B7R” de Bailey (1970), que possui Mm = 299,5 kNm e θu = 37,1 

mrad. Nesse ensaio da ligação, a viga é de seção WF laminado com altura de 305 mm 

(próximo aos 400 mm da seção da viga proposta). Incluem-se as tensões residuais (TRs) 

de Galambos & Ketter (1959) para laminados nesta análise. 

  Supondo que a ligação seja similar, é natural aceitar que o momento da ligação 

adotada e sua curva M-θ sejam inferiores aos reais, tendo em vista simplesmente a 

relação de alturas envolvida (400 × 305 mm: 131% maior). Logo, para a ligação similar, 

poder-se-ia estimar em pelo menos 20% a mais de capacidade (momento maior) do que 

a ensaiada, todavia isso não será levado em conta nesta análise. 

Outra questão é que se dispõe apenas da curva experimental e do modelo 

exponencial modificado (Lui & Chen, 1986; Kishi & Chen, 1987). Esse modelo não foi 

introduzido no programa computacional PPLANAVA, e os seus parâmetros requeridos 

(quantidade de informação) são mais suscetíveis a erros de digitação. Assim, empregou-

se somente a curva experimental, mostrada por pontos na Fig. 7.8, desenvolvendo a 

curva pelo método RBL, proposto com o procedimento descrito na seção 2.8.   
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Para se determinar a curva RBL proposta com boa aproximação, escolheu-se o 

ponto P24 (em destaque) como o de ajuste. Os três últimos pontos do experimento 

correspondem ao escoamento da ligação, no qual não há modificação do momento, por 

isso foram desprezados na análise numérica para estabelecer a curva RBL, reduzindo-se 

θu ≈ 33,4 mrad. Note-se que M só supera Mp após θ > 20 mrad > θp ≈ 14,1 mrad.  

Confrontando-se os resultados obtidos com a curva exponencial, constrói-se a 

Tab. 7.6, na qual se verifica que a RBL é bem próxima (dispersão R2 em torno de 1, está 

acima de 99%), mas não é uma reprodução tão fiel quanto a exponencial. 

Com isso, determinaram-se os parâmetros rigidez inicial Rki = 39,716 kNm/rad e 

Rkp = 0. Mantêm-se os dados experimentais Mu = 29945,6 kNcm e θu = 33,4 mrad 

[sendo o ponto de ajuste P24: (MA = 26315,7 kNcm, θA = 12,2 mrad)]. O objetivo é 

obter uma curva mais simples que seja adequada, compreensível e fácil de se 

reproduzir. Considerando uma representação gráfica mais perfeita, a curva de Kishi & 

Chen (1987), em geral, mostra-se melhor que os outros modelos (inclusive o RBL). 

 Realizou-se uma solução elástica prévia, quando ocorreu o colapso da ligação (a 

rotação superou θu), para avaliar o desempenho do modelo RBL dessa curva M-θ e 

compará-lo com o experimental. 

Na figura 7.9 mostra-se que os pontos do processo de solução numérica da viga 

por PPLANAVA são das curvas fornecidas, de forma similar ao que foi feito a outras 

apresentadas neste trabalho, comprovando a coerência das respostas. Desenvolveu-se, 

também, a solução para as curvas experimentais (M-θ, Rk-θ) e para a curva de Kishi & 

Chen (1987) com o modelo exponencial modificado, introduzidas como tabelas.  

Os bons resultados calculados na situação pré-colapso são listados na Tab. 7.7 

para comparação.  Há pouca diferença entre eles, porém comprova-se não é possível 

empregar um modelo linear de ligação (como o da rigidez secante) para as análises 

inelásticas.  

 

Tabela 7.6 Comparação dos modelos da ligação não linear B7R (Bailey, 1970). 

Desvios absolutos Curva  
M-θ negativo positivo 

Desvio 
médio 

Desvio 
padrão 

Dispersão 
R2 

RBL (PT) -11,70 +8,59 -1,42  4,89 0,9968 
Exponencial   -3,96 +2,82 -0,02 1,30 0,9998 
Notas: 1) são confrontados os momentos calculados nas mesmas rotações do experimental; 

 2) desvios dos momentos em kNcm. 



Tese • AR Alvarenga • Cap. 7 – Elemento finito rígido-ligação 

 

317 

0 5 10 15 20 25 30 35 40

Rotação  θr [mrad]

0

100

200

300

M
om

en
to

  M
r [

kN
.m

]

RBL (PT, aproximação)
Bailey (1970) 

Linha de viga 

θu = 33,4

P24

Carga Q

Mp = 285

θp = 14,1

 

Figura  7.8  Curva M-θ “B7R” do “SCDB” e a aproximada RBL. 
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Figura  7.9  Seguindo a curva M-θ RBL proposta. 
 

A curva proposta RBL exibe um bom comportamento, ficando mais próxima da 

Rk-θ experimental, que é mais fiel do que a M-θ, pois a última possui seus saltos de 

rigidez [ver a Fig. 2.44(b)]. Comprovam-se diferenças muito pequenas para a carga 
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distribuída também, o que valida sua utilização. 

Nesses exemplos simples, a formação de ZPs é concentrada na região dos maiores 

momentos. Na figura 7.10, elucidam-se dois diagramas típicos, um para cada tipo de 

carga. Em geral, ocorre a formação de 3 ZPs, uma em cada extremidade (se a ligação é 

quase rígida, η ≤ 0,15) e a central. Quando a ligação é mais flexível, somente aparece a 

ZP central, costuma ser mais pontual na carga (Q), e se propaga por mais EFs no caso 

da distribuída (q). No caso da distribuída, somente se formam ZPs nas seções com 

ligações para η ≤ 0,05 e apenas na parte central quando η ≥ 0,3. Várias vezes, o colapso 

é determinado por cisalhamento na zona mais solicitada. A região com 0,25 ≤ η ≤ 0,35 

possui pior desempenho computacional com dificuldades de convergência, superando 

1000 iterações sem convergir, quando o processo de solução foi paralisado. 

 

Tabela 7.7 Efeito das ligações não lineares na viga inelástica. 

 Momentos [kNcm] 
Carga Pesquisador / curva θA/B 

[mrad] 
RkA/B 

[kNm/rad] MA/B MC 
∆yC 
[cm] 

λmax 
[%] 

M-θ (1) 11,201 7424,4 25574,2 28371,6 5,945 84,3 Bailey 
(1970) Rk-θ (2) 10,939 7676,4 25894,0 28371,9 5,923 84,8 

RBL (PT) 11,020 6669,6 25704,8 28369,1 5,896 84,5 
Kishi & Chen (1987) 11,379 7021,7 25570,5 28375,1 6,014 84,3 

Q 

Rigidez secante (3) 20,958 8965,8 18790,5 28431,6 8,454 73,8 
Bailey (1970) M-θ (1) 16,720 3156,7 28081,7 28398,8 8,311 88,3 q (4) 

RBL (PT) 18,122 2467,8 28060,5 28415,7 8,820 88,2 
Notas: 1) para (M-θ) adota-se a rigidez média entre os 2 pontos da curva experimental; 2) para Rk-θ, 

emprega-se uma variação linear ao longo dos pontos; 3) rigidez secante é dada pela Eq. (7.4) Rks = Mu/θu 

e colocada para avaliar esta simplificação; 4) com q = 56 kN/m, atingiu-se  λ = 126,2 e 126,1; 
respectivamente; λmax = 0,7 λ [proporcional à q0 = 80 kN/m (56/80 = 0,7)]. 

 

(a)

44,942,3 42,3

42,3 44,9 42,3

(b)

48,2

48,2 49,1

49,1
48,2

48,239,3 39,3

12,6 12,6

 

Figura  7.10  Zonas plásticas da viga simples: 
 percentual de fatias plásticas (a) carga Q ligação linear; (b) distribuída q com ligação  

não linear de Bailey (1970) M-θ experimental; (c) convenção: (����) tração, (����) compressão. 
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7.3 COLUNA DE HAJJAR ET AL. (1997) 

Novamente, emprega-se a coluna da seção 6.3 para validar o comportamento do 

EF com ligação, agora modificando as condições de extremos da barra. Neste exemplo, 

a coluna ilustrada na Fig. 7.11 tem L = 969,6 cm de extensão e a ligação possui a 

rigidez definida conforme η, partindo-se da condição engaste até a condição de rótula. 

Constrói-se, assim, a curva de flambagem correspondente a essa variação de rigidez (ou 

condição de extremidade). São estudados dois casos, conforme o apoio superior seja: 

a. fixo horizontal, que representa a situação de estrutura travada da Fig. 7.11(a); e  

b. móvel, que é o caso da estrutura destravada da Fig. 7.11(b). 
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Figura  7.11  Coluna de Hajjar et al. (1997): 
            (a) travada; (b) destravada. 

 

Nesta seção, serão analisadas, também, condições similares às anteriores, como: 

a. flambagem elástica e ligação linear (AELL); 

b. estudo de convergência de modelos com ligação;  

c. flambagem inelástica com ligação linear (AILL); e  

d. flambagem com ligação não linear (AENL & AINL). 

 
O perfil da coluna é o mesmo da Fig. 5.7 com as propriedades da Tab. 5.4, 

adotado em outros exemplos desta tese. Consideram-se as mesmas TRs de laminados 

americanos (Galambos & Ketter, 1959) e a curvatura inicial (L/1000), de forma a se 

comparar com os resultados do AISC LRFD (1993), no qual essas condições estão 

implícitas.  O modelo da análise possui 10 EFs, sendo 8 do tipo tradicional (rígido-

rígido) e 2 com ligações (um antes ou depois dos 8). 
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7.3.1 FLAMBAGEM ELÁSTICA COM LIGAÇÕES LINEARES 

Inicialmente, essa coluna é avaliada com ligações lineares e regime elástico 

(AELL) cuja rigidez é parametrizada por: 

na qual a semiflexibilidade η, definida pela Eq. 2.7(a), varia de 0 (engaste) a 0,5 (rótula), 

parametrizada por valores simples de (g).  

Para as estruturas travadas, aplicou-se a carga P0 = 4000 kN, sendo a carga crítica 

dada por Ncrit = λP0. Adotou-se o controle do deslocamento horizontal ∆6 do nó central 

(6) com o máximo de 40 cm, para 0,15 ≤ η ≤ 0,45; e 34,4 cm fora desse intervalo.   

Define-se a carga de Euler para essa coluna como: 

Então, o coeficiente de comprimento de flambagem (k) é obtido fazendo-se: 

Nos casos extremos da coluna travada, encontram-se valores que coincidem com 

os teóricos. Para o engaste (rótula, em parêntesis) NPP = 3835 (943,2 = Ncrit) kN, acha-se 

o coeficiente kfl = 0,5005 (1,009) próximo do teórico kteor = 0,5 (1,0), respectivamente. 

Os coeficientes de comprimentos efetivos kfl e as cargas de flambagem NPP 

obtidas pelo programa computacional desenvolvido são mostrados na Tab. 7.8. Nessa 

mesma tabela estão os coeficientes kfl e cargas críticas Ncrit calculadas por meio das 

equações transcendentais (que geraram o ábaco de Julian & Lawrence, 1953) indicadas 

por Hajjar et al. (1997), fazendo-se o coeficiente de rigidez do nó GA= GB = 2g para 

estruturas travadas. Esses coeficientes kfl são comparados com alguns kteor teóricos 

fornecidos por Li & Li (2007). Reproduzem-se outros pontos diferentes fornecidos por 

esses pesquisadores apenas para mostrar a coerência dos resultados. 

Nas colunas destravadas, a carga aplicada é P0 = 1000 kN. Controlou-se o 

deslocamento horizontal do topo (nó 11), que é livre, mas impedido de girar por causa 

da rigidez da ligação. Esse deslocamento ∆11 varia de 114 cm até 106 cm para ligação 

do tipo flexível (η ≥ 0,45). Agora, considerou-se, também, o fora de prumo (FP) da 

norma ∆0 = L/500. As cargas críticas e os coeficientes kfl são listados de forma similar 

na Tab. 7.9, embora este não seja definido para a condição de rótula (kfl = ∞). 
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Tabela 7.8 Cargas de flambagem da coluna travada. 

Parâmetros Hajjar et al. (1997) Li & Li (2007) Própria tese  

η g GA = GB 
= 2g  kfl 

Ncrit 
[kN] 

k1 = k2 
(4) kteor 

λc 
[%] 

NPP 
[kN] 

kfl 

0,000 0,000 (1)  0,000         0,5000 3844,0 ∞ 0,500 96,33 3853,2 0,4994 
0,002 0,001 0,002 0,5010 3828,6 – – 95,90 3836,0 0,5005 
0,019 0,010 0,020 0,5100 3694,9 20,00  0,525 93,37 3734,8 0,5073 
0,083 0,050 0,100 0,5487 3191,9 10,00 0,549 79,81 3192,4 0,5487 
0,143 0,100 0,200 0,5919 2742,7   5,00 0,592 68,07 2722,8 0,5941 
0,222 0,200 0,400 0,6598 2207,4   3,00 0,640 54,70 2188,0 0,6627 
0,250 0,250 0,500 0,6863 2040,5   2,00 0,686 50,50 2020,0 0,6897 
0,333 0,500 1,000 0,7743 1603,1   1,00 0,774 39,58 1583,2 0,7791 
0,400 1,000 2,000 0,8553 1313,7   0,50 0,855 32,35 1294,0 0,8618 
0,444 2,000 4,000 0,9156 1146,2   0,30 0,902 28,16 1126,4 0,9237 
0,476 5,000 10,00 0,9625 1037,3   0,10 0,962 25,47 1018,8 0,9712 
0,488 10,000 20,00 0,9805   999,6  0,05 0,981 24,52   980,8 0,9899 
0,499 100,000 200,00 0,9980   964,9 – – 23,67   946,8 1,007 
0,500 (2)   ∞    ∞    0,9996   961,0   0,000 1,000 23,58   943,2 1,009 
Notas: 1) considerada biengastada; 2) birrotulada; 3) k1 = 1/GA, k2 = 1/GB; 4) alguns valores (k1, k2) 
originais de Li & Li (2007) colocados para abalizar diferenças; 5) Ncrit = 961/kfl

2; 6) P0 = 4000 kN. 
 

Tabela 7.9 Cargas de flambagem da coluna destravada. 

Parâmetros Hajjar et al. (1997) Li & Li (2007) Própria tese  

η g GA = GB 
= 6g  kfl 

Ncrit 
[kN] 

k1 = k2 
(4) kteor 

λc 
[%] 

NPP 
[kN] 

kfl 

0,000 0,000 (1)  0,000         1,000 961,0 ∞ 1,00 96,0 960,6 1,000 
0,002 0,001 0,006 1,002 957,2  20,000 1,02 95,7 956,6 1,002 
0,019 0,010 0,060 1,020 923,6  10,000 1,03 92,2 922,3 1,021 
0,083 0,050 0,300 1,099 795,2    3,000 1,11 79,1 791,3 1,102 
0,143 0,100 0,600 1,196 672,3    2,000 1,16 66,7 667,1 1,200 
0,222 0,200 1,200 1,375 508,2    1,000 1,32 50,3 502,7 1,383 
0,250 0,250 1,500 1,459 451,7    0,500 1,59 44,7 446,5 1,467 
0,333 0,500 3,000 1,826 288,3    0,300 1,90 28,4 284,5 1,837 
0,400 1,000 6,000 2,405 166,2    0,200 2,23 16,4 163,9 2,421 
0,444 2,000 12,00 3,272   89,8    0,100 3,01 8,85   88,5 3,295 
0,476 5,000 30,00 5,050   37,7    0,050 4,16 3,71   37,1 5,089 
0,488 10,000 60,00 7,083   19,1 – – 1,89   18,8 7,150 
0,499   100,000 600,00  22,240     1,9 – – 0,00     1,9 22,48 
0,500 (2)    ∞    ∞    ∞     0,0   0,000 ∞ 0,00    0,0 ∞ 
Notas: 1) considerada biengastada; 2) birrotulada; 3) k1 = 1/GA, k2 = 1/GB; 4) alguns valores (k1, k2) 
originais de Li & Li (2007) colocados para abalizar diferenças; 5) Ncrit = 961/kfl

2; 6) P0 = 1000 kN. 
 

Os valores de Hajjar et al. (1997) apresentados foram calculados fazendo-se o 

coeficiente de rigidez do nó GA= GB = 6g para estruturas destravadas [Hellesland & 

Bjorhovde, 1996(a-b)]. 

Na figura 7.12 estão traçadas algumas das trajetórias de equilíbrio construídas 

para se chegar às cargas de flambagem elásticas da Tab. 7.8. Observa-se que os fatores 

de carga continuam crescendo, a carga crítica de flambagem é uma média aproximada 

desse trecho de leve inclinação e não há propriamente uma assíntota.  
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Figura  7.12  Trajetórias elásticas da coluna travada de Hajjar et al. (1997). 
 

Os coeficientes de flambagem kfl obtidos por Hajjar et al. (1997), Li & Li (2007) 

e nesta tese para os diferentes índices de giro próprio da ligação η são representados 

nas Figs. 7.13(a-b), comprovando a boa concordância entre os valores produzidos e os 

extraídos da literatura. 

 

7.3.2 ESTUDO DE CONVERGÊNCIA 

No método dos elementos finitos (MEF), é natural que se faça um ensaio sobre a 

capacidade de a modelagem representar de maneira adequada o problema. Isso significa 

avaliar a capacidade de a malha adotada num modelo atingir um resultado aceitável e a 

convergência da solução. Logo, há um ponto em que o aumento do número de EFs 

empregado no modelo não se traduz em melhoria do resultado. 

O estudo das malhas das fatias foi realizado anteriormente (Alvarenga, 2005) e 

não teria sentido repeti-lo. Pela técnica adotada em todos os problemas já resolvidos, as 

barras são sempre subdivididas em EFs do mesmo tamanho. Então, também esse fator 

não é objetivo de estudo. Resta, assim, estudar o tamanho de cada EF, ou seja, o número 

de EFs (nef) em que se divide a barra para efeito de análise. Para o EF tradicional 

(rígido-rígido) concluiu-se que a quantidade entre 6 ≤ nef ≤ 8 é adequada. 
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Figura  7.13  Coef. de flambagem da coluna de Hajjar et al. (1997): 
(a) travada (obs. com “.” decimal); (b) destravada. 

 

São obtidos os resultados (AELL) para a semiflexibilidade η = g = 0,25 (midir-

rígido), isto é Rk = 3776,6 kNm/rad. Mantidos todos os demais parâmetros, constrói-se 

a Tab. 7.10, com o controle dos deslocamentos, para as duas situações da estrutura: 

a. travada: com deslocamento ∆xCmax = 13,2 cm, carga teórica Ncrit = 2040,5 kN, 

histórico: (10×0,3%, 15 ×1%, 15×2%, 24×4%, 35×8%); e  

b. destravada: com deslocamento ∆xBmax = 114 cm, carga teórica Ncrit = 451,6 kN, 

histórico: (5× 0,4%, 8 ×1%, 10×4%, 8×8%). 
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À medida que o nef cresce, a resposta estrutural vai sendo refinada e as diferenças 

vão se reduzindo. Por exemplo, na Tab. 7.10(b) ∆θB = 0,349 entre 4-6, já ∆θB = 0,032 

entre 12-16; ou seja, o desvio 0,505% caiu para 0,046%. Todavia o custo em número de 

iterações cresce de 15,2% para 21,8% (base de comparação: θB = 69,112 [mrad] e 678 

[iterações]). Com 2 EFs apenas, o efeito da CI parece desaparecer e o resultado é bem 

destoante. A maior quantidade de EFs (20 ou 32) parece absorver uma parte da energia 

ajustando vários deslocamentos, o que parece reduzir o efeito da carga, do esforço axial 

e os efeitos secundários nos momentos também.  Empregar 16 EFs permite excelente 

precisão, mas torna-se caro pelo número de iterações e pelo tamanho das MRG 

resultantes. Entretanto, modelar com 6 EFs, ou menos, não parece ser satisfatório. Por 

essas razões, adotou-se, em geral, nos modelos com ligações desta tese, um número de 

EFs intermediário entre 8 ≤ nef  ≤ 10 por barra. 

 

Tabela 7.10  Verificação da convergência: 

(a) coluna travada 

Esforços (máx.) 
[kN] 

(1)
 

Momentos [kNcm] 

nef 
Fator de 
carga λ 

[%] Nd Vd -MA/B (2)
 MC 

(4)
 

Rotações 
[mrad] 
θA/B 

(2)
 

Itera- 
ções 

gastas 

  2 57,303 2282,9 205,45 33136,5 66272,3 87,753   495 
  4 53,230 2125,1 249,42 35507,8 56835,2 94,033   497 
  6 51,526 2059,0 238,21 35064,1 54322,4 92,858   635 
  8 50,884 2034,2 245,26 34855,4 53417,7 92,305   811 
10 50,580 2022,5 248,19 34750,3 52995,6 92,027   946 
12 50,414 2016,0 246,15 34691,1 52765,6 91,870 1085 
●16 50,272 2009,6 247,77 34630,6 52536,4 93,442 1370 

20 50,169 2006,6 246,53 34602,7 52430,3 91,634 1633 

 (b) coluna destravada 

Esforços (máx.) 
[kN] 

(1)
 

Momentos [kNcm] Rotações [mrad] 

nef 
Fator de 
carga λ 

[%] 

Desloc. 
∆yB 
[cm] Nd Vd MA 

(3) -MB 
(3)

 θA 
(3)

 -θB 
(3)

 

Itera- 
ções 

gastas 

  2 45,765 7,3455 457,65 56,263 26530,2 26890,9 70,235 71,208 203 
  4 45,020 7,5093 450,20 63,000 25871,3 26324,4 68,513 69,713 179 
  6  44,779 7,5480 447,79 64,207 25724,1 26192,4 68,123 69,364 282 
  8  44,692 7,5618 446,92 64,601 25670,8 26144,5 67,982 69,237 368 
10  44,651 7,5682 446,51 64,770 25645,7 26122,0 67,916 69,177  451 
12  44,628 7,5716 446,29 64,855 25632,4 26109,8 67,880 69,144  530 

  ●16  44,606 7,5750 446,06 64,927 25618,8 26097,4 67,843 69,112  678 
32  44,410 7,5767 444,10 64,856 25568,4 26047,1 67,860 69,133 1225 

Notas: 1) máximos: Nd axial de compressão (-), Vd corte nas duas direções (+/-); 2) momentos e rotações 
nas ligações (MA/B, θA/B) são iguais e opostos; 3) momentos e rotações nas ligações em (A) positivos, em 

(B) negativos, como indicado; 4) ponto C de controle do deslocamento; 5) base de comparação (●). 
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7.3.3 FLAMBAGEM INELÁSTICA COM LIGAÇÕES LINEARES 

Reestuda-se, agora, o problema da coluna travada da Fig. 7.11(a) considerando o 

comportamento inelástico (AILL) e tensões residuais de Galambos & Ketter (1959). Os 

valores de rigidez são os mesmos da seção anterior, definidos pela Eq. 7.5. 

Inicia-se um dos grandes desafios dessa formulação, que é a presença de 

plasticidade variável ao longo do EF com ligação. Os últimos ajustes da formulação na 

IIEA da subseção 3.6.3, bem como a parte computacional descrita na subseção 4.5.3 e 

4.5.4, começam a ser avaliados aqui. Esses resultados são passíveis de maiores críticas 

e, consequentemente, sofrerem ajustes no futuro. É um procedimento ainda em fase de 

testes, que precisará um tempo maior para ter-se a real dimensão da sua capacidade. 

Em muitos dos resultados produzidos avalia-se a rotação da ligação pelo método 

ME, e nos mais complicados, adota-se o método S. O método XX fornece, em geral, 

maiores discrepâncias, principalmente com a ZP incluindo o próprio EF com ligação. 

As trajetórias de equilíbrio desenhadas na Fig. 7.14 comprovam que se obtêm 

resultados semelhantes para o engaste ou η = 0,002 (e para a rótula ou η = 0,499). As 

variações de η intermediárias também mostram coerência, notando-se que as ligações 

mais rígidas possuem trajetórias menores e a transição com a plasticidade é mais 

abrupta. Já nas mais flexíveis, as trajetórias são curvas mais suaves e não se consegue 

definir a parcela de efeito da flambagem, da plasticidade ou da semirrigidez da ligação. 

Com a rigidez da ligação dada pela Eq. 7.5 e GA/B = 2g, obtém-se o coeficiente kfl 

da mesma forma como na subseção anterior se calculou a Tab. 7.8. Encontra-se a carga 

da norma AISC LRFD (1993) usando-se a esbeltez relativa: 

para o trecho inelástico, conforme a expressão: 

na qual a carga de esmagamento Ny = 1472,5 kN. Com esses dados constrói-se a Tab. 

7.11. Observa-se que existem pequenas diferenças (não superiores a 5%) e para η ≥ 0,4 

não ocorrem ZPs no EF com ligação (melhores resultados). 

Para melhor avaliação, na Fig. 7.15 reproduzem-se de forma gráfica as cargas 

limites da Tab. 7.11, incluindo as obtidas por comprimento efetivo do AISC LRFD 

(1993). Comprovou-se que essas cargas das normas são conservadoras em relação às 

encontradas com o perfil 8 WF 31, em colunas birrotuladas de comprimento 
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equivalente, em que se constatou a mesma diferença (Alvarenga & Silveira, 2005). 

Algumas diferenças são explicadas porque houve um tratamento estatístico nos 

resultados dos ensaios antes das aproximações da norma (Galambos, 1982), outras 

devem ser atribuídas às falhas do modelo numérico propriamente, inclusive do EF com 

ligação e plasticidade. (Supõe-se o efeito do termo ξ, não incluído no método S). 
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Figura  7.14  Trajetórias inelásticas da coluna travada de Hajjar et al. (1997). 
. 

Tabela 7.11 Carga limite inelástica da coluna travada. 

Parâmetros AISC LRFD (1993) Própria tese 
Rigidez   Carga Deslocamentos Momentos Carga 

Rk kfl ρz Nm ∆xC θA/B MA/B MC N η g 

[kNm/rad]   [kN](1) [cm] [mrad] [kNcm] (2) [kN] (3) 
0,000   0,000  (1)   ∞        0,5000 0,619 1254,4 1,095 0,000 1505,8 1120,3 1272,0 
0,002   0,001 944100,0  0,5010 0,621 1253,6 1,126 0,017 1522,6 1143,6 1271,9 
0,019   0,010   94410,0 0,5100 0,631 1246,3 1,233 0,171 1569,5 1223,1 1268,0 
0,083   0,050   18882,0 0,5487 0,680 1214,0 1,412 0,858 1602,0 1365,4 1246,0 
0,143   0,100     9441,0 0,5919 0,733 1176,2 1,745 1,795 1686,3 1631,3 1222,0 
0,222   0,200     4720,0 0,6598 0,817 1113,8 2,334 3,739 1763,0 2115,0 1174,0 
0,250   0,250     2360,0 0,6863 0,850 1088,6 2,455 4,479 1691,4 2247,2 1150,0 
0,333   0,500     1888,0 0,7743 0,959 1002,5 3,029 7,413 1400,6 2822,2 1056,0 
0,400   1,000       944,1 0,8553 1,059 921,1 3,503 10,031 946,7   3311,3    952,0 
●0,444   2,000       472,1 0,9156 1,134 860,2 4,080 12,366 584,1 3819,1   872,0 
●0,476   5,000       188,8 0,9625 1,192 813,0 4,370 13,741 259,6 4075,8  812,0 
●0,488 10,000         94,4 0,9805 1,214 794,9 4,503 14,333 135,4 4188,1  790,0 
●0,499 100,000           9,4 0,9980 1,236 777,4 4,415 14,227 13,5 4121,5   768,0 
●0,500 (2)    ∞            0,0 0,9996 1,238 775,4 4,480 14,457 0,0 4174,1  766,0 

Notas: 1) obtidos com a Eq. 7.8 e 7.9 AISC LRFD (1993); 2) momentos e rotações nos extremos 
simétricos (sinal +/-); 3) cargas pré-colapso; 4) casos (●) sem plasticidade no EF com ligação.  
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Figura  7.15  Carga de flambagem inelástica da coluna de Hajjar et al. (1997). 
 

Para melhor comparação, foram feitos modelos de colunas birrotuladas similares 

às estudadas na Fig. 6.2(a), com comprimentos L = kfl·L0 (efetivos), sendo L0 o original 

desse exemplo (969,6 cm) e kfl o coeficiente de flambagem na Tab. 7.11 [definido pelo 

AISC LRFD (1993)], indicados também na Fig. 7.15. Dessa forma, verifica-se com 

mais clareza o efeito da plasticidade no EF com ligação. 

 

7.3.4 FLAMBAGEM COM LIGAÇÕES NÃO LINEARES 

Como em outras partes desta tese, nem sempre se encontram exemplos simples 

desse tipo de problema na literatura. O efeito da plasticidade no EF com ligação quando 

essa é do tipo não linear constitui o maior desafio neste trabalho. 

Em alguns testes, os métodos XX e ME mostraram divergências ou dificuldades 

numéricas na avaliação do giro próprio da ligação e do ajuste do momento associado, de 

forma a obedecer à curva M-θ fornecida. Isso resultou nas modificações da parte 

computacional indicadas na subseção 4.5.4, que são propostas nesta tese.  

Nesta subseção, encontram-se as cargas de flambagem para a coluna travada da 

Fig. 7.11(a), com P0 = 4000 kN, empregando como ligações não lineares as duas curvas 

experimentais já mostradas e suas aproximações pelo método RBL: 

a. sigla RT para Rathbun (1936), do tipo flexível; e  

b. sigla BL para Bailey (1970), do tipo quase rígida. 
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 São realizadas as análises elásticas e inelásticas, cujas trajetórias de equilíbrio 

estão representadas nas Figs. 7.16(a-b).  
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Figura  7.16  Ligações não lineares na coluna de Hajjar et al. (1997): 
(a) análise elástica; (b) análise inelástica. 
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As respostas das curvas M-θ experimental e aproximada RBL são comparadas aos 

resultados produzidos para as condições de rótula e de engaste (ligação totalmente 

rígida), respectivamente. Com isso, avaliam-se as diferenças para o modelo real. O 

deslocamento horizontal máximo ∆x6 do nó central (6) foi selecionado como parâmetro 

para as trajetórias de equilíbrio, fazendo as seguintes observações: 

a. aparece um problema numérico (MEF < ML) no trecho de descida do modelo 

RBL, que ocorre a partir do passo 49, ∆x6 = 1,945 cm e λ = 31,29%. O equilíbrio 

global (deslocamentos e esforços) não foi afetado, embora a rigidez da ligação e 

a rotação estimada tenham sido;  

b. elástica: as curvas M-θ experimentais e as do modelo RBL evidenciam o mesmo 

comportamento, não havendo diferenças significativas nessas respostas. Essas 

trajetórias seguem aproximadamente o comportamento da rótula para RT, e um 

pouco mais defasado, o engaste para BL. A curva RT termina mais 

abruptamente (λ = 22,6%), pois, além de absorver um momento Mu pequeno 

(236 kNcm apenas), sua capacidade de giro foi esgotada rapidamente (29,84 

mrad). No caso do modelo BL, a curva M-θ não consegue atingir a carga de 

flambagem prevista para o engaste, tendo o máximo de λ = 81,4 < 96,1%, pois a 

rigidez da ligação se reduz e aumenta o deslocamento central; e   

c. inelástico: novamente não se constatam maiores diferenças entre os modelos 

com a curva M-θ experimental ou com a aproximada (RBL). Com relação ao 

comportamento que se espera dessas ligações, verifica-se que a ligação RT 

acompanha sensivelmente o modelo com rótula, atingindo λ = 19,2%, em certo 

nível de deformações (pequenos deslocamentos, < 5 cm).  O modelo BL também 

acompanha o engaste, no qual se contata a ação da plasticidade na seção do EF 

com ligação. A sua rigidez relativa (g) é reduzida drasticamente e atinge o fator 

máximo λ ≈ 32% (BL: 31,4%), ou seja, menos da metade da carga elástica. Logo 

após esse máximo, aumenta a formação da ZP na parte central da barra. Mesmo 

no final da trajetória, o fator de carga ainda é bem superior ao da barra com RT 

(λ = 27,8 > 18,2%). Com o escoamento da ligação, a inércia remanescente 

elástica cai de 64,4 a 50,0%, quando λ varia de 31,0 a 31,5%; já no meio-vão a 

redução é de 67,0 a 50,7% no passo que leva ao colapso, por incremento de 

carga. 
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Como a carga atuante é de compressão, o efeito da ligação não linear unido à 

plasticidade se mostra extremamente rápido. Note-se que a coluna dessa subseção 

representa, na realidade, uma escora ligada a duas vigas muito rígidas de andares 

consecutivos, sem que haja continuidade em nenhum extremo. No caso de coluna ligada 

à base de concreto, são necessários outros dados e curvas M-θ, o que fica para uma 

etapa de pesquisa posterior a esta tese.  

Nas figuras 7.17(a-b), representa-se a formação das ZPs nas extremidades e, 

posteriormente, no meio-vão para o modelo BL. As seções com fatias plásticas apenas 

de compressão evidenciam o deslocamento do centro de gravidade plástico (yCGP) e o 

consequente efeito secundário associado à curvatura inicial (efeito Pδ). Na carga última, 

observa-se que tanto nos nós extremos (1 e 11) quanto no do meio-vão (6) a plasticidade 

tomou uma aba completa e a maior parte da alma. 
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Figura  7.17  Zonas plásticas da coluna de Hajjar et al. (1997) 
percentual na estrutura: (a) carga limite, (b) carga última;  seções com fatias  
plásticas: (c) carga limite, (d) carga última; (e) convenção: (����) compressão. 
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7.4 PORTAL DE YAU & CHAN (1994) 

Estuda-se, agora, o portal proposto por Yau & Chan (1994) que será utilizado aqui 

para validar a formulação numérica do EF com ligação do tipo linear nos regimes: 

elástico e inelástico (AELL e AILL). Essa estrutura foi também avaliada por Chan & 

Chui (2000) e Machado (2005), que adotaram o método elástico com rótula-plástica da 

seção montada e o refinado. A flambagem das colunas desse portal, em qualquer 

regime, é determinada pelo travamento oferecido pela viga, ou seja, pelas ligações da 

viga às colunas, já que as bases são rótulas e não há cargas no vão da viga. 
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Figura  7.18  Portal de Yau & Chan (1994). 
 

O portal apresentado na Fig. 7.18 é analisado sob as seguintes condições: 

a. AELL: elástico com ligação rígida (η = 0)  ou linear (η = 0,143); e  

b. AILL: inelástico, com as mesmas ligações anteriores (caso a.). 

 

O perfil adotado é o mesmo já empregado em outras partes, porém consideram-se 

as tensões residuais seguindo o modelo europeu (linear na aba e na alma), com a tensão 

máxima σr = 0,3 σy (Eurocode 3, 1992) [ver Fig. 7.22(c)]. 

O caso de ligação por engaste apenas complementa informações para comparação, 

uma vez que tal análise já foi realizada (capítulo 5). A rigidez linear da ligação é dada 

por Rk = 10 EIz/L; sendo L o vão da viga. Para os dados do problema, determinou-se a 

rigidez Rk = 25976,2 kNm/rad (g = 0,1 e η = 0,143), ou seja, uma ligação rígida. 

Esse problema foi modelado com 24 EFs (8 EFs por barra) e não se considerou 

qualquer imperfeição geométrica.  
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Figura  7.19  Trajetórias de equilíbrio do portal de Yau & Chan (1994): 
(1) própria tese (PT):  elástico: (- -) η = 0,  (- -) η = 0,143; inelástico: (─) η = 0,  (─) η = 0,143;  
(2) Yau & Chan (1994) elástico: (>) η = 0, (") η = 0,143; inelástico: (>) η = 0, (") η = 0,143;  

(3) Machado (2005) inelástico: (●) η = 0, ERP-M (ver seção 1.2); (4) P0 = 2000 kN. 
 

Na figura 7.19, representam-se as trajetórias de equilíbrio correspondentes aos 

trabalhos indicados, observando-se que: 

a. a curva superior ilustra o método de cálculo tradicional, em que se considera a 

estrutura elástica e as ligações são todas infinitamente rígidas. Determina-se a 

carga crítica como P = 1260 kN, empregando o controle do deslocamento do 

ponto C (nó 9), e a solução acompanha a de Yau & Chan (1994);  

b. em seguida, avalia-se o efeito da ligação linear, no qual a forma da curva não é 

muito diferente da anterior, mas a carga crítica reduz-se para 1072 kN. A 

resposta encontrada acompanha muito bem a dos autores do problema;  

c. quando se introduz a plasticidade, com a tensão residual máxima de 0,3 σy, o 

comportamento se torna diferente, chegando-se à carga limite de P = 1106 kN 

para ligação rígida; e   

d. finalmente, ao se levar em consideração a mesma ligação linear e a plasticidade, 

encontra-se a menor carga limite P = 1022 kN, o que permite ter uma avaliação 

primária do efeito de uma ligação em um portal. 
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A trajetória da solução inelástica nasce da separação da parte elástica em um dado 

ponto, que ficou perto do indicado por Yau & Chan (1994) e é superado pela trajetória 

de Machado (2005). Note-se que a plasticidade descrita pelo primeiro fecha a rótula 

plástica imediatamente, com uma perda de capacidade maior (foi mais penalizada) do 

que descrito pelo método da ZP. Entretanto, as curvas de ZP se aproximam dos modelos 

de plasticidade refinados de Machado (2005) e as trajetórias quase coincidem no final, 

embora esse tenha saído de um ponto inicial mais elevado (detectando uma carga limite 

maior do que esperado). As curvas desses pesquisadores se prolongam até ∆xC ≈ 9 cm, 

enquanto as de ZP terminaram antes, pois foi encontrado o colapso por limite de 

cisalhamento (Eq. 4.3) na seção mais crítica (em D, topo da coluna B-D). 

Nas tabelas 7.12(a-b), comparam-se alguns resultados numéricos fornecidos na 

literatura com os referentes à ZP, constata-se que estão bem próximos e com as mesmas 

tendências (ordem de crescimento dos valores), mostrando que há coerência entre eles. 

 

Tabela 7.12  Resultados do portal de Yau & Chan (1994) 

(a) carga crítica e inelástica limite 

Yau & Chan  
(1994) 

Chan & Chui 
(2000) (3) 

Machado 
 (2005) (4) 

Própria tese 

Tipo 
(1) 

z

2

EI

PL
 

Carga 
P 

[kN] (2) z

2

EI

PL
 

Carga 
P 

[kN] (2) z

2

EI

PL
 

Carga 
P 

[kN] (2) z

2

EI

PL
 

Carga 
P 

[kN] (2) 

∆xC 
[cm] 

 

AELR 1,80 1326,8 1,82 1341,6 – – 1,793 1321 10,79 
AILR 1,49 1098,3 1,39 1024,6 1,390 1024,6 1,500 1106   1,56    
AELL 1,56 1150,0 1,56 1150,0 – – 1,540 1135 10,25 
AILL 1,39 1024,6 1,28   943,5 – – 1,385 1021   2,30 
APLR  – 1,68 1238,4 1,679 1237,6 – – – 
APLL – – 1,49 1098,3 – – – – – 

 (b) esforços e deslocamentos da própria tese  

Deslocamentos 
Tipo 

(1,5) ∆xC   
[cm] 

θC/D 
(6) 

[mrad] 

Momento 
 MC/D (6) 
[kNcm] 

Carga 
P 

[kN] (2) z

2

EI

PL
 

10,79 – 14548 1321 1,793 
AELR    (7) 5,63 –   7596 1304 1,769  
AILR  1,56 –   1933  1106 1,500 

transição  0,51 –     697 1011 1,372 
10,25 4,568 11865 1135 1,540 

AELL   (7)  8,05 3,585   9312 1130 1,533  
AILL  2,30 0,978   2541 1021 1,385 

transição     1,14 0,504   1309   993 1,347 
Notas: 1) Siglas: Análise = Elástica, Inelástica ou Plástica; Ligação = Linear ou Rígida; 2) λ = PL2/ EIz,  
P = λ EIz/L

2 = λ× 737,12 kN; 3) indicaram σr = 0,5 σy, embora Yau & Chan (1994) tenham adotado o 
coeficiente 0,3; 4) com os métodos: elastoplástico (ERP) e plástico refinado da seção montada (ERP-M), 
com o refinado (ERP-R, Liew et al., 1993) obteve-se 1,31; 5) transição: final do trecho elástico e início  
da trajetória inelástica; 6) maior momento e rotação na ligação; 7) com tensões σ ≤ σu = 40,7 kN/cm2. 
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A carga crítica depende do ponto escolhido como assíntota. Yau & Chan (1994) 

empregaram a relação  ∆xC/L = 3%. Todavia, o autor recomenda que se adote a carga 

correspondente à tensão limitada por σ ≤ σu (= 40,7 kN/cm2 para o aço ASTM A 36). 

Já as cargas limites são mais claramente determinadas, e agora os resultados 

conferem com os de Yau & Chan (1994), embora destoem um pouco dos de Chan & 

Chuí (2000) e Machado (2005), o que pode ser justificado pela forma de avaliar-se a 

plasticidade, bem como pelas TRs de 0,5 σy adotadas pelos últimos. 

Para complementar esta seção, na Fig. 7.20 apresenta-se o diagrama de fatias 

plásticas desse portal, no qual se encontram apenas ZPs de compressão, maiores nos 

topos das colunas (pontos C e D, respectivamente) e reduzindo em direção as bases, 

enquanto a viga não possui qualquer plasticidade. Comprova-se, também, que a 

plasticidade é maior na carga última que na carga “inelástica” limite.  

As TRs bilineares do Eurocode 3 (1992) propiciam o aparecimento de maior 

plasticidade na alma dos perfis, como ilustrado na Fig. 7.20(a), o que não ocorre, em 

geral, quando se consideram as TRs da norma americana. 
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Figura  7.20  Zonas plásticas do portal de Yau & Chan (1994). 
Percentual na estrutura: (a) carga limite P = 1021 kN; (b) carga última P = 937 kN, (∆xC = 5,1 cm); 

nas seções dos pontos C e D: (c) carga limite; (d) carga última; (e) convenção:  (����) compressão. 
 

 

 

 



Tese • AR Alvarenga • Cap. 7 – Elemento finito rígido-ligação 

 

335 

7.5 PORTAL DE CHAN & CHUI (2000) 

O portal mostrado na Fig. 7.22 foi proposto por Chan & Chui (2000) para mostrar 

a influência das ligações não lineares nos resultados da análise estrutural (AELN e 

AILN). Além disso, será utilizado aqui com o objetivo de avaliar as respostas de outras 

contribuições desenvolvidas nesta tese. 

As cargas verticais P (200 kN) são introduzidas, inicialmente, com a geometria 

tendo um fora de prumo ∆0 = L/200, recomendado pelo ECCS (1984). Depois, a carga 

horizontal H é aplicada de forma incremental até se atingir o ponto limite ou crítico, 

dependendo da análise realizada. O modelo adotado possui 24 EFs, 8 para cada barra. 

As colunas e a viga são do perfil laminado 8 WF 48, cuja seção e geometria, que é 

aproximada por retângulos, são mostradas nas Figs. 7.22(a-b). Já as suas dimensões, 

propriedades geométricas padrões e as adotadas aqui são indicadas na Tab. 7.13. As 

tensões residuais (TR) em forma bilinear (Eurocode 3, 1992) são ilustradas, também, na 

Fig. 7.23(c), sendo o máximo de Fr = 0,5 Fy nos extremos e meios das abas e da alma. 
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H =    H         0 <       < 100 %
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Figura  7.21  Portal de Chan & Chui (2000). 
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Figura  7.22  Perfil do portal 8 WF 48: 
(a) laminado original; (b) seção equivalente; (c) TR do Eurocode 3 (1992). 
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Tabela 7.13  Propriedades da seção 8 WF 48 do portal. 
Dimensões da seção I [mm] Módulo resistente 

espessuras Refe-
rência altura  

d 
largura 

 b aba  t alma  a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 
elástico 

Wz  [cm3] 
plástico 
Zz  [cm3] 

8 WF 48 215,9 206,0 17,399 10,160 90,96 7658 707,9 802,9 
PT (1) = = 17,642 10,119 = = 709,4 803,0 
Notas: 1) PT: da própria tese; 2) valores aproximados de forma a manter a área bruta Ag e a inércia Iz.  

 

Chan & Chui (2000) indicaram as tensões de escoamento do aço ASTM A7, 

selecionadas neste trabalho, embora na análise inelástica informem que adotaram as 

tensões do ASTM A 36 (σy = 25 kN/cm2). Esses pesquisadores informaram as curvas 

M-θ do modelo de Richard & Abbott (1975) (ver subseção 2.4.3) por meio de um 

gráfico adimensional (M/MP), não fornecendo os (4) parâmetros correspondentes, nem 

com qual o σy calculou-se o momento Mp utilizado na figura da sua análise.  

Na figura 7.23, são apresentadas as curvas das ligações denominadas por C1 – 

resistência plena; C2 – resistente; e, C3 – flexível (ver subseção 2.2.2). As curvas 

correspondentes foram aproximadas por meio gráfico, gerando tabelas, com pontos 

espaçados a cada 5 mrad, (ver apêndice A.8). Considerou-se o momento plástico da 

seção MP = 188,71 kNm, que é indicado em outro exemplo, para o mesmo perfil e 

condições, na mesma referência (Chan & Chui, 2000).  
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Figura  7.23  Curvas M-θ da ligação do portal de Chan & Chui (2000). 
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Tabela 7.14  Curvas M-θ das ligações: 

(a) parâmetros das curvas RBL adotadas 
Rotação [mrad] (1) Momentos [kNm] Rigidez [kNm/rad] (1) 

Curva 
θA θU MA MU (1) Rki  RkA  Rkp 

C1 11,27 49,97 230,8 265,8 39377 1566 243 
C2 16,65 50,41 156,0 187,0 17273 1461 379 
C3 21,94 49,92   63,4   80,6   4912   868 359 

 (b) estudo estatístico das curvas RBL selecionadas 
Desvio absoluto (3) Desvio relativo Curva 

(-) (+) médio [%] médio 
Desvio  
padrão 

R2 Ponto 
(4) 

C1 -13,39 +2,27 -5,02 22,12 2,972 4,182 0,999 24/102 
C2  -5,35 +2,95 -2,16  7,83 2,086 2,388 0,999 34/102 
C3  -2,17 +0,49 -0,65  3,45 1,326 0,727 0,999 44/100 

Notas: 1) dados para PPLANAVA; 2) inclui o ponto (0,0) da curva; 3) desvios em momentos [kNcm] para 
as mesmas rotações; 4) n/m: ponto n selecionado pelo melhor “R2”, dentre os m disponíveis. 

 

Os pontos obtidos diretamente nas análises inelásticas do PPLAANVA estão 

marcados em destaque, notando-se que os da curva C1 não superam MP, como deve ser. 

As curvas aproximadas pelo método RBL, também empregadas nos exemplos desta 

seção, mostram diferenças claras de trajetória, pois as curvas dos modelos de Richard & 

Abbott (1975) têm variação potencial.  

Os seis parâmetros principais determinados (MU, θA, θU, Rki, RkA e Rkp), bem 

como medidas de calibragem das curvas M-θ RBL adotadas em relação às geradas por 

meio gráfico, são fornecidos na Tab. 7.14, onde ficam evidentes as diferenças. 

Procurou-se desenvolver um traçado de forma mais prática (uma aproximação menos 

refinada, de engenharia) para se avaliar melhor a capacidade desse modelo.  

Com esses dados, realiza-se agora a validação de todo o material proposto nesta 

tese, seguindo a ordenação: 

a. comprova-se os resultados das análises elásticas e inelásticas (AENL e AINL) 

com as ligações não lineares (C1 a C3) empregando-se as curvas tabeladas;  

b. avalia-se o desempenho dos modelos RBL em relação aos anteriores segundo os 

critérios de uma análise inelástica (AINL) para as três curvas; e   

c. demonstra-se a capacidade de solução pelo CDG (controle do deslocamento 

generalizado) analisando o problema elástico da curva C3, que é flexível e, por 

isso mesmo, mostra dificuldades numéricas tanto no processo de solução inicial 

(calibrar passos) como de falsa convergência, ou não convergência, no final. 

 

Para condensar, tratam-se as curvas tabeladas por TC1 a TC3, as do modelo RBL 

por RC1 a RC3, e os resultados nas figuras de Chan & Chui (2000) por CC1 a CC3. 
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7.5.1 ANÁLISE DO PORTAL COM LIGAÇÕES NÃO LINEARES 

A modelagem do comportamento estrutural desse portal pode ser comparada, de 

forma aproximada, com as respostas de Chan & Chui (2000), na Fig. 7.24(a) para 

análises elásticas, cujos resultados de TC são levemente inferiores aos de CC; e, 7.24(b) 

para as análises inelásticas, em que os resultados TC1 e TC2 superam os anteriores, 

lembrando que no caso da ligação C3 não ocorre plasticidade, e, dessa forma, esses 

resultados são os mesmos nas Figs. 7.24(a-b). 
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Figura  7.24  Trajetórias de equilíbrio do portal de Chan & Chui (2000):  
(a) análise elástica; (b) análise inelástica. 
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Chan & Chui (2000) indicaram as cargas de flambagem elástica dos modelos CC1 

a CC3 como: P = {124,3/79,9/26,6} kN, enquanto PPLANAVA encontrou: P = {122,5/ 

78,5/23,2} kN, respectivamente. As diferenças podem ser atribuídas ao modelo com 

mais EFs [24 × 3 (CC)], diferenças de formulação e, principalmente, a aproximação 

gráfica das figuras para obtenção dos valores de M-θ das análises desenvolvidas. Cabe 

ressaltar que essas trajetórias (AELN) para as curvas TC1 a TC3 foram produzidas 

aplicando-se o CDG, do capítulo 4 desta tese. 

No caso dos resultados inelásticos da Fig. 7.24(b), a plasticidade concentrada 

parece penalizar as análises de Chan & Chui (2000), fechando a rótula plástica 

antecipadamente. Esses pesquisadores consideraram o modelo da seção montada com o 

comportamento similar ao das tensões de escoamento de σy = 25 kN/cm2, enquanto se 

adotou σy = 23,5 kN/cm2 nas análises desta tese. Saliente-se que ocorreu plasticidade 

reversa no modelo TC2, embora a ligação estivesse comprometida com M = 184,3 kNm 

(98,6% de Mu) e também com a rotação θ = 44,67 mrad (88,6% de θu). 

Na tabela 7.15 faz-se um resumo dos resultados nos pontos crítico (AELN) e 

limite (AILN) para essas ligações. Esses valores correspondem às curvas tabeladas. O 

esforço normal (N) máximo ocorre no topo da coluna direita (em D), que possui um 

momento pouco menor que o do lado oposto (C), que é listado. Vários pesquisadores 

desprezam a deformação axial, mas há casos cuja diferença decorrente é significativa. 

Note-se que o parâmetro η tende a 0,5 nos modelos AELN (o final da curva M-θ), já 

com a plasticidade maior (AINL) reduzem para 0,0 (TC1) [ou 0,4 se menor (TC2)]. 

Na figura 7.25, mostra-se a formação de zonas plásticas (ZP) nesse portal para a 

ligação de rigidez plena (C1), que são de flexão nas extremidades da viga e no topo das 

colunas, evidenciando a formação do mecanismo plástico de andar.  Isso indica que, ao 

avaliar-se um pouco melhor o efeito da distribuição das ZPs, pode-se obter um 

benefício: uma carga limite maior (ou menos conservadora). 

 

Tabela 7.15 Condições limite do portal de Chan & Chui (2000). 

Deslocamentos Esforços [kN] Análise 
 e  

ligação 
η (1) ∆xC   

[cm] 
θC/D 

[mrad] 
H N (máx) 

Momento 
MC/D (2) 
[kNcm] 

TC1 0,4770 19,621 23,179 122,46 299,86 25665 
TC2 0,4730 19,029 31,455   78,53 269,48 17876 Elástica 
TC3 0,4716 13,524 29,503   23,24 227,89   7118 
TC1 0,0215 12,156   6,167  88,00 271,48 18447 

Inelástica 
TC2 0,4027 18,056 26,753  77,00 267,83 17441 

Notas: 1) no colapso da AELN η tende a 0,5 (rótula); 2) momento na ligação (não no EF). 
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Figura  7.25  Zonas plásticas do portal de Chan & Chui (2000)  
com a ligação TC1: (a) portal; (b) seções nas colunas; (c)convenção:  (����) tração, (����) compressão. 

 

7.5.2 ANÁLISE DO PORTAL COM LIGAÇÕES DE CURVA M-Θ RBL 

O objetivo, agora, é comparar os resultados obtidos pelas curvas reproduzidas de 

forma gráfica (TC) com os do método RBL proposto (RC), que são aproximações das 

anteriores. Não se deseja empregar o RBL substituindo equações com mais recursos, 

como as curvas potenciais e exponenciais, mas sim, atingir um bom resultado utilizando 

de equações mais simples, como as propostas, mesmo reconhecendo que as supracitadas 

são melhores. 

Na figura 7.26, reproduzem-se os resultados das análises inelásticas com as curvas 

tabeladas, o que permite confrontar com os obtidos pelo método RBL. Repare-se que 

para a ligação TC3 ou RC3, em que o regime é sempre elástico, as diferenças são 

menores. As curvas TC1 a TC3 têm as cargas limites H = {88,0/77,0/23,2} kN, 

enquanto as RC1 a RC3 (RBL) atingem H = {87,9/75,0/21,5} kN, respectivamente.   

Podem-se perceber as diferenças entre os modelos observando-se os resultados 

com as curvas RBL mostrados na Tab. 7.16, que são similares à anterior (Tab. 7.15). 

 

Tabela 7.16 Condições limites com curvas RBL do portal de Chan & Chui (2000). 

Deslocamentos Esforços [kN] Análise 
 e  

ligação 
η (1) ∆xC   

[cm] 
θC/D 

[mrad] 
H N (máx) 

Momento 
MC/D  

[kNcm] 

RC1 0,0171 12,318   6,477 87,9 271,5 18466 Inelástica 
RC2 0,4018 19,794 31,698 75,0 267,6 17431 

Elástica RC3 0,4472   9,182 18,579 21,5 223,4   5948 
Nota: 1) dada a plasticidade no EF com ligação η ≈ 0 (RC1), enquanto RC3 tende a 0,5. 
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Nos modelos mais rígidos (C2), as curvas baseadas no modelo de Richard & 

Abbott (1975) têm um ganho intermediário, o que faz o modelo RBL atingir uma carga 

final menor, embora a diferença seja pequena. Todavia, nas curvas M-θ de ensaios 

experimentais, raramente se identifica essa característica (esse ganho), exceto em casos 

de contato da aba da viga com a coluna (ver Fig. 2.9). Essa pode ser também outra razão 

pela qual nem sempre o modelo potencial possa ser aplicado na reprodução de ensaios 

experimentais com sucesso. 

 

7.5.3 CONTROLE DO DESLOCAMENTO GENERALIZADO (CDG) 

O controle de deslocamento selecionado foi eficaz em ultrapassar e determinar 

aproximadamente a carga limite em diversos exemplos já abordados nesta tese. Permitiu 

uma visão mais clara do desenvolvimento do mecanismo de colapso plástico, em geral, 

posterior à carga limite (da flambagem inelástica). Além disso, é muito simples de 

manipular, pois envolve apenas uma grandeza (resultado). 

Já o deslocamento generalizado (s) é uma grandeza incomum na percepção do 

projetista, visto que é um módulo de vetor e não se aplica a um deslocamento apenas, 

mas a todos os deslocamentos simultaneamente. Assim, torna-se um pouco estranho 

indicar o processo incremental no módulo do vetor deslocamento (u) como (80 passos 

de 1 cm), ou seja, (smáx = 80 cm), por exemplo. Mas foi exatamente esse histórico que se 

empregou ao resolver os casos elásticos da Fig. 7.24(a). 

Na figura 7.27, reproduzem-se as trajetórias de equilíbrio da ligação C3, cujo 

modelo é elástico em todo o percurso (ocorre, no máximo, 4 fatias plásticas no colapso) 

e a ligação atinge a rotação última antes de o escoamento se agravar. Verifica-se que o 

controle de carga atinge o máximo com H = 21,2 kN quando sobrevém uma dificuldade 

de convergência seguida de salto dinâmico (MRG singular) e final da análise. 

Escolhendo-se o próprio ponto C (nó 9) de máximo deslocamento para controle 

atinge-se a carga máxima H = 23,24 kN, que também é alcançada pelo processo CDG, 

comprovando sua eficiência.  

Entretanto, a curva TC3 de Chan & Chui (2000) supera tais resultados, mas esses 

pesquisadores não indicaram (ou consideraram) o deslocamento horizontal causado pela 

carga vertical fixa (∆x0 = 0,54 cm). Somando-se o deslocamento ∆x0, a curva desses 

pesquisadores aproxima-se bastante da obtida. Mantém-se a dúvida se, além dos 

deslocamentos ∆x0 negligenciados, os efeitos P∆x0 também o foram, o que justificaria 
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as cargas horizontais mais elevadas indicadas por eles (26,6 kN, superior aos 25,4 kN, 

da imagem gráfica reproduzida – ver apêndice A.8). 
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Figura  7.26  Trajetórias de equilíbrio do portal de Chan & Chui (2000)  
com ligações de curvas M-θ tabeladas e modelo RBL. 

 

0 5 10 15

Deslocamento horizontal ∆xC (nó 9) [cm]

0

5

10

15

20

25

C
ar

ga
 h

or
iz

on
ta

l H
 [

kN
]

Desl. generalizado (PT)

Desl. selecionado   (PT)

Controle de carga   (PT)

Chan & Chui (2000) +∆x0

Chan & Chui (2000) Orig.

Limite CC

Cx

∆x0

23,2
321,2

25,4

 

Figura  7.27  Trajetórias de equilíbrio do portal de Chan & Chui (2000)  
com a ligação C3 – controles incrementais. 
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Tabela 7.17 Efeito dos controles na análise dos portais  

(a) resposta estrutural no portal de Chan & Chui (2000) 

Deslocamentos Esforços [kN] 
Controle da 
análise  (1) 

η (2) ∆xC   
[cm] 

θC/D 
[mrad] 

H N (máx) 

Momento 
MC/D  

[kNcm] 

Carga 0,4433   9,012 18,245 21,10 223,02 58,45 
pré- 0,4433   8,941 18,076 21,03 222,92 58,18 Deslocamento 

selecionado máx 0,4716 13,740 30,073 23,24 228,05 71,61 
pré- 0,4433   8,905 17,986 20,99 222,86 58,03 Deslocamento 

generalizado máx 0,4710 14,340 31,632 23,24 228,35 72,80 

(b) desempenho computacional e numérico no portal de Yau & Chan (1994) 

Iterações Estado obtido 
Controle da 

análise   
Passos 

total 
máximo 
no passo 

∆xC   
[cm] 

λ 
[%] 

Iterações / 
passo 

Carga 32 1163 200 20,206 57,00 36,3 
Desl.  selecionado 97 1201  18  8,000 56,28 12,4 
Desl. generalizado 50  333  11 25,662 57,32   6,7 

Notas: 1) pré- é o valor do controle de carga (pré-colapso), máx- é o máximo obtido;  
2) na carga limite, η é quase o de rótula (0,5), ou seja, ponto da M-θ já quase na horizontal. 

 

Na tabela 7.17(a), faz-se um resumo dos resultados correspondentes aos pontos 

limites. Observa-se que os controles de deslocamento (selecionado e generalizado) 

passaram por ∆xC = 9 cm, ponto final do controle de carga, com grandezas semelhantes 

às desse processo, mas atingiram uma carga H superior após ∆xC = 13 cm 

Por outro lado, o desempenho computacional apresentado na Tab. 7.17(b) foi 

medido com dados do exemplo da seção anterior (Yau & Chan, 1994), no qual o 

controle de carga paralisa próximo à carga limite, com 200 iterações. Já o controle do 

deslocamento selecionado ultrapassa com facilidade esse ponto limite, não precisa de 

tantos passos assim e foi bem eficiente. Nesse exemplo, ao contrário de outras análises, 

o deslocamento generalizado conseguiu superar o selecionado, talvez pela coincidência 

de uma boa calibragem dos passos (ds) tomados como 1 cm. 

Empregando-se os controles de deslocamentos, mesmo ultrapassando o ponto de 

carga limite, podem suceder pontos de bifurcação ou de instabilidade numérica, que 

costumam trazer grandes dificuldades e surpresas ao analista estrutural. Um desses 

casos coincidiu com o final da trajetória de equilíbrio RC3 (Chan & Chui, 2000), em 

que se alcançou o improvável máximo H = 25 kN, partindo desde 21,2 kN, com passos 

de 0,1 kN (por controle de carga). Constatou-se que a esses resultados correspondiam 

parâmetros de rotação da ligação, com um desvio de convergência no momento 

associado, que variou de 6,3 até 11% no H máx (25). Na figura 7.28 reproduz-se a curva 
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M-θ com os resultados de PPLANAVA nesses pontos, comprovando-se o problema 

numérico. Observe-se que a ligação parece descarregar, e assim, não poderia atingir um 

momento maior (permanece 5522 kNcm), enquanto no EF essa grandeza atinge 

incorretamente 5900 kNcm.  

Uma vez que no programa computacional PPLANAVA a rotação e o momento da 

ligação não estão relacionados ao EF, para acompanhar a curva M-θ adequadamente é 

necessário determinar a rotação da ligação, obtendo-se com base nessa informação, o 

momento na ligação. Lembre-se que o momento no EF depende unicamente da 

formulação e da plasticidade, o que justifica a seção seguinte. 
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Figura  7.28  Trajetórias de equilíbrio do portal de Chan & Chui (2000)  
com a ligação RC3 mostrando problema numérico. 
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7.6  ÂNGULO DE GIRO PRÓPRIO DA LIGAÇÃO 

Como visto na subseção anterior, determinar corretamente qual o giro da ligação, 

por qualquer dos métodos apresentados na subseção 4.5.3 [o simples (S), o aproximado 

(XX) ou empregando a MR do elemento (ME)], é fundamental para se ter uma solução 

adequada. Esse foi um dos maiores desafios neste trabalho, e ainda não se pode dizer 

qual é o mais confiável ou preciso. Nesta seção, faz-se uma abordagem rápida das 

diferenças encontradas, apresentando a resposta produzida por cada método (S, XX ou 

ME) nos diversos tipos de análise (elástica ou inelástica, ligação linear ou não linear) 

para o caso da viga e da coluna tratados nas seções 7.2 e 7.3 deste capítulo.  

Todavia, em alguns casos, o momento obtido pela formulação no EF difere do 

determinado a partir do ângulo de rotação na curva M-θ selecionada. Se no processo 

iterativo esses valores convergem, pode-se prosseguir; mas, se divergem, cabe algum 

processo corretivo ou paralisar a solução. Esse assunto merece uma pesquisa 

complementar posterior (ver capítulo 9). 

 

7.6.1 ANÁLISE DA VIGA COM CARGA CONCENTRADA 

Estuda-se o efeito da avaliação da rotação da ligação no problema da viga da Fig. 

7.2(a) sujeita à carga concentrada Q, com diversos tipos de análise, como se mostra na 

Tab. 7.18.  Os seguintes comentários podem ser feitos: 

a. AELL – adotou-se a condição de rigidez linear dada por η = 0,25 (ver Eq. 7.1). 

Esse problema foi resolvido em única etapa (1 passo, λ = 100%), todos os 

métodos gastaram 18 iterações e convergiram com a mesma relação 73,89% da 

tolerância. Não houve diferenças significativas;  

b. AELN – nesse caso, foram necessárias 273 iterações (máximo de 18 iterações) 

em 40 passos de 2,5% (λ = 100%). Os resultados são praticamente idênticos, 

tendo sido empregada a curva não linear potencial de Kishi & Chen (1987);   

c. AILL – modificou-se o método S para considerar a diferença entre os momentos 

atual e anterior (dMA = MAd-MAc), quando antes se empregava a variação 

decorrente da plasticidade (dMA = dMAP) e surgiram desvios por causa da 

excentricidade também (dN.yCGP). Comprovou-se que o mais adequado é avaliar 

a diferença, independentemente da excentricidade. Para o método XX, concluiu-

se que não se pode utilizar a média das propriedades para a inércia, mas deve-se 

considerar sua redução em cada seção dos nós. Todos os métodos determinaram 
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o colapso quando λ = 89%, sendo mostrados os últimos resultados que 

convergiram após 93 iterações. Neste exemplo, foram realizadas 709 iterações, 

obtendo-se 11534 fatias plásticas; e  

d. AILN – considerou-se a curva não linear RBL, reproduzindo a ligação rígida de 

Bailey (1970), para provocar o máximo de plasticidade no EF com ligação. 

Todos os métodos atingiram o fator de carga na situação pré-colapso de 86%, 

porém o método XX, mesmo após várias tentativas de ajustes, apresentou 

divergências, ora superando, ora subestimando a rotação da ligação. Essas 

dificuldades numéricas exigem mais cuidado para o seu emprego no caso das 

análises inelásticas de vigas. 

 

7.6.2 ANÁLISE DA COLUNA COM CARGA DE FLAMBAGEM 

Emprega-se, agora, a coluna travada do exemplo da Fig. 7.11(a) com o mesmo 

modelo já estudado e a carga P0 = 2000 kN. Fazem-se as seguintes observações: 

a. AELL – aplicou-se o controle do deslocamento selecionado, e as respostas 

produzidas não diferem muito entre si. Listam-se os resultados no incremento 

96, que corresponde ao deslocamento δxC = 40 cm (fator de carga λ = 50,5%). 

Foram gastas 945 iterações e, no máximo, 5 por incremento;  

b. AELN – adota-se a mesma curva M-θ de Kishi & Chen (1987) do problema da 

viga. São desenvolvidas 520 iterações ao longo de 52 passos, gastando-se no 

máximo 13 iterações por passo. Alcançam o deslocamento 22 cm com o fator de 

carga λ ≈ 68,26% (diferença de 0,1% para mais em S). Não se verificam grandes 

diferenças nos modelos elásticos analisados;  

c. AILL – é um dos problemas para os quais as respostas do método XX 

continuaram inadequadas, apresentando significativas diferenças. Foram 

tentadas várias modificações para melhorar o seu desempenho, sem sucesso. 

Neste exemplo, processaram-se 1392 iterações ao longo de 47 incrementos, com 

no máximo 94 iterações em um passo; e   

d. AILN – foi outro desafio, como no item anterior (AILL), pois tanto o momento 

da ligação como outras grandezas foram afetadas também. Nos últimos testes, 

constatou-se que algumas dificuldades numéricas encontradas (divergência entre 

os momentos do EF e da ligação, por exemplo) são indícios de que já se atingiu 

o colapso ou a carga limite, como se mostrou antes na Fig. 7.28. 



Tese • AR Alvarenga • Cap. 7 – Elemento finito rígido-ligação 

 

347 

Tabela 7.18 Efeito do método de determinar-se a rotação na viga simples. 

Deslocamentos Momentos [kNcm] 
Mé-
todo δyC 

[cm] 
θA/B 

[mrad] MC MEF MA/B dM 
N  

[kN] 
εr 

(3)
     

[%] 

(a) AELL (1) 
S 28443,567 0,010 – 
XX  28447,234 3,657 0,128 
ME 

2,8361  3,545 35554,656 28443,577 
28447,060 3,483 

1,524 
0,122 

(b) AELN (1) 
S 26,032 58097,152   5890,392 5890,392 – 4,177 – 
XX  26,033 58097,122   5890,421 5890,421 – 4,178 – 
ME 

7,3329 
26,033 58097,122  5890,421 5890,421 – 4,178 – 

(c) AILL (2) 
S  3,494   28035,104   0,411 0,001 
XX  3,483 28280,791 28035,515 27950,078 85,437 0,306 
ME 

4,4823 
3,494   28038,480   2,965 

1,961 
0,011 

(d) AILN (2) 
S 7,0178 13,107 28412,202 26619,083 26619,746   0,663 2,832 0,002 
XX  7,0011 13,198 28411,626 26619,701 26649,392 29,691 2,825 0,112 
ME 6,9641 13,164 28410,374 26621,044 26638,196 17,152 2,811 0,064 
Notas: 1) adotou-se para XX: χ2 = χ3 = 1, ver Eqs. 4.30 e 4.31; 2) valores do último passo que convergiu; 

 3) desvio relativo εr = dM/MEF. 
 

Tabela 7.19 Efeito do método de determinar-se a rotação na coluna simples. 

Deslocamentos Momentos [kNcm] 
Mé-
todo δyC 

[cm] 
θA/B 

[mrad] MC MEF MA/B dM 
N [kN] εr 

(3)
     

[%] 

(a) AELL (1) 
S 86,807 32781,629   0,111 2019,29 – 
XX  86,673 32731,276 50,464 2021,43  0,15 
ME 

40,00 
86,673 

49975,828 32781,740 
32731,292 50,448 2021,43  0,15 

(b) AELN (1,2) 
S 28,882 32942,006 29780,723 29780,722   0,001 2730,29 – 
XX  28,770 32942,940 29772,455 29772,456   0,001 2729,97 – 
ME 

22,00 
28,770 32942,940 29772,457 29772,458   0,001 2729,97 – 

(c) AILL (1,4) 
S 3,914 1477,990   0,000 – 
XX  0,792   289,903 1188,0 80,4 
ME 

2,082 

3,897 

2000,965 1477,990 

1471,829   6,161 

1139,99 

 0,42 
(d) AILN (1,2,4) 

S 0,988 0,348 1059,463 1363,309 1364,879   1,570  0,11 
XX  1,050 0,759 1058,001 1362,430 2921,989 1559,6 114,5 
ME 0,987 0,349 1061,751 1364,659 1368,518   3,859 

1239,99 
 0,28 

Notas: 1) diferença provocada pelo alongamento considerado (S); 2) as diferenças são distribuídas a 
outras grandezas (também); 3) desvio relativo εr = dM/MEF; 4) mesmo com correções de χ2 e χ3 (XX). 
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Diante dessas dificuldades, numa boa parte final dos exemplos deste capítulo e no 

seguinte optou-se pelo emprego do método (S) de avaliar a rotação da ligação, não 

apenas pela sua simplicidade, mas porque se mostrou o mais estável numericamente, 

embora tal método não leve em conta o efeito do alongamento na rotação da ligação. 

Isso também pode ser a causa de algumas diferenças constatadas nos resultados de 

validação (ver Fig. 7.15, por exemplo). Na pesquisa posterior poder-se-á melhor avaliar 

e compreender o alcance desses métodos, propondo novos ajustes, caso necessários (ver 

capítulo 9) 

Foi comprovado que, com a formulação numérica apresentada, obtêm-se boas 

respostas para a análise da viga. Já não se pode dizer o mesmo para a da coluna, o que 

justificou a não introdução dessa consideração nas Análises Avançadas que se 

desenvolvem no próximo capítulo. 
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8.1  INTRODUÇÃO 

Finalmente atinge-se o objetivo maior com este trabalho, que é o emprego de 

todas as etapas já desenvolvidas para se realizar a Análise Avançada com a participação 

do EF com ligação (Alvarenga, 2008).  

Neste capítulo, será estudada a influência da ligação nas imperfeições geométricas 

iniciais, procurando-se avaliar qual a participação das ligações na configuração da 

deformada próxima ao colapso (ponto de carga limite inelástico). 

Neste estudo, emprega-se o mesmo portal proposto inicialmente por Chen & Zhou 

(1987) modificado pela retirada do apoio horizontal superior, adotado anteriormente 

(Alvarenga, 2005), cujo esquema é representado de forma simplificada na Fig. 8.1, 

porém agora incluindo a ligação. Na seção seguinte, faz-se a indicação completa dos 

dados desse problema, incluindo geometria, os aspectos importantes da Análise 

Avançada e os parâmetros das ligações empregados. 

Dada a série de diferentes modelos e objetivos tratados, nas seções posteriores 

serão abordados os seguintes tópicos: 

a. estudo das condições de base na flambagem do portal;  

b. imperfeição inicial combinada com a flambagem do portal; 

c. cargas verticais combinadas e geometria imperfeita;  

d. carga horizontal combinada com as verticais;  

e. modificando a viga do portal; 

f. Análise Avançada do portal com ligação midirrígida;   

g. efeito das ligações não lineares; e  

h. comentários finais. 

(a)

kR Rk

B = 533,4 cm
(b)
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Figura  8.1  Portal de Chen & Zhou (1987) modificado (Alvarenga, 2005).  
(a) geometria perfeita; (b) geometria com imperfeições. 
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O estudo das bases visa entender o efeito da presença da rótula no comportamento 

do portal e a sua relação com as imperfeições iniciais.  

Na terceira seção, explora-se o efeito da curvatura inicial na carga de flambagem, 

introduzindo um conceito chamado dissimilar. No contexto deste trabalho, isso quer 

dizer tornar algo assimétrico, quebrar a simetria, sair de um estado estável de repartição 

de esforços baseado num comportamento simétrico.  

Em seguida, estuda-se a influência de outros tipos de carga vertical com a 

introdução de cargas distribuídas na viga, que solicitam as ligações de forma diversa das 

cargas nas colunas, e por fim, introduz-se a carga horizontal. 

Na quinta seção, modifica-se a viga do portal para avaliar o seu efeito na 

flambagem pura (somente carga P na coluna). Na seção posterior, faz-se o resumo da 

Análise Avançada com todas as cargas limite encontradas e as configurações 

correspondentes, para o portal com a ligação midirrígida (η = 0,25). Aqui, define-se o 

conceito de configuração ou imperfeição geométrica inicial limitadora, que significa a 

configuração de imperfeições iniciais que leva ao menor fator de carga limite para um 

dado carregamento. 

A ligação não linear é abordada na penúltima seção, na qual se propõe determinar 

os parâmetros da curva RBL da ligação de um perfil de altura maior, baseando-se nos 

dados conhecidos de outra para um perfil menor. Foram utilizadas as curvas do modelo 

RBL (C2 e C3) desenvolvidas para o portal de Chan & Chui (2000) na seção 7.5. 

Nos comentários finais faz-se uma comparação entre os resultados aqui 

produzidos e os fornecidos por Chen & Zhou (1987), mostrando algumas diferenças que 

nascem do modelo e das considerações adotadas. 
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8.2 PORTAL DE CHEN & ZHOU (1987) MODIFICADO 

O portal de Chen & Zhou (1987) foi estudado por diversos pesquisadores na 

condição de estrutura travada, ou seja, com um apoio lateral no topo da coluna (ponto 

D) e bases com engastes ou rótulas (Machado, 2005). Posteriormente, no intuito de 

desenvolver uma Análise Avançada, esse portal foi modificado, liberou-se o apoio 

horizontal do topo, mas se manteve as bases engastadas e, também, uniformizou-se a 

seção da viga pela da coluna (Alvarenga, 2005). 

O portal agora estudado é representado na Fig. 8.2(a). A seção das suas colunas é 

do perfil 8 WF 31, empregado nesta tese. Já a viga poderá ter a seção original de Chan 

& Zhou (1987), que é 16 WF 50, tratado doravante por portal CZ, ou a mesma da 

coluna, como em Alvarenga (2005), que será indicado por AA. A seção original da viga 

(CZ) tem suas dimensões e propriedades geométricas listadas na Tab. 8.1 junto com a 

seção equivalente adotada nos modelos estruturais. Em ambos os casos, essas vigas 

possuem ligações nas suas extremidades de mesma curva M-θ e características, sendo 

inicialmente avaliadas como lineares (Rk é constante ao longo da análise). 

Na figura 8.2(a) estão representadas também: uma carga vertical distribuída na 

viga (q), as duas cargas verticais (P) e a horizontal (H) no topo das colunas. A carga de 

esmagamento para a seção dessa coluna é Ny = 1472,5 kN, com a tensão de escoamento 

dada. Chama-se (W) a soma de todas as cargas verticais, fixada em aproximadamente 

2Ny. Assim, com W ≈ 2×1472,5 = 2945 kN → W= 3000 kN, definem-se as cargas de 

referência: P0 = W/2 = 1500 kN e q0 = W/B = 562,5 kN/m. Já a carga horizontal H é 

associada ao esforço que provoca o clássico colapso por formação de mecanismo 

plástico de andar, com 4 rótulas plásticas (RP), pela relação: 

Hy·L = 4 Mp = 4 ×124,5 = 498 kNm → Hy = 498 / 3,556 = 140 kN 

o qual foi arredondado para H0 = 150 kN, de forma que o fator de colapso produzido no 

processo computacional seja menor que 1. 

O modelo estrutural adotado possui 24 EFs, sendo 8 por barra. O material é aço 

ASTM A 36, considerado elástico e perfeitamente plástico, incluindo as tensões 

residuais (TRs) do modelo G & K (Galambos & Ketter, 1959). 

Com esses dados serão realizadas diversas Análises Avançadas incluindo o efeito 

das ligações nas extremidades da viga e as várias configurações geométricas imperfeitas 

iniciais. Como foi dito, o objetivo básico é validar o Teorema da Configuração Inicial 

(Alvarenga, 2005) e determinar se há alguma circunstância especial (ou exceção) em 
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que outro procedimento seja requerido. Além disso, desejando-se verificar a influência 

da ligação por meio do parâmetro η na resposta da estrutura, essa grandeza é variada de 

0 (engaste) a 0,5 (rótula). Assim, as diversas situações de carregamentos, bem como de 

imperfeições geométricas combinadas (fora de prumo FP e curvatura inicial, CI), ou 

seja, de configurações geométricas imperfeitas iniciais, serão estudadas incluindo as 

ligações. 

Não se adotou o controle dos deslocamentos para esses problemas porque seria 

exigida, ainda assim, a solução com controle de cargas primeiro e a quantidade de 

análises a ser desenvolvida era elevada. Optou-se pelo método S para avaliar a rotação 

da ligação, porque ele mostrou-se o mais estável numericamente. 
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 c
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 c

m
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Figura  8.2  Portal de Chen & Zhou (1987) e Alvarenga (2005): 
(a) geometria básica; (b) geometria com imperfeições. 

 

Tabela 8.1 Propriedades da seção da viga 16 WF 50. 

Dimensões da seção I [mm] Módulo resistente 
espessuras Referência altura  

d 
largura 

 b aba  t alma  a 

Área  
Ag 

[cm2] 

Inércia 
 Iz 

[cm4] 
elástico 

Wz  [cm3] 
plástico 
Zz  [cm3] 

16WF50  16,26 in 7,07 in 0,63 in 0,38 in 14,7 in2 659 in4 81,0 in3 92,0 in3 
Convertido 413,0 179,58 16,002 9,652 94,838 27429,7 1327,4 1507,6 
PT (1,2) 414,0 179,58 16,138 9,659 94,837 27430,0 1325,0 1505,0 

Notas: 1) PT: na própria tese; 2) valores aproximados de forma a manter a área bruta Ag e a inércia Iz; 
3) para cálculo de Rki considerou-se Iz = 25430 cm4 (≈ 93% do valor teórico).  
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8.3 EFEITO DAS CONDIÇÕES DE BASE NA FLAMBAGEM DO PORTAL 

Uma das questões iniciais que se propõe é determinar qual será a carga limite das 

estruturas desse portal tipo CZ sujeito apenas à carga vertical P nas colunas, segundo as 

condições tradicionalmente adotadas: 

a. base rígida e ligação rígida com a viga [Fig. 8.3(a)]; 

b. base rígida e ligação com a viga em rótula [Fig. 8.3(b)]; e  

c. base em rótula e ligação rígida com a viga [Fig. 8.3(c)]. 

 

A primeira condição indicada na Fig. 8.3(a) reporta às conclusões da Análise 

Avançada do portal AA (com a viga da mesma seção da coluna), nas quais foram 

consideradas todas as imperfeições geométricas iniciais do portal. A figura 8.3(b) 

remete ao estudo da coluna isolada e à parte final de conclusões de Alvarenga (2005), já 

que a viga é apenas uma escora para compatibilizar deslocamentos das colunas. E, 

assim, a parte nova deste primeiro estudo se baseia nas análises de Chen & Zhou (1987) 

com relação à modificação da condição de base de rígido para rótula, na Fig.8.3(c), 

porém, sem o apoio horizontal superior adotado por esses pesquisadores.  

Para iniciar este estudo, é necessário conhecer o comportamento do portal na 

flambagem (carga P ≤ P0) com a condição de curvatura inicial isolada (CI), mostrada na 

Fig. 8.4, para a estrutura com rótulas nas bases da Fig. 8.3(c). Só existem duas 

possibilidades de configurações geométricas diferentes para a CI: (a) assimétrica, ou (b) 

simétrica, como indicado nas Figs. 8.4(a-b), respectivamente. Girando 180º a primeira 

configuração, não a modifica; já o caso de CI (+/+) é similar ao da CI )-/-(. 

A condição CI )-/+) [ou (+/-( ] é a governante como indicado na Tab. 8.2. Note-se 

que, mesmo sem imperfeição alguma, o topo da coluna do portal (ponto C = nó 9) se 

desloca de forma assimétrica para ∆xC = -1,845 cm no colapso.  

É necessário entender, porém, o que ocorre no caso da CI (+/+). Observe-se que 

os fatores de carga são maiores e que o deslocamento ∆xC se deu para a direita (questão 

numérica, poderia ser para a esquerda), com momentos menores que na CI )-/+). Esse 

fenômeno foi constatado antes por Chwalla (1938), conforme Lu (1963), sendo aqui 

chamado de comportamento dissimilar (“unwinding”; Galambos, 1982). Significa que, 

por não haver um travamento horizontal adequado, o portal passa do estado simétrico 

para o assimétrico, no qual pode absorver mais energia de deformação e resistir mais 

esforços.  
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Figura  8.3  Portal de Chen & Zhou (1987) nos modelos tradicionais: 
(a) ligações rígidas; (b viga com rótulas; (c) bases com rótulas. 
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Figura  8.4  Portal com rótulas nas bases e curvatura inicial (CI). 
(a) forma assimétrica; (b) forma simétrica; 

Incr. 29(a) (b) Colapso

C

A B

D
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C D

Simétrico AssimétricoDissimilar

 

Figura  8.5  Comportamento dissimilar do portal: 
(a) último passo simétrico; (b) colapso com deformada assimétrica. 

Nota: 1) fator de escala dos deslocamentos: FE = 100. 

 

Tabela 8.2 Efeito da CI na flambagem do portal com rótulas nas bases. 

Fator carga [%] Esf. axiais  [kN] (2) Momentos [kNcm](3) 
CI 

λy λc 
∆xC 

[cm] (1) NA NB MC MD 
)-/+) 65,3 75,1 -1,348 1132 1121 1500 1537 
(+/+) 68,7 83,2  0,218 1247 1249  653  145 
sem 71,2 83,7 -0,222 1257 1255  269 -281 

Notas: 1) estado pré-colapso; 2) cargas nas bases; 3) nos extremos da viga. 

 

Esse comportamento é elucidado na Fig. 8.5, em que há simetria até o incremento 

29 (λ = 86%), a partir do qual ocorre o salto assimétrico.  
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No caso da solução computacional, isso provém de pequenas diferenças 

numéricas, que quebram a simetria (aqui para a direita, +). Na estrutura real, pequenas 

diferenças entre os perfis, materiais, etc., levam ao comportamento dissimilar, que 

direciona a flambagem. 

Portanto, o fator de carga da consideração assimétrica é menor e mais limitador 

que o fator obtido para a simétrica. Deve-se lembrar que nas configurações simétricas o 

efeito de uma curvatura numa coluna é compensado pela curvatura oposta da outra. 

Constata-se que o fenômeno dissimilar ocorre no pórtico sem imperfeições também. 

Retornando ao problema dos três portais da Fig. 8.3, a Análise Avançada requer 

que se defina previamente qual é a configuração geométrica imperfeita limitadora para 

que se determine a carga limite mínima, que é a de dimensionamento. 

Ao avaliar a configuração geométrica imperfeita inicial, retorna-se ao trabalho 

anterior (Alvarenga, 2005), com o portal AA da Fig. 8.3(a), no qual foram analisados 24 

casos de combinações possíveis de FP e CI (isto é: 4 FPs isolados, 4 CIs isolados e 16 

FPs + CIs combinados). Entretanto, o bom senso da engenharia pode auxiliar e reduzir 

um pouco essa tarefa, considerando que:  

a. o FP simétrico é estabilizante e aumenta a carga limite, portanto 10 casos não 

seriam analisados (2 de FPs simétricos isolados, e 8 das combinadas com CIs). 

Foi comprovado que, mesmo combinados a outras imperfeições assimétricas 

(CIs), os FPs simétricos permanecem, sendo menos críticos (Alvarenga, 2005);  

b. o FP assimétrico contrário ao esforço horizontal H é uma combinação benéfica, 

que majora a carga limite, o que eliminaria 5 casos de carga limite máxima; e   

c. devido ao comportamento dissimilar, a carga limite com CIs simétricas também 

é maior, o que exclui outras 2 CIs isoladas. 

 

Deduz-se, então, que os casos de configurações assimétricos (com FP) tendem a 

comandar o projeto (dimensionamento). Essas quatro configurações com geometrias 

imperfeitas são apresentadas de forma esquemática na Fig. 8.6 sem as ligações.  

Para demonstrar a conclusão anterior, agora relativa às CIs simétricas que não são 

limitadoras, mesmo na presença de FP assimétrico, faz-se a análise apenas com a carga 

vertical P (H = 0) no topo das colunas do portal CZ e consideram-se os três tipos de 

portais da Fig. 8.3: (a) com ligações rígidas na base e na viga; (b) com rótulas nos 

extremos da viga; e, (c) com rótulas só nas bases, montando-se a Tab. 8.3.  
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A primeira observação desta Tab. 8.3 é que as CIs simétricas, correspondentes às 

Figs. 8.6(a-b), não são limitadoras, em nenhuma dessas análises, para os três portais. 

Iniciando-se pela análise do portal da Fig. 8.3(b), no qual a viga possui rótulas nos 

extremos, têm-se de fato duas colunas isoladas, do tipo engaste na base e livre no topo, 

com uma viga que constitui apenas uma escora, homogeneizando os deslocamentos das 

extremidades. Por isso, os deslocamentos ∆xC são mais de 3 vezes maiores que os da 

Fig. 8.3(a) (1,925/0,56 = 3,43). E o comportamento segue o descrito pela Análise 

Avançada da coluna engastada e livre, na qual o caso (d) FP+CI +/- governa o 

dimensionamento (Alvarenga, 2005). Pode-se verificar na Fig. 8.7(b) que a deformada 

da estrutura sem imperfeição identifica-se com a geometria imperfeita limitadora. 

Já no caso do portal da Fig. 8.3(c), em que as rótulas estão nas bases e a viga é 

responsável pela rigidez da estrutura, o comportamento leva a um deslocamento como 

se fosse o de um andar, situação na qual a imperfeição do caso (c) com FP+CI -/+ é a 

mais limitadora, o que se confirma novamente pela deformada obtida sem imperfeição 

da Fig. 8.7(c). Se a viga for bastante rígida (como neste exemplo), a influência da 

curvatura da coluna é menor, e as cargas limite de projeto desses dois portais (b-c) 

tornam-se bem próximas (λc = 69,3 ≈ 67,8%, sendo a diferença apenas 2,1%). 

Agora, avalia-se o comportamento do portal sem rótulas da Fig. 8.3(a). Não se 

repete a situação do portal AA em que a imperfeição com FP+CI -/+ foi a mais 

limitadora (Alvarenga, 2005). Para entender isso, deve-se avaliar a rigidez da viga. 

A rigidez nodal é dada por: 

sendo Ic e Iv a inércia da coluna e viga do nó. 

O portal AA possuía seção igual para colunas e viga (inércias iguais, Ic = Iv), com o 

que a rigidez nodal é G = L/B = 355,6/533,4 = 2/3 (< 1), ou seja, a viga é mais flexível 

que a coluna, admitindo maior giro para compatibilidade. Assim, a base absorve mais 

plasticidade que o topo das colunas, a tendência é que se formem ZPs nas bases e o 

andar se mova, como se essas bases fossem rótulas, similarmente ao que se encontrou 

para o portal da Fig. 8.3(c). Logo, as imperfeições geométricas limitadoras daquele 

problema acompanharam essa tendência, demonstrada pela sua deformada inelástica, 

que se imita com o caso (c) FP+CI -/+. 

( )
( ) B I

L I
  

LI

BI
G

c

v

c

v ==  (8.1) 
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Já no portal CZ, a relação de rigidez da viga é Iv/B = 51,4; enquanto a da coluna é 

a mesma Ic/L = 12,86; então a rigidez nodal será G = 51,4/12,86 ≈ 4, significando que a 

viga tende a girar menos em relação à coluna. Repare-se que os deslocamentos ∆xC 

resultantes da configuração FP+CI -/+ são superiores aos da condição FP+CI +/-. A 

quantidade de fatias plásticas da última (5637), porém, supera a primeira (5159). Isso 

tem a seguinte explicação: de fato, a imperfeição FP+CI -/+ só favorece o colapso 

quando a rigidez relativa da viga é menor que a da coluna, permitindo maior 

sensibilidade do portal à direção da flambagem da coluna (condição elástica). Mas, se a 

viga é relativamente mais rígida, gera-se a plasticidade no topo das colunas, de tal forma 

que essas regiões se comportarão como se fossem rótulas (RP) e se comportarão da 

mesma forma que o portal da Fig. 8.3(b), para o qual a configuração limitadora é a da 

imperfeição FP+CI +/-. Conclui-se que a plasticidade altera o modo de flambagem. 

Na figura 8.7, mostra-se a deformada inelástica dos portais das Figs. 8.3(a-c) na 

condição sem imperfeição geométrica e apenas com a carga P aplicada.  

Os deslocamentos foram majorados pelo fator de escala 50 vezes, de forma a 

destacar melhor a deformada. Identifica-se rapidamente, nos portais das Figs. 8.7(b-c), a 

disposição das deformadas com a configuração geométrica imperfeita correspondente 

da Fig. 8.6 [representadas em tamanho menor, dentro das Figs. 8.7(a-c)]. 

No caso do portal engastado da Fig. 8.7(a), as deflexões com a geometria perfeita 

são muito pequenas (▬); mesmo empregando o fator de escala FE = 100, não se 

constata nada. Por isso aplicou-se o fora de prumo L/500, cuja deformada [marcada em 

tracejado (- -) na mesma Fig. 8.7(a)], consegue comprovar que, diferentemente do portal 

AA, esse portal CZ tem agora a imperfeição FP+CI +/- como a limitadora. 

Na figura 8.7, demonstra-se que, em certos casos, a deformada inelástica da 

estrutura sem imperfeições iniciais é um caminho muito simples para determinar quais 

são as imperfeições geométricas que são limitadoras (teorema). Todavia, no caso do 

portal sem rótulas da Fig. 8.3(a), isso não ficou tão evidente, o que justificou a 

introdução do fora de prumo. Quando há carga horizontal na hipótese, entretanto, isso se 

tornará desnecessário. 

A deformada sem imperfeição geométrica do portal da Fig. 8.7(c) foi representada 

girada 180º em relação aos resultados computacionais, pois como foi dito, quando existe 

apenas carga vertical, o comportamento dissimilar pode acontecer em qualquer direção 

(ou seja, sinal: + ou -).  
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Isso corresponderia à configuração inicial limitadora girada de 180 graus também. 

Assim, no cálculo computacional, a direção do FP foi (-), enquanto na figura (apenas 

por clareza) mostrou-se o FP (+), que foi o escolhido para as demais análises. 
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Figura  8.6  Configurações com imperfeições geométricas do portal sem ligações: 
(a) FP+CI -/-; (b) +/+; (c) FP+CI -/+; (d) FP+CI +/-. 
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Figura  8.7  Deformadas inelásticas na flambagem sem imperfeição geométrica 
(FE=50): (a) portal todo engastado s/ FP (▬, FE=100), c/ FP (- -); (b) viga com rótulas;  

(c) bases com rótulas; (d) configuração imperfeita limitadora associada.  
 

Tabela 8.3 Efeito da FP+CI na flambagem do portal nos modelos tradicionais. 

Ligações (a) FP+CI -/- (b) FP+CI +/+ (c) FP+CI -/+ (d) FP+CI +/- 
Base Viga ∆xC λc ∆xC λc ∆xC λc ∆xC λc 
A-B C-D 

Fig. 
8.3 

[cm] [%] [cm] [%] [cm] [%] [cm] [%] 
engaste engaste (a) 0,593 89,5 0,601 89,5 0,596 89,6 0,560 ● 89,4 
engaste rótula (b) 1,531 72,2 1,531 72,2 1,131 76,2 1,925 ● 69,3 
rótula engaste (c) 1,814 70,7 1,903 70,6 2,179 ● 67,8 1,324 74,3 

Notas: 1) fator de carga λc e deslocamentos ∆xC no pré-colapso; 2) caso que governa (●). 
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8.4 IMPERFEIÇÃO INICIAL COMBINADA À FLAMBAGEM DO PORTAL  

Agora, avalia-se o que acontece aos portais do tipo mostrado na Fig. 8.2(b), que 

possui bases engastadas e viga com ligações de curva M-θ linear. Apenas as cargas 

verticais P estão atuando (q = H = 0) e se emprega o coeficiente de giro próprio da 

ligação η como parâmetro para construir a Tab. 8.4. A rigidez da ligação, que não se 

altera durante cada uma dessas análises, é determinada pela expressão: 

Sobre essa tabela 8.4, são feitas as seguintes observações: 

a. quando a semiflexibilidade é η ≤ 0,3 a carga de colapso praticamente não se 

modifica, indicando o comportamento de ligação rígida (ou seja, para η = 0,1 a 

0,2 se encontra λ = 89,4 ≈ 89,3) com a mesma resposta da estrutura; 

b. para o mesmo coeficiente η de ligação rígida (η ≤ 0,3), a carga de colapso não 

depende da forma da imperfeição FP+CI (por exemplo, com η = 0,1 se encontra 

λ = 89,4 para as 4 geometrias imperfeitas). Ocorre uma exceção para η = 0,2 e 

FP+CI -/-  (indicado “►”), que se explica por problemas numéricos; e   

c. para ligações flexíveis (η > 0,3), a configuração limitadora é a da imperfeição 

FP+CI  +/-, que foi determinada na seção anterior. 

 

As trajetórias de equilíbrio com a imperfeição FP+CI -/+ são vistas na Fig. 8.8, 

dentre outras que poderiam ser selecionadas, e nela verifica-se praticamente o mesmo 

caminho (tendência) para ligações com η ≤ 0,3. Atingir o mesmo fator de carga limite 

(λc ≈ 89,3%) por diversas ligações pode ser explicado pelo fato da ligação ser rígida, 

não ter solicitado a viga e, dessa forma, absorver o efeito da CI da coluna.  

Uma parcela das rotações é absorvida pelas folgas de giro da ligação e a outra 

parcela, de momentos, pelas ligações que se comportam de forma rígida (admitem 

expressivos momentos) e as bases engastadas (absorvem qualquer momento).  

As ligações flexíveis (η ≥ 0,4) não suportam momentos de travamento maiores, o 

efeito da CI aparece e a imperfeição FP+CI +/- é limitadora (indicado “●” na Tab. 

8.4), pois acompanha o comportamento do portal da Fig. 8.3(b) com rótulas na viga. 

Entretanto, as ligações rígidas (η ≤ 0,3) que possuem a mesma carga limite, apresentam 

diferentes trajetórias de equilíbrio para o FP com as diferentes CIs, como elucidado na 

( )
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Fig. 8.9, em que se empregou a ligação midirrígida η = 0,25. 

As CIs simétricas possuem quase a mesma trajetória, como esperado. Os casos de 

CI simétrica, Figs. 8.6(a-b), que levaram a cargas de colapso maiores nas estruturas com 

ligações engastadas, não têm o mesmo efeito para as ligações rígidas, embora, em geral, 

permaneçam não limitadoras para as outras semiflexibilidades η; ou seja, há uma 

tendência de que apenas duas configurações, as assimétricas, representadas nas Figs. 

8.6(c-d) comandem o dimensionamento desse portal com carregamentos simétricos. 

Para cargas verticais P nas colunas apenas, a CI (+/-( apresenta deslocamentos 

∆xC maiores para o mesmo fator de carga (ver ponto G da Fig. 8.9) e atinge mais 

rapidamente  a carga limite. Pelo maior risco (efeito P∆ pior), essa CI é a que governa 

quando todas têm a mesma carga limite.  

Tabela 8.4 Efeito do FP+CI na flambagem do portal com ligações. 

Ligações (a) FP+CI -/+   (b) FP+CI -/-   (c) FP+CI +/+  (d) FP+CI +/- 
Parâmetros (2) Rk ∆xC λc ∆xC λc ∆xC λc ∆xC λc 
η g  [kNm/rad] [cm] [%] [cm] [%] [cm] [%] [cm] [%] 

0,000 0,000 ∞ 0,596 89,6 0,593 89,6 0,601 89,6 0,560 89,5 
0,100 0,063 152561 0,561 89,4 0,574 89,4 0,581 89,4 0,605 89,4 
0,200 0,166   57210 0,564 89,3 0,619 ► 89,5 0,601 89,3 0,629 89,3 
0,250 0,250   38140 0,555 89,2 0,598 89,2 0,608 89,2 0,637 89,2 
0,300 0,375   25427 0,571 89,1 0,636 89,1 0,648 89,1 0,682 89,1 
0,400 1,000     9535 0,617 88,5 0,758 88,4 0,789 88,4 0,840 ● 88,4 
0,475 4,750    2007 0,478 81,7 0,768 80,6 0,766 80,6 0,996 ● 79,4 
0,500 ∞        0 1,131 76,2 1,531 72,2 1,531 72,2 1,925 ● 69,3 

Notas: 1) fatores de carga λc e deslocamentos ∆xC no pré-colapso; 2) ligações rígidas η ≤ 0,3 (█). 
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Figura  8.9  Trajetórias do portal da Fig. 8.2(b) FP com diferentes CIs. 
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Figura  8.10  Zonas plásticas na flambagem do portal com carga P. 
Convenção: (����) compressão, FP+CI +/-. 

 
Por outro lado, para as ligações flexíveis, essa forma de CI fornece o menor fator 

de carga, tornando-se a principal para o dimensionamento (e por isso, limitadora).  

Na figura 8.10, mostra-se um diagrama típico de zonas plásticas no pré-colapso, 

para as condições de cargas desta seção. A viga com ligação midirrígida (η = 0,25) está 

elástica enquanto cada coluna possui 2 ZPs de compressão ao longo de toda a altura. 

Esse comportamento repete-se para qualquer das CIs adotadas. Quando η cresce, a 

única modificação é uma pequena redução na quantidade de fatias plásticas. 
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8.5 CARGAS VERTICAIS COMBINADAS E GEOMETRIA IMPERFEITA  

Constatou-se que a carga limite fica homogênea para diversas condições na seção 

anterior, também, porque as ligações não foram solicitadas pela viga. Assim, introduz-

se nesta seção a carga vertical distribuída (q) na viga.  Todavia, ao tomar-se apenas (q) 

atuando (P = H = 0), com qualquer tipo de ligação (0 ≤ η ≤ 0,5), ocorrerá o colapso por 

formação de mecanismo plástico de viga. Se a união é flexível (η ≥ 0,4), tem-se 1 ZP 

central (λc = 37,5%, qLim = 105,8 kN/m). Quando a ligação for engaste ou rígida 

(semiflexibilidade  η ≤ 0,25), aparecerão 3 ZPs. Assim, surgirá uma ZP adicional em 

cada extremo da viga (λc = 65,8% qLim = 185,1 kN/m). No problema CZ, a viga é mais 

rígida que a coluna, então as ZPs serão formadas no topo das colunas (λc = 50,1% qLim = 

141 kN/m). Portanto, a carga distribuída atuando sozinha não solicita o portal quanto à 

sua estabilidade. Essa hipótese equivale a dimensionar a viga à flexão apenas, como se 

fez antes na seção 7.2. 

Assim, a combinação de cargas verticais (P e q), com q0 = W/B, P0 = W/2 e W = 

3000 kN, é abordada nesta seção, considerando os seguintes casos: 

a. (q0/2): q ≤ 50% q0, P ≤ 50% P0 (q = 281,2 kN/m, P =   750 kN); e  

b. (q0/4): q ≤ 25% q0, P ≤ 75% P0 (q = 140,6 kN/m, P = 1125 kN). 

 

8.5.1 COMBINAÇÃO INCLUINDO A CARGA DISTRIBUÍDA (q0/2) 

Estuda-se a combinação incluindo metade da carga vertical (P0+q0), considerando: 

a forma simétrica da CI da Fig. 8.6(b) ou a assimétrica da Fig. 8.6(d), combinadas ou 

não com o FP. Em todas essas combinações, a carga limite mantém-se a mesma (λc = 

44,9%, qc = 126,3 kN/m) para ligações rígidas (η ≤ 0,4) e apresenta uma pequena 

diferença para as flexíveis (λc = 37,6%, qc = 105,7 kN/m). As imperfeições não parecem 

ter maior influência nesse problema, pois a carga na viga é muito elevada, provocando 

seu colapso, antes que se manifeste qualquer instabilidade. Isso já justifica a não 

inclusão do estudo do efeito de q0 isolado. 

A diferença entre os fatores de colapso teórico e encontrado (52,1 - 44,9 = 5,2%), 

no caso da ligação rígida, está associada aos efeitos: P∆0 (FP) e Pδ0 (CI); enquanto na 

flexível, tem-se apenas o colapso à flexão da viga (37,6 ≈ 37,5%) com 1 ZP central. 

Na figura 8.11 apresentam-se as trajetórias de equilíbrio do ponto C (nó 9). Esse 

ponto foi selecionado para todas as demais análises adiante, porque possui o maior 

deslocamento horizontal. 
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Nessa figura, constata-se o término prematuro para as ligações mais flexíveis 

(como na rótula, a curva ainda está ascendendo) indicando o mecanismo de colapso de 

viga (barra) e não propriamente do portal (global). Além disso, não há qualquer 

plasticidade nas colunas quando η  ≥ 0,438. 

 

8.5.2 COMBINAÇÃO INCLUINDO A CARGA DISTRIBUÍDA (q0/4) 

Nesse problema, a carga distribuída solicita menos à viga, pois é metade da 

aplicada no caso anterior. Partindo da consideração apenas da CI simétrica da Fig. 

8.4(a) e assimétrica da Fig. 8.4(b), sem incluir o FP, verifica-se a presença do 

comportamento dissimilar para todas as semiflexibilidades η. O fator de carga limite não 

se modifica (λc = 79,3%), exceto quando 0,4 ≤ η ≤ 0,5; em que varia de 79% a 74,7%. 

Deve-se comentar que surge tanto o salto dissimilar para a esquerda (x-) quanto para a 

direita (x+), visto que sua origem está em pequenas diferenças dos processos numéricos.  

Adotando a ligação midirrígida (η = 0,25) para esse carregamento, constrói-se a 

Tab. 8.5, na qual se constata que as CIs com a forma )-/+) ou (+/-( continuam 

limitadoras, mesmo fazendo de rótulas as bases do portal. Pode-se concluir que o 

fenômeno dissimilar não se modifica pela presença da ligação quando esta é rígida.  

O caso das bases com rótulas e apenas CI corresponde aos ensaios experimentais 

de Lu (1963). Nesta tese, acha-se o colapso com carga (λc = 58,7%, q = 165,1 kN/m) 

bem inferior à condição simétrica (λc = 62,6%, q = 176,1 kN/m; que é 6,6% maior).  

A razão da repetição dessas variações, modificando apenas as ligações e 

carregamentos, é propor que a imperfeição de forma simétrica da Fig. 8.6(b) (Chen & 

Zhou, 1987) seja colocada em segundo plano, pois, quando houver uma movimentação 

lateral qualquer, uma das configurações imperfeitas [das Figs. 8.6(c-d)] governará, já 

que exige menor energia de deformação. Em cada caso, deve-se definir qual será o sinal 

da curvatura CI empregada: (+/-( ou )-/+). 

A tabela 8.6 apresenta os esforços com os deslocamentos da situação pré-colapso 

(a última que convergiu), bem como os fatores de carga de escoamento e de colapso 

para a condição limitadora (+/-(. O intervalo dos fatores de carga de colapso 

encontrados é 70,1 ≤ λc ≤ 71,1%, embora, também se tenha atingido outros fatores 

(marcados com “●”: 73,5 a 77,3%) com as semiflexibilidades η = {0,1/0,4/0,475}.  

Essas respostas podem ser entendidas ao acompanhar-se a Fig. 8.13, na qual são 

indicadas as deformadas dos portais, no estado pré-colapso, obtidas para as ligações 

com a. η = 0,1 (λc = 73,8%); e, b. η = 0,2 (λc = 70,8%), respectivamente. 
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Tabela 8.5 Efeito da CI no portal com carga (q0/4). 

Ligações (a) CI )-/-( (b) CI (+/+) (c) CI )-/+) (d) CI (+/-( 
Base Viga ∆xC λc ∆xC λc ∆xC λc ∆xC λc 
A-B C-D [cm] [%] [cm] [%] [cm] [%] [cm] [%] 

rótula +0,724 62,6 +0,821 63,6 +1,550 58,7 -1,550 58,7 
engaste 

ligação 
η = 0,25 +0,346 80,1 -0,733 79,3 -1,025 76,8 +1,025 76,8 

Nota: 1) fatores de carga λc e deslocamentos ∆xC no pré-colapso. 
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Figura  8.11  Trajetória do portal da Fig. 8.2(b) com carga (q0/2). 
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Figura  8.12  Portal da Fig. 8.2(b) com carga (q0/4). 
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Tabela 8.6 Efeito das cargas verticais: 75% P0 e 25% q0. 
Ligações Fator de carga Ligações: momentos e rotações Esf. axiais  Momentos nas 

Parâmetros [%] [kNcm] [mrad] bases [kN] bases [kNcm] 
η g λy λc   MC -MD θC -θD NA NB MA MB 

0,016 0,008 35,4 70,6 3220   3977 0,003 0,004 1056 1059 -506    3460 
0,100 0,063 36,1 ● 73,8 2402   3510 0,157 0,230 1105 1109  388 3285 
0,200 0,166 37,2 70,8 3144   3929 0,550 0,687 1061 1064 -534 3375 
0,250 0,250 38,1 71,1 3096 3899 0,812 1,022 1064 1067 -536 3331 
0,300 0,375 39,3 71,6 2966 3811 1,166 1,499 1072 1076 -464 3266 
0,400 1,000 44,1 ● 73,5 2531 3528 2,654 3,700 1101 1104 -310 2994 
0,475 4,750 50,6 ● 77,3 1375 2710 6,876 13,54 1157 1162   285 2371 
0,499 124,8 48,1 70,1     22   158 2,852 11,57 1051 1052 2789 2849 

 
Ligações Deslocamentos Momentos Fatias 

Parâmetros ∆xC -∆yE [kNcm] plásticas 
η g [cm] [cm] ME [ ] 

0,016 0,008 1,131 2,020 31681 3499 
0,100 0,063 1,499 2,239 33970   4562 
0,200 0,166 1,080 2,037 31893  3509 
0,250 0,250 1,060 2,048 32032 3660 
0,300 0,375 1,062 2,082 32440 3871 
0,400 1,000 1,010 2,209 33748 4588 
0,475 4,750 1,023 2,795 36630 5825 
0,499 124,8 2,043 2,366 34964 4699 

Notas: 1) resultados no estado pré-colapso; 2) ligações rígidas η ≤ 0,25 (█). 

 

Nessa figura 8.13 estão representadas, também, as duas tendências opostas que 

geram o ponto estacionário (sem convergência) ou de bifurcação, isto é: 

a. as colunas perdem a estabilidade, levando ao aumento da deformação horizontal 

para a direita, com o colapso da parte superior da coluna B-D abaixo do topo 

(ponto F, nó 18), [essa tendência está na Fig. 8.13(a)]; e   

b. dada a elevada plasticidade, a viga passa a se comportar como um tirante 

(catenária, tende ao colapso do ponto F=E), o que puxa as colunas consigo para 

dentro do espaço da estrutura [essa tendência é mostrada na Fig. 8.13(b)]. 

 

Algumas vezes, a primeira tendência predomina e se vai um pouco mais longe, o 

que justifica o fato de os fatores de carga serem um pouco maiores. Mas, em geral, 

sobrevém a mesma incapacidade de convergir, explicada pela situação da coluna da 

direita (B-D), que não consegue ir para a direita (flambagem) ou para a esquerda (flexão 

de viga), ficando o problema sem continuação (o programa fica alternando entre essas 

duas configurações). 

Deve-se lembrar que os valores de η ≤ 0,3 representam ligações rígidas, ou seja, 

todas têm, aproximadamente, o mesmo comportamento. Daí pode-se deduzir que os 

fatores de carga maiores obtidos não estão atrelados à semiflexibilidade da ligação, pois 



Tese • AR Alvarenga • Cap. 8 – Análise Avançada incluindo a ligação 

 

369 

o mesmo aconteceu antes na Tab. 8.4 para η = 0,2 e CI )-/-(, como também na Tab. 8.6 

para o parâmetro η = 0,4 e 0,475; que correspondem às ligações flexíveis. Além disso, 

verifica-se que a rotação da ligação atinge um máximo absoluto (59 ≤ λ ≤ 76%) e 

começa a reduzir-se, bem como os momentos, a partir desse máximo. 

Na figura 8.14, representa-se a variação das cargas limite com o parâmetro η, 

ficando caracterizado o efeito da ligação rígida, o predomínio da flexão em E na carga 

(P+q0)/2 e um trecho intermediário da carga (3P+q0)/4, com alguns pontos excedendo o 

comportamento esperado. Conclui-se que a carga distribuída predomina em relação à 

flambagem, dada a maior rigidez da viga para travar a coluna, enquanto no meio-vão a 

plasticidade provoca o colapso da seção. 
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Figura  8.13  Bifurcação do portal com cargas verticais (FE= 50): 
(a) tendência à flambagem das colunas; (b) tendência a formar mecanismo de viga. 
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Figura  8.14  Variação do fator de carga limite com a semiflexibilidade. 
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8.6 CARGA HORIZONTAL COMBINADA ÀS VERTICAIS  

Nesta seção, varia-se a semiflexibilidade η (isto é, a rigidez da ligação) e são 

avaliadas as três condições de carregamentos, todas incluindo o esforço horizontal H 

(máx. H0 = 150 kN), somado às seguintes cargas atuando simultaneamente: 

a. 50% da carga vertical P0 (P = 750 kN) em cada coluna; 

b. 50% da carga distribuída q0 (q = 281,2 kN/m) na viga; e  

c. 25% de P0 (P = 375 kN) por coluna, e 25% de q0 (q = 140,6 kN/m) na viga. 

 

8.6.1  CARGA HORIZONTAL H + 50% DA VERTICAL P0 

Na primeira condição de estudo (H +50% P0), o fator de carga λc = 100% 

corresponde à aplicação da carga vertical máxima de P = 750 kN (P0/2) e ao esforço 

horizontal H = H0 = 150 kN. Varia-se o parâmetro η e adota-se a imperfeição inicial 

limitadora da Fig. 8.6(c) com -/+ para desenvolver a Tab. 8.7.  

Comprova-se novamente que o fator de carga de colapso λc não varia muito para a 

semiflexibilidade η ≤ 0,3 situando-se entre 61 e 62%. A partir daí decai, atingindo 

apenas 35% para a condição quase rótula (flexível).  

Constata-se que o giro da ligação para os primeiros casos é bem pequeno, o que 

identifica que essas ligações como rígidas. Em geral, o colapso se dá por cisalhamento 

(Eq. 4.3) combinado à plasticidade e à flambagem, no topo da coluna ponto D (nó 17), 

ou, também, por ponto estacionário.  Já quando η atinge 0,4 e caminha para 0,5; entra-se 

num outro de comportamento no qual as bases (engastes) recebem esforços de flexão 

maiores que os anteriores. Nessas análises, aconteceram algumas dificuldades de 

convergência no final da trajetória, mas detectou-se ou o colapso plástico na base B (nó 

25), ou o salto dinâmico seguido de singularidade da MRG (flambagem). 

Na figura 8.15, traçam-se as trajetórias de equilíbrio para as semiflexibilidades η 

escolhidas, nas quais se aplicam os mesmos comentários feitos sobre a Tab. 8.6. 

 

8.6.2  CARGA HORIZONTAL H + 50% DA VERTICAL DISTRIBUÍDA (q0) 

Na segunda condição, combinam-se o horizontal H e 50% da carga distribuída q0, 

mantendo a mesma imperfeição inicial limitadora da Fig. 8.6(d) com FP+CI +/- 

variando-se o parâmetro η para montar a Tab. 8.8. As trajetórias de equilíbrio 

correspondentes estão na Fig. 8.16, cujos resultados se tornam diferentes para η ≥ 0,40. 
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Aplicando esse carregamento, a formação de mecanismo de viga prevalece com 

seu colapso por cisalhamento (Eq. 4.3) e plasticidade no meio-vão (ponto E, nó 13) para 

a semiflexibilidade η ≤ 0,40. 

 

Tabela 8.7 Efeito de H + 50% de carga vertical P0. 

Ligações Fator de carga Ligações: momentos e rotações Esf. axiais  Momentos nas 
Parâmetros [%] [kNcm] [mrad] bases [kN] bases [kNcm] 
η g λy λc -MC -MD -θC -θD NA NB MA MB 

0,016 0,008 39,1 62,0 9465    8935 0,010 0,009 431 500   9681    9090 
0,100 0,063 38,7 61,9 9507   8970 0,623 0,588 430 499   9748  9143 
0,200 0,166 38,0 61,6 9419   8917 1,646 1,559 428 498   9779  9178 
0,250 0,250 37,6 61,4 9425 8925 2,471 2,341 426 495   9833  9223 
0,300 0,375 36,9 61,0 9323 8869 3,667 3,488 423 492   9876  9268 
0,400 1,000 34,4 58,2 8431 8203 8,842 8,603 405 468 10082  9524 
0,475 4,750 28,5 46,4 4789 4758 23,94 23,78 330 366 10874 10551 
0,499 124,8 23,5 35,0   200   200 26,21 26,17 262 263 11055 11065 

 

Ligações Deslocamentos Fatias 
Parâmetros ∆xC -∆yE plásticas 
η g [cm] [cm] [ ] 

0,016 0,008 3,721 0,249 1822 
0,100 0,063 4,000 0,253   1851 
0,200 0,166 4,112 0,252   1825 
0,250 0,250 4,370 0,255 1841 
0,300 0,375 4,556 0,255 1788 
0,400 1,000 5,266 0,248 1389 
0,475 4,750 8,254 0,252   604 
0,499 124,8 6,691 0,154 1816 

Notas: 1) resultados no estado pré-colapso; 2) ligações rígidas η ≤ 0,25 (█). 
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Figura  8.15  Trajetórias de equilíbrio do portal com H + 50% de P0. 
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Tabela 8.8 Efeito de H + 50% de carga distribuída q0. 

Ligações Fator de carga Ligações: momentos e rotações Esf. axiais  Momentos nas 
Parâmetros [%] [kNcm] [mrad] bases [kN] bases [kNcm] 
η g λy λc MC -MD θC -θD NA NB MA MB 

0,016 0,008 19,8 41,1 1380   10874 0,001 0,011 291 326   4446    9936 
0,100 0,063 20,4 41,5 1315   10845 0,086 0,711 293 329   4650  9978 
0,200 0,166 21,3 42,0 1211   10805 0,212 1,889 297 333   4985 10087 
0,250 0,250 22,0 42,3 1244 10784 0,326 2,827 299 335   5140 10081 
0,300 0,375 23,0 42,7 1305 10763 0,513 4,233 303 338   5482 10167 
0,400 1,000 26,9 43,4 1720 10706 1,804 11,23 309 309   6541 10378 
0,475 4,750 24,9 40,2   152   5770 0,759 28,84 291 312   8554 10207 
0,499 124,8 23,4 34,9  -114    294 14,91 38,40 261 263 11057 11056 

 
Ligações Deslocamentos Momentos Fatias 

Parâmetros ∆xC ∆yE [kNcm] plásticas 
η g [cm] [cm] ME [ ] 

0,016 0,008 2,508 2,128   35088 2509 
0,100 0,063 2,575 2,200   35539   2649 
0,200 0,166 2,701 2,321   36510   2857 
0,250 0,250 2,784 2,432 36416 2978 
0,300 0,375 2,962 2,665 36808 3085 
0,400 1,000 3,569 3,708 37384 3423 
0,475 4,750 4,197 3,694 37383 3090 
0,499 124,8 6,776 2,208 34866 3532 

Notas: 1) resultados no estado pré-colapso; 2) ligações rígidas η ≤ 0,25 (█). 
 

0 1 2 3 4 5 6 7

Deslocamento horizontal em C DxC  [cm]

0

10

20

30

40

50

F
at

or
 d

e 
ca

rg
a 

 λ
 [

%
]

42%  p/  η ≤ 0,40   

η = 0,
50 (r

ótu
la)

  

η
 =

 0
,4

0 
  

η
 =

 0
,3

0 
  

η
 =

 0
,0

0 
(e

ng
as

te
)  

η =
 0

,4
75

   

H
q

H =  λ H0
q  =  λ q0/2

η =
 0

,4
88

   η
 =

 0
,4

50
   

C

 

Figura  8.16  Trajetórias de equilíbrio do portal com H + 50% de q0. 
 

Entretanto, a plasticidade ocorre também nas extremidades da coluna do lado 

direito (em geral à compressão) e é mais concentrada, enquanto do outro lado a 

plasticidade pouco se manifesta. Esse panorama mantém-se nesse intervalo de η, pois o 

esforço axial na coluna não prepondera em relação à flexão da viga.  
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Quando a ligação da viga tende a ser flexível, a plasticidade se concentra na base 

e em ambas as colunas, mas predomina o colapso pela flexão da zona central da viga. 

Repare-se que a ligação no lado esquerdo fica com pouca carga (pequenos giros e 

momentos), enquanto, no direito, tanto o momento quanto a rotação são significativos.  

 

8.6.3  CARGA HORIZONTAL H + 25% DA VERTICAL CONCENTRADA E DISTRIBUÍDA  

A última condição combina as cargas verticais em 25% de cada (P0 e q0), sendo o 

horizontal incrementado conjuntamente e a configuração limitadora é com FP+CI -/+. 

Então, tem-se uma parcela de efeito da flambagem nas colunas e as ligações são 

sensibilizadas pelas cargas na viga, enquanto o meio-vão da viga continua sofrendo uma 

formação de ZP à flexão menor. Essa consideração é abordada na Tab. 8.9 e possui as 

trajetórias de equilíbrio desenhadas na Fig. 8.17. 

Como nos demais casos, para η ≤ 0,40; o fator de carga limite λc fica entre 56 e 

57%, quase não varia, indicando o comportamento rígido da ligação.  A partir dessa 

semiflexibilidade, entra-se no comportamento flexível, no qual existe uma modificação 

maior de comportamento. Com η = 0,30 obtém-se um bom aproveitamento (λc = 57,1%, 

máximo).  

 

Tabela 8.9 Efeito de H + 25% das cargas concentrada P0 e distribuída q0. 

Ligações Fator de carga Ligações: momentos e rotações Esf. axiais Momentos nas  
Parâmetros [%] [kNcm] [mrad] bases [kN] bases [kNcm] 
η g λy λc -MC -MD -θC -θD NA NB MA MB 

0,016 0,008 26,8 56,0 5114 9755 0,005 0,010 392 448   8959   9457 
0,100 0,063 27,4 56,3 5242 9732 0,344 0,638 394 450   9147 9479 
0,200 0,166 28,4 56,6 5525 9706 0,966 1,697 396 453   9458 9542 
0,250 0,250 29,1 56,9 5599 9684 1,468 2,539 398 455   9583 9536 
0,300 0,375 30,1 57,1 5826 9666 2,291 3,802 399 457   9781 9569 
0,400 1,000 30,7 55,9 5370 9619 5,631 10,09 391 447 10035 9720 
0,475 4,750 27,5 46,8 4124 6287 20,61  6,25 332  371 10874 10537 
0,499 124,8 23,5 34,9   162  246 21,18 32,14 261 263 11059 11053 

 

Ligações Deslocamentos Momentos Fatias 
Parâmetros ∆xC -∆yE [kNcm] plásticas 
η g [cm] [cm] ME [ ] 

0,016 0,008 3,380 1,498  25853 1530 
0,100 0,063 3,542 1,515  26082  1600 
0,200 0,166 3,862 1,539  26410  1672 
0,250 0,250 4,063 1,553 26606 1750 
0,300 0,375 4,438 1,573 26848 1829 
0,400 1,000 5,193 1,535 26015 1685 
0,475 4,750 9,093 1,427 22364  664 
0,499 124,8 6,769 1,100 17434 1870 

Notas: 1) resultados no estado pré-colapso; 2) ligações rígidas η ≤ 0,25 (█). 
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Figura  8.17  Trajetórias de equilíbrio do portal com H + 25% de (P0 + q0). 
 

Nesse intervalo, os momentos e rotações na ligação do lado esquerdo (ponto C) 

são aproximadamente metade do que se encontra no lado direito (ponto D). Aparecem 5 

ZPs, sendo a central na viga, duas no topo e duas nas bases das colunas; porém há uma 

tendência de colapso da seção mais solicitada por cisalhamento (Eq. 4.3) associado à 

plasticidade e à flambagem, no topo da coluna direita, ponto D (nó 17). 

Quando a ligação da viga torna-se flexível, as ZPs inferiores passam a ser maiores 

e com ambos os sinais (ZP de flexão).  
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Figura  8.18  Efeito de H no fator de carga limite com a semiflexibilidade. 
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Na figura 8.18 elucida-se o efeito de H na carga limite quando η varia, notando-se 

um leve crescimento para a carga q0/2 (benefício) até 0,4; porém, a redução é 

significativa para todas as combinações de cargas a partir desse ponto. Nessa condição o 

colapso acontece por plasticidade e cisalhamento nas bases das colunas (ver subseções 

3.2.3 e 4.3.1). Os momentos no meio-vão não são tão significativos, sendo a ZP da viga 

apenas na parte superior da seção, à compressão. 

 

8.7 MODIFICANDO A VIGA DO PORTAL 

Nesta seção, aborda-se o problema do portal AA, com o perfil 8 WF 31 

substituindo o de Chen & Zhou (1987). Como esse perfil é esbelto para esse vão e tem 

um momento plástico bem menor, a análise realizada limitar-se-á ao estudo do seu 

comportamento na hipótese de carga horizontal H e 50% da vertical P0 nas colunas. 

Agora rigidez da ligação, que é constante nessas análises, será definida por: 

Para esse portal e cargas, a CI )-/+) é a que governa e a direção do FP é a mesma 

de H, desenvolvendo-se a Tab. 8.10. Nessa tabela, verifica-se que as variações de η 

provocam modificações generalizadas das respostas estruturais desse portal. Não se 

identifica um comportamento do tipo rígido, visto antes com o portal CZ, já que a seção 

8 WF 31 para esse vão é bastante flexível.   

 As trajetórias de equilíbrio traçadas na Fig. 8.17 distribuem-se de forma suave 

(como um leque) para a semiflexibilidade η, verificando-se uma mudança gradual de 

comportamento entre os extremos: o engaste e a rótula. 

Para o engaste ou ligação quase rígida (ou η ≤ 0,1), há 2 ZPs de flexão, a maior 

sendo de compressão, nas bases das colunas e apenas de compressão no topo. A viga 

também apresenta ZPs de compressão no lado superior à esquerda, e inferior à direita. À 

medida que a semiflexibilidade η cresce, as ZPs na viga e no topo da coluna 

desaparecem, enquanto as ZPs da base crescem também. Isso suscita a modificação da 

imperfeição limitadora correspondente de FP+CI +/- da ligação do tipo rígido para 

FP+CI -/+ da flexível, embora nos resultados apresentados na figura seja considerada 

a primeira configuração imperfeita. Note-se que, por essa razão, os resultados para η ≥ 

0,3 não são governantes. 
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Tabela 8.10 Efeito de H + 50% de carga concentrada P0 no portal AA. 

Ligações Fator de carga Ligações: momentos e rotações Esf. axiais Momentos nas 
Parâmetros [%] [kNcm] [mrad] bases [kN] bases [kNcm] 
η g λy λc -MC -MD -θC -θD NA NB MA MB 

0,016 0,008 35,2 59,7 9087 8809 0,027 0,026 414 482 10038     9429 
0,100 0,063 34,0 57,5 8150 8020 2,968 2,921 401 462 10121   9580 
0,200 0,166 32,5 54,6 7221 7144 7,013 6,939 383 436 10309   9827 
0,250 0,250 31,5 53,7 7312 7240 10,65 10,55 376 430 10451   9953 
0,300 0,375 30,4 51,1 6430 6378 14,05 13,94 359 407 10605 10168 
0,400 1,000 27,5 44,1 4028 4009 23,48 23,36 316 346 11012 10742 
0,475 4,750 24,5 37,0 910 908 25,19 25,14 274 281 11104 11047 
0,499 124,8 23,2 34,5 35,8 35,8 26,04 26,00 259 259 11047 11041 

 

Ligações Desloc. Fatias 
Parâmetros Rk ∆xC plásticas 
η g [kNm/rad] [cm] [ ] 

0,016 0,008   3425455 5,484  1825 
0,100 0,063  27458 5,350   1393 
0,200 0,166 10297 5,886    994 
0,250 0,250      6864,6 7,157   748 
0,300 0,375      4576,4 7,570   644 
0,400 1,000      1716,2 8,798 1444 
0,475 4,750        361,3 6,940 1816 
0,499 124,8          13,8 6,570 1802 

Notas: 1) resultados no estado pré-colapso; 2) FP+CI -/+; 3) (█) resultados não-governantes. 

 

Na figura 8.20, indica-se a variação do fator de carga de colapso com os perfis 

para esse carregamento (H+P0/2). No perfil do portal CZ, verifica-se o comportamento 

rígido, seguido de uma perda de capacidade e modificação da carga de colapso de forma 

abrupta. Já com o perfil mais esbelto, observa-se uma variação quase uniforme (linear) 

dessa perda, até próximo de η = 0,25 onde a mudança de curvatura inicial para FP+CI 

+/- é percebida pela queda mais abrupta.  

Como esperado, quando as vigas são ligadas com rótulas, esses portais têm o 

mesmo comportamento; quando engastados, as diferenças tendem a ser menores, pois a 

viga fornece travamento à coluna suficiente para a carga de flambagem ficar próxima. 

O escoamento tende a ser mais uniforme (quase linear) para portal AA, enquanto 

para o CZ há dois trechos que acompanham a forma do colapso. 

8.8 ANÁLISE AVANÇADA DO PORTAL COM LIGAÇÃO MIDIRRÍGIDA 

Realiza-se, agora, o resumo da Análise Avançada do portal CZ considerando a 

ligação midirrígida (η = 0,25) e verifica-se o efeito das combinações de carregamentos 

no seu comportamento. Na figura 8.21, traçam-se as diversas trajetórias de equilíbrio 

obtidas pela ação dos carregamentos aplicados, indicados na Tab. 8.11. 
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Figura  8.19  Trajetórias de equilíbrio do portal AA com H + 50% de P0. 
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Figura  8.20  Variação do fator de carga de colapso e escoamento com o perfil. 
 

Pela figura 8.21, conclui-se que a hipótese (P0+q0)/2 (P0 = 1500 kN e q0 = 562,5 

kN/m) é a que produz o menor fator de carga, sem horizontal (“●”, 44,9%). Com o 

horizontal combinado, a carga limite corresponde a (q0/2, “►”, 42,3%). Portanto, o fator 

de carga global 40% atende a todas as condições simultaneamente, com uma pequena 

folga.  
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A indicação do deslocamento limite L/400 mostra que as condições de cargas 

verticais atendem às exigências de norma, porém com a presença do horizontal H, tais 

deslocamentos deveriam ser metade ou o fator de carga limite reduzido a ≈ 20%. 
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Figura  8.21  Trajetórias de equilíbrio do portal com ligação midirrígida. 
 

Tabela 8.11  Cargas limite do portal com ligação midirrígida. 

Cargas Fator de carga Ligações: momentos e rotações Esf. axiais  Momentos nas 
aplicadas [%] [kNcm] [mrad] bases [kN]  bases [kNcm] 

(1) Vertical λy λc  MC -MD θC -θD NA NB MA MB 
– P0 65,5 89,2  -1178     1125 -0,309 0,295 1336 1340   682     622 
–  (P0+q0)/2 26,7 ● 44,9   7535  7635   1,976 2,002   673   674 -3555  5032 
– (3P0+q0)/4 38,1 71,1   3096     3899 0,812 1,022 1064 1067  -536  3331 
H – 54,7 91,4 12091 11921 3,170 3,126   -45     45 12367 12366 
H P0/2 37,6 61,4 -9425  8929  -2,471 2,341  426   495   9833   9223 
H q0/2 22,0 ► 42,3  1244 10784 0,326 2,827  299   335  5140 10081 
H (P0+q0)/4 29,1 56,9 -5599   9684  -1,468 2,539  398   455   9583  9536 

 
Cargas Deslocamentos Momentos Fatias Imperfeições 

aplicadas ∆xC -∆yE [kNcm] plásticas iniciais 
(1) Vertical [cm] [cm] ME [ ] FP+CI 
– P0 0,637 0,438 – 5654 +/- 
–  (P0+q0)/2 0,771 3,921   37437   4043 +/- 
– (3P0+q0)/4 1,060 2,048 32032 3660 +/- 
H – 4,760 0,137 – 1650 -/+ 
H P0/2 4,370 0,255 – 1841 -/+ 
H q0/2 2,784 2,432 36416 2978 +/- 
H (P0+q0)/4 4,063 1,553 26606 1750 +/- 

Notas: 1) carga horizontal; 2) resultados no estado pré-colapso; 3) (█) critérios limite.  
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Deve-se checar a flecha vertical no ponto E (nó 13) que não pode superar B/180 = 

2,96 cm. Observa-se que a carga distribuída (q) antecipa a formação do mecanismo 

plástico em relação à flambagem, mas na presença do esforço horizontal (H) os efeitos 

secundários combinados (P∆ e Pδ) aceleram a flambagem. 

Nas seções anteriores, ficou evidenciado que o aparecimento da plasticidade e sua 

propagação pela estrutura atende à determinação dos pontos de maior rigidez, onde 

ocorre a formação das zonas plásticas (ZP) primeiro. Assim, pode-se acompanhar o 

estado das ZPs do portal no instante pré-colapso pela Fig. 8.22, sobre a qual se fazem as 

seguintes observações: 

a. H+50% P0 – não há ZPs na viga, apenas nas colunas [ver Fig. 8.22(a)]. Se a 

ligação tende a ser rígida (η ≤ 0,3), aparecem as ZPs no topo das colunas e a CI 

limitadora é a (+/-(. Se a união é flexível, podem ocorrer apenas ZPs na base, 

quando então a CI limitadora passa a ser a oposta )-/+);  

b. H +50% q0 – a viga desenvolve uma ZP no meio-vão (ponto E) por flexão [ver 

Fig. 8.22(b)]. Se a ligação é rígida (η ≤ 0,3) existem 2 ZPs nos extremos da 

coluna B-D (em alguns casos, mais extensas), enquanto na outra coluna a 

plasticidade, praticamente, não se manifesta ou é insignificante. Quando a 

rigidez da conexão é menor, a ZP do meio-vão da viga tende a predominar antes 

que a flambagem ou outras formações de ZPs modifiquem a direção da CI (+/-(. 

Nessas condições sucede o colapso por plasticidade combinada ao cisalhamento 

(Eq. 4.3) no ponto E;  

c. H +25% (P0 +q0) – a ZP que ocorre na viga tende a ser menor, e, se a união é 

rígida (η ≤ 0,3), desenvolvem-se 5 ZPs, com 2 ZPs em cada coluna (uma em 

cada extremidade, base e topo), sendo extensas para ligações mais rígidas [ver 

Fig. 8.22(c)]. Casos de menor rigidez levam à redução ou ao desaparecimento 

das ZPs do topo das colunas, primeiramente, no ponto C. A região mais 

solicitada é o ponto D, onde acontece o colapso por plasticidade conjugada ao 

corte (Eq. 4.3); e   

d. os casos incluindo a carga horizontal são bem diferentes da condição de carga 

de flambagem pura (apenas a vertical P atuando), mostrada antes na Fig. 8.10.  
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Figura  8.22  Zonas plásticas do portal midirrígido: 
(a) carga H + 50% de P0; (b) carga H + 50% de q0; (c) carga H + 25% de (P0+q0);  

(d) convenção: (����) tração, (����) compressão. 
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8.9 EFEITO DAS LIGAÇÕES NÃO LINEARES 

Para finalizar as análises deste capítulo, investiga-se o portal CZ, nas piores 

condições de projeto, já determinadas, de carga e imperfeições geométricas limitadoras 

correlatas, porém utilizando ligações não lineares. 

Para tanto, empregam-se duas versões (D2 e D3) obtidas por analogia (Meili, 

1994) das ligações da seção 7.5: C2 e C3, aproximadas pelo modelo RBL, uma rígida e 

a outra flexível. Esta é outra proposta deste trabalho, que justifica também o uso do 

modelo RBL, já apresentado. Repare, também, que as ligações devem ser simétricas. 

Supõe-se que o mesmo projeto da ligação é adotado para as duas vigas que 

possuem seções diferentes, caracterizadas pelas suas alturas: 

a. a viga  original 8 WF 48, com d = 216 mm (Chan & Chui, 2000); e  

b. a viga do portal CZ, 16 WF 50, com d = 414mm. 

 

Deseja-se aplicar às ligações uma analogia, na qual se identifica de forma simples 

parâmetros de comportamento. Neste caso, parte-se já de relações que são conhecidas 

[por exemplo, método das componentes (Eurocode 3, 1992)], desde que não haja 

grandes variações nos demais elementos que constituem a ligação, exceto o aumento de 

distancia entre as partes ligadas, como representado na Fig. 8.23.   

Para se fazer essa analogia proposta, seleciona-se um parâmetro adequado ou 

mais. (Ver apêndice A.9). Nesse problema, adota-se a distância hs, pois se considera que 

a ligação e seus elementos possuem características semelhantes (mesmos parafusos, 

furos, soldas, espessuras, chapas, detalhes, material, etc.). 

Para a ligação rígida (D2), supondo que as abas terão deformações similares às de 

ensaio (mostradas esquematicamente na Fig. 2.32 (parte soldada) e Fig. 2.35 (parte 

aparafusada, incluindo a chapa); seria indicado considerar como dimensão característica 

a distancia média entre as abas da seção. Isso porque é o elevado esforço de tração que 

provém da aba superior o causador do efeito alavanca, do escoamento e da deformação 

da aba da coluna, da tração nos parafusos, etc. No lado inferior, é a compressão local 

que, através chapa, esmaga a aba e deforma a alma da coluna, etc. Portanto, o parâmetro 

característico hs será definido por: 

Na ligação flexível [como indicado nas Figs. 2.36(b) e 2.37(a)], constata-se uma 

deformação maior na parte superior da cantoneira (ou da chapa de cabeça), associada ao 

( )tdh s −=  (8.4a) 
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parafuso superior, e na parte inferior, ao contato da borda da cantoneira ou chapa de 

ligação com efeito menor que o primeiro. Assim, escolhe-se para parâmetro da analogia 

a distancia entre o furo superior e a borda inferior; isto é: 

no qual hL é altura da cantoneira [ha da Fig. 2.17(b)] ou da chapa [hp da Fig. 2.17(h)], e 

pL é a distancia de borda do parafuso (superior, supõe-se tracionado). 

Observando-se a Fig. 8.24, as grandezas principais da ligação podem ser 

relacionadas ao parâmetro característico (hs) e à altura da seção (d) pelas expressões: 

(b) (a) 

(c) (d)

41
4

29
0

21
6

21
6

41
4

16
0

 

Figura  8.23  Ligações simétricas não lineares: 
(a) rígida C2; (b) flexível C3; (c) modificada D2; (d) modificada D3. 
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Figura  8.24  Relações da analogia: 
(a) proporção Mu e parâmetro hs; (b) rotação última θu e altura do perfil d.  

( )LLs phh −=  (8.4b) 
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nas quais HMu é a carga máxima transmitida pela ligação através da aba da viga e δu 

representa a soma de todas as deformações (à tração e à compressão da ligação). 

Dessa forma, pode-se estabelecer a relação entre as propriedades já conhecidas e 

as desejadas empregando o parâmetro característico de cada uma com as seguintes 

equações: 

nas quais as grandezas conhecidas possuem o subscrito (C) e as desejadas (D). 

Para completar a aproximação, empregam-se os mesmos parâmetros de forma das 

curvas (C2 & C3) para as novas ligações (D2 & D3), respectivamente.  Como as 

ligações (C2 & C3) são diferentes, a análise será dividida, então, em duas partes: 

a. ligação não linear rígida D2; e  

b. ligação não linear flexível D3. 

 

8.9.1  LIGAÇÃO NÃO LINEAR RÍGIDA D2 

Os parâmetros característicos [mm] são dados pela Eq. 8.3(a) conforme: 

Como a ligação é rígida, pode-se fazer a melhor estimativa de Mu baseando-se na 

relação entre os Mp das seções correspondentes:   

Como o ASTM A 36 é mais resistente que o ASTM A7, efeitos locais e 

deformações tendem a ser um pouco menores, o que poderia reduzir um pouco o ângulo 

de rotação última e aumentar um pouco a rigidez. Nesse exemplo, isso não foi 

considerado, pois as rotações finais das análises são pequenas e o possível acréscimo de 

rigidez é um benefício ignorado (de avaliação complexa). 
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 (8.6a-c) 

hsC = 216-17,6 = 198,4     hsD = 414-16,14 = 397,9     hsD / hsC = 397,9 / 198,4 ≈ 2.  

   8 WF 48 em ASTM A7     MpC = 23,5 kN/cm2 × 803 cm3 = 18870 kNcm 

   16 WF 50 em ASTM A36  MpD = 25  kN/cm2 × 1505 cm3 = 37625 kNcm 

   MpD / MpC = 37625 / 18870 = 1,994 ≈ 2 (coincidência!).                                  
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Nesse caso, ambos os ajustes de Mu estimados (com hs ou com Mp) ficaram 

próximos. As propriedades da curva D2 são obtidas pelas propriedades da ligação C2, 

indicadas na Tab. 7.14 e das Eqs. 8.6(a-c). Substituindo os valores, chega-se a: 

Os parâmetros da curva C2 com modelo RBL são calculados: 

Os coeficientes αi são definidos pelas Eqs. 2.66 e 2.67, fazendo:  

Com os parâmetros de forma (βL & κp) calculados, encontram-se então: 

Os resultados obtidos de forma numérica computacional (com várias casas de 

precisão) diferem um pouco e os parâmetros adotados para o modelo RBL das curvas 

(D2 & D3), com arredondamentos, são listados na Tab. 8.12. 

Os resultados anteriores geram as curvas Rk-θ do modelo RBL, indicadas na Fig. 

8.25(a), e as curvas M-θ construídas por analogia (D2 & D3) da Fig. 8.25(b), notando-

se que a curva M-θ D3 é muito próxima da C2 anterior, com menor rotação última. 

Lembre-se que, nas curvas (C2 & C3), a rotação última é θu = 50 mrad. 

As grandezas do estado pré-colapso deste portal são apresentadas na Tab. 8.13, 

sobre a qual se fazem as seguintes observações: 

 

   MuD = 2 MuC = 2 × 187 ≈                    374 kNm      

   RkiD = (2)2 RkiC = 4 × 17273 = 69092  kNm/rad 

   θuD = arctg[ 215,9 × tan(0,05041) / 414] = 26,305 mrad   

   κA = RkA/Rki = 1461/ 17273 = 8,458%     κp = Rkp/Rki =  379 / 17273 = 2,194%       

   α3 = (Rkp θu) / Mu = 379 × 0,05041 / 187 = 0,102 

   Rk2
* = Rka

* θu/ (θu- θa) = (1461-379)×0,05041/ (0,05041-0,01655) = 1610,9 kNm/rad 

   α2 = (Rk2
* θu) / (2Mu) = 1610,9× 0,05041 / (2×187) = 0,218 

   α1 = 1 -  α2 - α3 = 1 – 0,102 -0,218 = 0,680        βL =  α1 / ( α1+ α2) = 0,757 

   Rkp =  κp Rki = 2,194% ×69092 = 1515,9 kNm/rad 

   α3 = (Rkp θu) / Mu = 1515,9×0,026305 / 374 = 0,1066     

   α1+ α2  = 1 -  α3 = 1-0,1066 = 0,8934 

   α1 =   βL (α1+ α2) = 0,757 × 0,8934 = 0,6763      α2 = 0,8934-0,6763 = 0,2171 

   Rk2
* = 2 α2 Mu/ θu = 2×0,2171× 374 / 0,026305 = 6173,4 kNm/rad 

   Rk2 =  Rk2
* +Rkp = 6173,4 + 1515,9 = 7689,3  kNm/rad 

   θA = 2  α1 Mu / ( Rki - Rk2) = 2×0,6763×374 / (69092-7689,3) = 8,239 mrad 

 RkA = Rk2
*(θu- θa)/ θu  +Rkp = 6173,4(26,305-8,239)/26,305 +1515,9 = 5755,5 kNm/rad 

   MA = (Rki+Rka)/(2 θa) = [(69092+5755,5) × 0,08239]/2 = 308,3 kNm 
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Tabela 8.12 Propriedades das curvas RBL análogas D2 e D3. 

Rotação [mrad]  Momentos [kNcm] Rigidez [kNm/rad] (1) 
Curva 

θA θu 
(1) MA Mu 

(1) Rki  RkA  Rkp 
D2   8,238 26,304 308,3 374,0 69093 5756 1516 
D3 10,692 26,049 123,6 161,2 19646 3465 1438 

Nota: 1) Dados empregados na solução computacional de PPLANAVA. 
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Figura  8.25  Curvas D2 e D3 obtidas por analogia: 
(a) Rigidez-rotação Rk-θ; (b) Momento-rotação  M-θ. 

 

a. as rotações da ligação são todas de pequeno valor (inferiores a 2 mrad), o que 

indica que a ligação é rígida, e por outro,  à  medida que a plasticidade expande-

se na coluna, a ligação deixa de atuar no problema;  
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b. por essa razão, todas as formas de CI produzem a mesma carga de flambagem 

(λ = 89,3%), que é a mesma encontrada anteriormente; e    

c. os resultados obtidos mostram o mesmo comportamento descrito nos problemas 

das ligações lineares rígidas. 

 

Foram detectados desvios entre o valor do momento da ligação e o obtido pelo 

EF, da mesma natureza indicada na seção 7.6. Esses desvios são pequenos, sendo o 

maior dM = 14,6 kNcm, que corresponde a 0,42% do momento do EF. 

Na figura 8.25 mostram-se os pontos da trajetória de equilíbrio (M-θ) referente à 

ligação em D (nó 16), na condição de carga (H +q0/2), na qual se observa que os pontos 

da análise numérica fazem parte da curva e que o momento pouco supera Mp/4 = 94,2 

kNm. A solicitação na coluna e a plasticidade decorrente determinam a flambagem e o 

colapso, antes que a não linearidade da ligação participe mais da resposta estrutural. 

Avaliando as trajetórias de equilíbrio referentes às diversas condições de cargas, 

como mostra a Fig. 8.26, constata-se que não há diferenças significativas em relação ao 

diagrama da Análise Avançada da ligação midirrígida da Fig. 8.21 anterior. Ou seja, a 

ligação não linear tem um comportamento próximo do linear nesse 1/4 da extensão. Isso 

indica, também, que a aproximação linear da curva M-θ pode ser empregada quando a 

ligação apresenta rotações muito pequenas (da ordem de no máximo 2,5 mrad). 

 

Tabela 8.13 Portal com ligação não linear rígida D2. 

Cargas Fator de carga Ligações: momentos e rotações Esf. axiais  Momentos nas 
aplicadas [%] [kNcm] [mrad] bases [kN] bases [kNcm] 

(1) Vertical λy λc MC -MD θC -θD NA NB MA MB 
– P0 65,7 89,3  -1169    1115 -0,171 0,163 1335 1344    653       595 
–  (P0+q0)/2 25,6 44,9 7551 7644    1,169 1,184   673   674 -3572  5068 
– (3P0+q0)/4 37,0 74,1   2326    3481 0,362 0,540 1109 1114    448  3250 
H P0/2 38,8 61,7  -9459 8954  -1,493 1,406  428   497 9725   9126 
H q0/2 21,1 42,0   1266 10812 0,188 1,732  298  334 4996 10057 
H (P0+q0)/4 28,2 56,7  -5155   9702  -0,828 1,543  397  454 9392   9505 

 

Cargas Deslocamentos Momentos Fatias 
aplicadas ∆xC -∆yE [kNcm] plásticas 

(1) Vertical [cm] [cm] ME [ ] 
– P0 0,607 0,438 – 5614 
–  (P0+q0)/2 0,782 3,844    37425  4049 
– (3P0+q0)/4 1,513 2,263 34183 4665 
H P0/2 4,016 0,252 – 1846 
H q0/2 2,718 2,343 36193 2908 
H (P0+q0)/4 3,795 1,538 26415 1683 

Notas: 1) Carga horizontal; 2) resultados no estado pré-colapso. 
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Figura  8.26  Trajetórias do portal com ligação rígida não linear D2. 
 

8.9.2  LIGAÇÃO NÃO LINEAR FLEXÍVEL D3 

Os parâmetros da analogia [mm] são calculados pela Eq. 8.4(b), pois se supõe que 

a dimensão da linha de base (da chapa de cabeça ou da cantoneira) ao furo do parafuso 

superior seja representativa, isto é: 

sendo as dimensões da chapa hL = {160, 290} e o gabarito furo a borda pL = 32, 

respectivamente. Como a união é flexível, a estimativa de Mu baseia-se na relação entre 

os parâmetros hs mesmo. Obs. hL = ha [Fig. 2.17(b)] ou hp [Fig. 2.17(h)]. 

As propriedades da curva D3 são calculadas com base nas propriedades da ligação 

C3 indicadas na Tab. 7.14 e das Eqs. 8.6(a-c), como na subseção anterior; achando-se: 

Observe-se que, embora a ligação flexível tenha parâmetros hs menores em valor 

que as da rígida, o cálculo da rotação é feito experimentalmente relacionado à dimensão 

da viga, por isso, não se faz o uso do hs para o ajuste da rotação. No caso da ligação 

rígida, faria pouca diferença; já no caso da flexível, há uma diferença maior (24,782 

mrad, 5%).  Os parâmetros da curva C3 com modelo RBL, os coeficientes αi das Eqs. 

2.66 e 2.67 são obtidos da mesma forma que para a curva C2, chegando-se aos valores: 

    hsC = 160-32 = 128     hsD = 290-32 = 258     hsD / hsC = 258 / 128 = 2,015 ≈ 2  

   MuD = 2 MuC = 2 × 80,6 ≈ 161,2 kNm      

   RkiD = (2)2 RkiC = 4 × 4911,7 = 19646  kNm/rad 

   θuD = arctg [ 215,9 × tan (0,04992) / 414] = 26,049 mrad   
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Por meio dos parâmetros (βL & κp), encontram-se as demais grandezas com o 

mesmo processo adotado para a ligação D2, cujos valores arredondados estão incluídos 

na Tab. 8.12. Por simplicidade, as curvas Rk-θ e M-θ dessa ligação estão representadas 

nas Figs. 8.25(a-b) também. Constata-se que essa ligação é classificada pelo Eurocode 3 

(1992) ou por Bjorhovde et al. (1990) como semirrígida. Ou seja, por causa do aumento 

de dimensões, essa união deixa de ser do tipo flexível. Veja-se que isso é bastante 

razoável quando se consideram as dimensões do perfil e da própria ligação (detalhe). 

Na tabela 8.14 são listados os resultados no instante pré-colapso dessa estrutura. 

As trajetórias de equilíbrio são ilustradas na Fig. 8.27. Conclui-se que, apesar de se 

modificar a rigidez da ligação, os fatores de cargas limite, incluindo ou não o esforço 

horizontal, são praticamente os mesmos da Tab. 8.13. 

Entretanto, as trajetórias de equilíbrio se mostram mais inclinadas, atestando 

maior deslocamento horizontal e rotação das ligações também. Na figura 8.25(b) 

marcam-se os pontos da curva M-θ análoga D3, empregados na análise por PPLANAVA. 

Existem pequenos desvios entre o momento da ligação e o do EF, também, sendo 

o maior desvio dM = 28,4 kNcm (0,29% do momento no EF), que é desprezível. 

 Outro aspecto interessante é verificar quais seriam as respostas produzidas pela 

ligação flexível não linear C3 (a curva original) mesmo que essa fosse inadequada ao 

perfil supra (portal CZ). 

Tabela 8.14 Portal com ligação não linear flexível D3. 

Cargas Fator de carga Ligações: momentos e rotações Esf. axiais  Momentos nas 
aplicadas [%] [kNcm] [mrad] bases [kN] bases [kNcm] 

(1) Vertical λy λc MC -MD θC -θD NA NB MA MB 
– P0 66,0 89,0  -1213     1159  -0,633 0,604 1331 1339    774       707 
–  (P0+q0)/2 40,6 44,9 7485     7616   4,639  4,743   673   674 -3505   4926 
– (3P0+q0)/4 28,1 72,5 2771     3681   1,583 2,156 1086 1089   -327   3185 
H P0/2 36,6 60,4  -9357   8946  -6,283 5,889  419   487  9975   9351 
H q0/2 24,5 43,2 1570 10731 0,825 7,813 307   341  6157 10316 
H (P0+q0)/4 31,3 57,4  -6488   9636  -3,883 6,567 400 461  10042   9613 

 

Cargas Deslocamentos Momentos Fatias 
aplicadas ∆xC -∆yE [kNm] plásticas 

(1) Vertical [cm] [cm] ME [ ] 
– P0 0,732 0,437 – 5724 
–  (P0+q0)/2 0,739 4,264 37482 4033 
– (3P0+q0)/4 1,085 2,138   33053   4074 
H P0/2 5,287 0,266 – 1809 
H q0/2 3,345 3,196 37225 3205 
H (P0+q0)/4 5,315 1,620 27413 1887 

Notas: 1) Carga horizontal; 2) resultados no estado pré-colapso. 

    κA  = 17,67%      κp  = 7,32%    α1 = 0,4962    α2 = 0,2811   α3 = 0,2227    βL = 0,638 
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Figura  8.27  Trajetórias do portal com ligação flexível não linear D3. 
 

Na tabela 8.15 apresentam-se os resultados que comprovam uma pequena perda 

de capacidade, além de deslocamentos e momentos maiores. Isso pode justificar o 

emprego da aproximação D3, que parece ser mais coerente e vantajosa do que C3.  

Finalizando este exemplo, na Fig. 8.28 representam-se as zonas plásticas do portal 

com a ligação D3, na qual a maior diferença é a presença levemente maior de fatias 

plásticas na viga e nas bases, com uma ínfima redução no topo das colunas também. 

 

Tabela 8.15 Portal com ligação não linear flexível C3. 

Cargas Fator de carga Momentos Rotações Esf. axiais  Momentos nas 
aplicadas [%] [kNcm] [mrad] bases [kN] bases [kNcm] 

(1) Vertical λy λc MC -MD θC θD NA NB MA MB 
– P0 66,0 86,9 -1271   1249 -2,726 -2,678 1299 1308 1164    1097 
–  (P0+q0)/2 26,1 41,9  4387 4843   11,350  -13,060   628   629  -2006  2732 
– (3P0+q0)/4 49,8 76,5  1800   3088  4,153  7,467 1145 1150   260  2745 
H P0/2 31,7 50,3 -5836 5807  -17,880  -17,700   355   399 10568 10177 
H q0/2 25,6 40,9   524 6790  1,077 -27,430   295   319   8209 10270 
H (P0+q0)/4 29,4 49,8 -5139 6757 -14,300 -27,000   351   396 10656 10272 

 

Cargas Deslocamentos Momentos Fatias 
aplicadas ∆xC -∆yE [kNm] plásticas 

(1) Vertical [cm] [cm] ME [ ] 
– P0 1,123 0,425 – 5461 
– (P0+q0)/2 0,365 3,508 37351 2462 
– (3P0+q0)/4 1,170 2,502 35832   5327 
H P0/2 6,680 0,238 – 1303 
H q0/2 4,106 3,777 37402 2951 
H (P0+q0)/4 7,701 1,495 24143 1421 

Notas: 1) Carga horizontal; 2) resultados no estado pré-colapso. 
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Figura  8.28  Zonas plásticas do portal com ligação não linear flexível D3: 
(a) carga H +50% de P0; (b) carga H +50% de q0; (c) carga H +25% de (P0+q0);  

(e) convenção: (����) tração, (����) compressão. 
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8.10  COMENTÁRIOS FINAIS 

É importante, neste instante, situar um pouco do que foi encontrado, aqui, em 

relação ao trabalho desenvolvido por Chen & Zhou (1987).  Esses pesquisadores 

trataram do portal com rótulas nas bases mostrado na Fig. 8.3(c) e nesta tese adotaram-

se as bases engastadas da Fig. 8.3(a), ambos introduzindo ligações na viga. 

Na realidade, dada a flexibilidade da coluna em relação à viga, a plasticidade 

espalha-se rapidamente por toda a coluna quando submetida à compressão pura. Isso 

ocorre de tal forma que a carga de flambagem (0,951 Ny = 1400 kN) obtida por aqueles 

pesquisadores coincide com a deste trabalho (0,952 P0 = 1428 kN). Isso reafirma as 

conclusões de Alvarenga (2005) no estudo desse portal (versão AA), em que se 

constatou que a presença do engaste na base para o portal travado não altera muito a 

resposta estrutural, isto é, não se pode considerar como um benefício tão significativo. 

Confirmou-se, também, que, seja na condição com rótulas daqueles autores, seja 

com o benefício do engaste, a rotação das ligações continua muito pequena, 

correspondendo a um comportamento quase linear nesse trecho. Para uma ligação muito 

flexível, encontraram a carga máxima de flambagem (0,917 Ny = 1350 kN), que é 

superior à encontrada com CI (+/+) ou s/CI (0,832 P0 = 1256 kN) e bem maior que a 

governante (0,751 P0 = 1126 kN). Isso pode ser imputado à imposição de não 

deslocabilidade do apoio no topo das colunas do portal original. 

Na hipótese de carga (P0+q0)/2, encontrou-se (44,9% q0 = 126,3 kN/m), que se 

aproxima do indicado por Chen & Zhou (1987) (46,1% qp = 127,3 kN/m). Esses 

pesquisadores, porém, empregaram a curvatura das barras gerando a configuração 

simétrica (+/+), o que foi mostrado não ser a CI limitadora (ou seja, a CI simétrica leva 

a valores mais altos da carga limite). Por essa razão, algumas conclusões apresentadas 

no trabalho desses pesquisadores merecem um reestudo ou reavaliação, baseando-se nos 

novos recursos, o que não é o objetivo com este trabalho. 

Ademais, comprovou-se o colapso do ponto E (seção do meio-vão da viga), onde 

os valores de momentos das hipóteses (P0+q0)/2 e (H +q0/2) estão próximos do plástico 

MP = 37624 kNcm para todas as ligações [por exemplo, D2: (99,47 e 96,2)%, D3: 

(99,62 e 98,94)%, respectivamente]. Em geral, quando ocorreram esses momentos 

elevados, a parada do processo de solução foi determinada também, por exceder o 

esforço cortante máximo que a seção elástica remanescente suporta, segundo o critério 

de von Mises (1913), indicado nas subseções 3.2.3 e 4.3.1 (Eq. 4.3). 
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Ao considerar apenas a carga P atuando, determina-se 89,0 ≤ λc ≤ 89,3%, que 

corresponde à carga teórica 1335 ≤ P ≤ 1340 kN, do que o coeficiente de comprimento 

efetivo de flambagem situa-se entre 0,962 ≤ kfl ≤ 0,981 (AISC LRFD, 1993). Deve-se 

lembrar que, nesse caso, λ é um fator de P0 = 1500 kN (não fator de Ny = 1472,5 kN). 

Ao verificar-se o esforço axial que atua propriamente na coluna, encontra-se 1339 ≤ N ≤ 

1344 kN, dado ao efeito de portal e secundários. Observe-se que no engaste (Rk = ∞), 

considerando os parâmetros (GA = 0,001; GB = 0,25) nas equações do ábaco de Julian & 

Lawrence (1959), encontra-se o coeficiente kfl = 1,046 e a carga teórica P = 1339,9 kN 

máxima, que concorda com os resultados encontrados. 

Considerando que a ligação seja qualificada por rígida, a adoção de kfl = 1 (ou 

seja, kfl > 0,981) é favorável à segurança, como já aprovado nas normas em alguns 

casos (Hajjar et al., 1997). Isso é bastante coerente visto que o efeito secundário é 

avaliado por B1/B2 (ou outras correções de mesma finalidade), que complementa a 

diferença entre a carga teórica e o esforço axial atuante na barra/EF. 

Essas comparações de resultados servem para abalizar os agora encontrados e 

justificam algumas das conclusões do capítulo seguinte. Deve-se notar que não se 

preocupou aqui em estabelecer os fatores de combinação das hipóteses individualmente. 

Tomaram-se três condições de cargas verticais e três de verticais acopladas ao 

horizontal, com vista a mero estudo acadêmico. No projeto real, em cada uma dessas 

análises seriam empregadas as cargas fatoradas e se estabeleceria o fator de resistência 

com base na carga limite obtida. Considerando dessa forma o fator de carga limite final 

como (λLIM = 40%), deve-se incluir o fator de resistência (0,9) e, assim, a carga 

calculada de dimensionamento será: λ ≤ 0,9 λLIM → λ ≤ 36%. 

 

O autor espera que esse conjunto de análises, juntamente com os exemplos dos 

capítulos 5, 6, 7 e 8, possa ser usado como banco de provas por outros pesquisadores no 

futuro. Ver apêndice A.11 para listagem de alguns resultados anexos no CD. 
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9.1 INTRODUÇÃO 

Neste capítulo, apresentam-se as conclusões, as críticas, as possíveis melhorias e a 

continuação deste trabalho de pesquisa. 

Na seção 9.2, procuram-se sintetizar partes já apresentadas, ao longo deste e de 

outros trabalhos referentes a esta pesquisa. Na seção posterior, aborda-se a parte mais 

importante deste trabalho, o fechamento sobre o conceito estrutural. 

 Os limites e as falhas naturais contidos nas análises e valores aqui indicados, ou 

mesmo em outras fontes, são inseridos na seção 9.4. Em seguida se faz uma visão do 

futuro, incluindo uma perspectiva dos novos trabalhos e a busca de inserir as novas 

contribuições na realidade do projeto e nas normas. 

9.2 CONCLUSÕES 

Para manter-se uma relação mais precisa, entre as contribuições desta tese e as 

conclusões correspondentes, subdivide-se esta seção nos seguintes tópicos: 

a. integração iterativa do esforço axial (IIEA); 

b. elemento finito com ligação;  

c. controle do deslocamento generalizado (CGD); 

d. modelo de curva M-θ com rigidez bilinear (RBL); e  

e.  Análise Avançada com ligações.  

 

9.2.1  INTEGRAÇÃO ITERATIVA DO ESFORÇO AXIAL (IIEA) 

Embora essa contribuição tenha nascido no trabalho de dissertação do autor 

(Alvarenga, 2005), esse processo iterativo foi reestudado, fundamentado e conceitos 

foram expandidos (Alvarenga, 2008; Alvarenga & Silveira, 2008c). A IIEA provou ser 

um instrumento de valia na obtenção de resultados coerentes e de qualidade. 

Identificou-se que os efeitos causadores da IIEA se fundamentam na plasticidade 

(das fatias) que retira do sistema de equações e, portanto, do equilíbrio  uma parcela das 

tensões acima do escoamento. Essa causa foi separada dos efeitos da excentricidade 

(que não devem provocar a IIEA), tratados na subseção posterior.  

As variações do esforço axial provocadas pela excentricidade (variação do yCGP 

abordada na subseção 3.6.3) são corrigidas pela média final das deformações médias, 

antes da plasticidade, e a IIEA entra apenas para ajustar os valores à média. Portanto, se 
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não houver plasticidade na iteração; mas houver a ação da excentricidade, a IIEA 

corrige ambos os esforços das seções dos nós pela média. 

Os últimos ajustes realizados na IIEA permitiram atingir valores mais adequados 

no caso do colapso por flexão (o que antes a IIEA provocava um término prematuro ou 

antecipado) e, mais propriamente, determinar o colapso (“overflow”) pelo fato de todas 

as fatias estarem plásticas ou não haver meios de se realizar a IIEA. Alguns exemplos de 

processos inelásticos com caminhamento após a ultrapassagem da carga limite 

comprovaram isso (por exemplo, o portal de Chan & Chui, 2000). Não se descarta, 

todavia, que no futuro outras melhorias possam surgir. 

Nos casos em que a IIEA não convergiu, comprovou-se, posteriormente, o que 

realmente havia ocorrido: 

a. grandes deslocamentos por flambagem, tipo salto dinâmico, mostrado na Fig.    

4.4(b), que geraram esforços incompatíveis;  

b. seção com propriedades já próximas dos limites estabelecidos (inércia: 0,1% Iz 

original, e/ou área: 0,01% Ag bruta); e   

c. colapso por cisalhamento da seção [ver subseções 3.2.3 (e) e 4.3.1 Eq. 4.3]. 

 

O número de iterações gastas na IIEA reduziu bastante, manteve-se o mínimo de 2 

ciclos, mas em nenhum caso paralisou por chegar em 100 iterações (limite adotado), 

ocorrendo: ou a solução, ou detectado o colapso da seção. Quando a IIEA empregou o 

método de Newton como solução os processos gastaram, no máximo, entre 15 e 20 

iterações para convergir. Isso acelerou o processo de finalização (chegada à carga 

limite) e reduziu o tempo de processamento. Ou seja, pontos anteriores de parada de 

processamento sem convergência na IIEA deixaram de existir. 

Foi prevista a situação especial em que a IIEA não encontrando um intervalo de 

solução para achar a deformação de correção, empregaria uma pesquisa de extremos. 

Essa ideia não teve sucesso, pois, quando se chega a esse ponto (de aplicá-la) a seção já 

está no limite (colapso), ou seja, não há como realizar qualquer ajuste pela IIEA. 

Prosseguindo, com o estado da seção sem o ajuste, o colapso é imediato. Assim, essa 

tarefa não trouxe qualquer benefício. 
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9.2.2  ELEMENTO FINITO COM LIGAÇÃO 

Sobre este tópico existem várias considerações a fazer. Primeiramente, indicar o 

sucesso de nova matriz de rigidez do EF com o uso de propriedades médias mais 

calibradas, baseadas no trabalho de Chen et al. (1996), o que provou ser mais eficiente 

(rápido) e coerente do que o processo anterior com médias aritméticas simples. 

As contribuições relativas ao caminho do CG plástico da subseção 4.5.4, com a 

correção dos efeitos da aplicação da carga axial e também da curvatura, não foram 

muito exploradas neste trabalho do ponto de vista do EF com ligação. Essa parte tem 

aplicação quando o EF de ligação está sujeito, também, à carga axial (bases de colunas, 

por exemplo). Em certos limites, porém, isso não impediu que fossem obtidos bons 

resultados, e constitui uma etapa para o futuro da pesquisa. 

A formulação do EF com ligação provou-se capaz de obter resultados excelentes 

em nível de regime elástico e de bons para ótimos em regime inelástico. Dadas as 

diferenças de abordagem dos parâmetros das curvas de ligações, ficou evidente que há 

ainda pontos de ajuste nos dados, que interferiram em alguns resultados. Há casos de 

divergências e falhas numéricas ainda por analisar e obter alternativas de solução. 

A adoção do ângulo de giro da ligação avaliado pelo método S (simples) mostrou-

se bastante estável em várias soluções. O método ME também conseguiu bons 

resultados, embora não tenha sido adotado no capítulo 8 e mereça outros estudos. O 

método XX apresentou os resultados piores quando se teve a compressão e a 

plasticidade conjugadas, contudo serviu para entender como se comporta a ligação na 

formulação, bem como o significado e as necessidades do método ME. 

Ainda assim, no caso de carregamentos que combinam esforços horizontais e 

verticais, aconteceu pequena diferença entre os momentos avaliados com o método S, e 

o obtido no EF. Todavia, essas diferenças foram de pequeno valor relativo. Presume-se 

que a introdução de cargas horizontais, combinadas com as verticais na viga, leva às 

diferenças de ajustes do ângulo de giro da ligação (θ), pois ele é determinado nas 

primeiras iterações (de cada passo) e fica estável daí para frente (não se modifica 

significativamente), enquanto o esforço no EF é corrigido até convergir. Então, mesmo 

que o método S procure acompanhar essa relação (dM/Rk), a rigidez Rk fica quase fixa, 

embora a grandeza η esteja variando (por exemplo, com a plasticidade por meio de Iz). 

[Para melhoria do método S, deve-se inserir o estiramento ξ como fator da Eq. 4.35 no 

futuro (ver apêndice A.5)]. 
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Essa é uma indicação de que o método ME pode ter valia posterior. Como nos 

casos de viga estudados, em geral, os esforços axiais são pequenos, a influência do 

alongamento no cálculo do ângulo de giro próprio da ligação foi pequeno. Nos modelos 

do EF com ligação em bases de colunas, encontraram-se maiores diferenças entre esses 

métodos (ver subseção 7.6.2). 

O parâmetro η de giro próprio da ligação (ou semiflexibilidade nodal) indica que 

há uma relação de rigidez elevada, ou um comportamento de ligação do tipo rígido, 

quando seu valor é inferior a 0,25, e um comportamento com tendências de flexível, 

quando supera 0,475; quando a viga tem rigidez superior à coluna (G > 1), embora esses 

limites possam sofrer variações. O η é outro conceito novo introduzido neste trabalho, e 

espera-se que esse parâmetro possa ter maior emprego no futuro: um estudo mais 

profundo, com outras relações de rigidez nodal [(G), Eq. 8.1] e da sua influência. 

Embora pudesse fazer sentido existir apenas um único η, a exigência de uma 

participação diferente no processo de solução levou aos dois tipos: um global e outro 

local (ηEF). É o η global, todavia, o que tem maior importância em engenharia. Essas 

grandezas também variam quando a plasticidade atinge o EF com ligação, o que é outra 

novidade em relação aos parâmetros das ligações tradicionais. A determinação de que 

essas relações são separadas e a avaliação do efeito da plasticidade nelas constituiu uma 

etapa difícil de ser vencida. Natural para uma formulação totalmente nova e sobre a qual 

nada existia como guia.  

O emprego de diversos modelos [lineares; bilineares; trilineares; de Frye & 

Morris, 1975; de Richard & Abbott, 1975; de Kishi & Chen, 1987; além do 

experimental (tabelas) e do proposto RBL] comprovou que o controle das curvas M-θ e 

Rk-θ funcionou corretamente. Foi visto que os pontos empregados por PPLANAVA 

faziam efetivamente parte das curvas descritas (ver subseção 7.2.3). 

Ficaram evidenciados a tarefa de correção da curvatura e o ajuste da curva M-θ 

não linear (processo indicado na subseção 4.5.4) pelos exemplos da seção 7.5. 

Houve casos nos quais o colapso indicado a priori era superior às expectativas, 

nos quais apareceram desvios de convergência nos momentos da ligação, indicando que 

os resultados não eram adequados. Estudos posteriores mostraram que refinamentos de 

passos levam a resultados mais corretos e conseguiu-se finalizar tais problemas com 

sucesso.  Uma vez que se determina o colapso, verifica-se que o estado de degradação 

da estrutura não permite continuar a solução, salvo com redução da carga.  
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Entretanto, como a meta do estudo desenvolvido no capítulo 8 era avaliar o 

comportamento da estabilidade dos portais (colunas), não se pode explorar a 

plasticidade no EF com ligação. A coluna é que sofreu plasticidade, tanto no portal de 

Chen & Zhou (1987) modificado CZ no qual a viga é bastante rígida, como na versão 

AA (Alvarenga, 2005) que é bastante flexível. Houve outros exemplos, que não foram 

selecionados para fazer parte do corpo desta tese, em que ocorreu a plasticidade no EF 

com ligação e sua interação com o restante da estrutura, obtendo-se bons resultados.  

Destaque-se que não se constataram desvios numéricos por causa da presença de 

pequenas rotações e elevadas rigidezes nas soluções dos exemplos. Isso mostra que por 

meio das unidades escolhidas [kN, cm, rad] e do processo de solução adotado para 

controlar o caminho na curva M-θ, conseguiu-se manter a coerência de resultados. 

 

9.2.3  CONTROLE DO DESLOCAMENTO GENERALIZADO (CGD) 

Como visto, calibrando adequadamente as cargas, pode-se fazer um controle 

incremental eficiente com qualquer dos três processos tratados na subseção 4.3.2. Foram 

empregados os controles de deslocamento selecionado e generalizado em vários casos, 

com excelentes resultados no capítulo 7. Não houve muitas oportunidades para 

empregá-los no capítulo 8, pois cada hipótese tinha um início de escoamento diferente 

e, a partir daí, o processo numérico exige um passo menor e eficiente de incremento. Ou 

seja, seria necessário processar duas vezes cada portal, sem justificativa. 

Uma parte importante e que justificou o desenvolvimento do controle dos 

deslocamentos foi ultrapassar o ponto limite de carga e prosseguir na trajetória 

descendente. Assim, pode-se avaliar como se propaga a plasticidade após esse ponto e 

até mesmo verificar o curso descendente ser reduzido por causa do colapso da seção ao 

cisalhamento, confirmando que o estado de limite de resistência (na parte mais 

solicitada da estrutura) sucede após a flambagem. 

Além disso, o processo automático [que determina o início do escoamento (antiga 

versão ELAST) e o prosseguimento com refinamento de passos até o colapso (versão 

PLAST), que se fundem num só corpo do programa computacional PPLANAVA] 

mostrou ser bastante eficiente e confiável.  

O processo incremental, com crescimento controlado, permitiu ultrapassar mais 

facilmente pontos de mudança de curvatura na presença de plasticidade, quando o EF 

ficaria instável entre duas ou mais configurações (Alvarenga & Silveira, 2006c).  
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9.2.4  MODELO DE CURVA M-Θ COM RIGIDEZ BILINEAR (RBL)  

O modelo de curva M-θ com Rigidez Bilinear (RBL) proposto mostrou-se 

plenamente exequível. Apresenta, em geral, algumas diferenças em relação às curvas 

experimentais que supõe aproximar, mas pode ser ajustado com facilidade. Esse modelo 

permite, também, alguns empregos imediatos, inclusive como forma não linear das 

curvas trilineares do Eurocode 3 (1992), vistos na seção 2.8. 

Considerando que o projetista tem meios de determinar várias de suas grandezas 

com alguma facilidade (Mu, Rki, Rkp) e que se disponha de recomendações sobre os 

parâmetros de forma [(βL & κp) por tabelas, valores médios, expressões estimativas, 

etc.], torna-se muito fácil e expedito construir a curva e empregá-la.  

Na ótica de simplicidade, confiabilidade e representatividade dos resultados (ver 

subseção 7.5.2), o modelo RBL correspondeu às exigências. Da mesma forma que os 

outros modelos existentes, têm também suas desvantagens – por exemplo, a curva não é 

tão suave como as dos modelos potenciais, não tem a precisão das exponenciais, etc. 

No capítulo anterior, mostrou-se como fazer aproximações por meio de analogia 

(Meili, 1994). Essa é mais uma contribuição (ou ferramenta) que pode ser empregada 

pelo projetista. Note-se que, mesmo empregando outras curvas M-θ, o projetista passa a 

ter alternativas para estimar curvas novas, similares às conhecidas. Todavia, almejando-

se construir um conjunto de curvas parametrizadas, baseado em dados experimentais 

existentes, de forma que sua utilização no meio não acadêmico seja efetiva, cabe, 

evidentemente, um trabalho complementar numérico e/ou experimental posterior 

comprovando a validade dessa proposta, avaliar eventuais níveis de discrepâncias 

(desvios) e melhorias. 

Outro aspecto relevante é que por essa forma de analogia permitiu-se comprovar o 

ganho de propriedades (rigidez, resistência) com o simples aumento do tamanho da 

ligação (isto é, dada à altura da viga). Esse benefício pode ter sido muitas vezes 

negligenciado, ou pior, levado à consideração de momentos nas colunas menores que os 

reais. Conjugado a isso, alerta-se para a modificação da rotação última da ligação que se 

reduz com o aumento da sua dimensão. Esse fato pode transformar uma ligação capaz 

em uma que é apenas resistente (ver Fig. 2.10) e, também, uma ligação flexível numa 

semirrígida, como ocorreu na subseção 8.9.2. 

O Eurocode 3 (2000) não mais utiliza a nomenclatura empregada no Capítulo 2, o 

que, de certa forma, deixa de elucidar o aspecto acima (o fato de a ligação ser capaz) e 
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isso pode levar o projetista a omissões (preocupar-se com a resistência em detrimento 

da capacidade de rotação, ver apêndice A.2). Note-se que a rotação máxima das ligações 

ensaiadas C2 e C3 adotadas por Chan & Chui (2000) foi estimada como 50 mrad, 

reduzindo-se à metade (26 mrad) nas ligações semelhantes (D2 e D3) quando a altura da 

viga dobrou. Essa é uma relação que não é conhecida, em geral, pelo projetista.  

A curva RBL impede que se possa estar agindo contrariamente à segurança: 

a.  ao se adotar uma curva M-θ extensa usando modelos como os polinomiais, 

exponenciais, potenciais; nos quais não se estabelece o limite de validade, ou 

seja, o seu ponto final (rotação θu); e, também,  

b. nos casos quando o momento último não é alcançado (assíntota), como nas 

curvas potenciais de Kishi & Chen (1987) e similares. 

 

Há um caminho longo para tornar essa curva RBL adequada para projetos, 

contudo, acredita-se que essa contribuição preencherá razoavelmente uma lacuna de 

informações e no futuro seja estendida ou conjugada ao método dos componentes. 

Deve-se indicar que, nessa linha, os valores das curvas M-θ empregados em cada etapa 

do processo de solução permitem ao projetista identificar, também, o estado da ligação e 

os efeitos dos componentes correlacionados àquelas rotações ou momentos. Por 

exemplo, determina-se que no início do escoamento (primeira zona plástica) haja uma 

dada rotação e com ela verifica-se que a ligação está em regime elástico ou que as 

deformações já estão atuando de forma mais grave em algum componente, isso definirá 

se a ligação atende às exigências do estado limite de serviço. 

 

9.2.5  ANÁLISE AVANÇADA INCLUINDO LIGAÇÕES 

Esse é o tema do trabalho, e no capítulo 8 procurou-se corresponder a essas 

expectativas, embora como haja indicado Chen & Zhou (1987), nesse portal as ligações 

sofrem rotações muito pequenas, de tal forma que não aparece muito os efeitos da 

semirrigidez, tampouco da plasticidade na ligação.  Ou seja, para que haja plasticidade 

no EF com ligação, a coluna deve ser mais rígida e resistente que a viga, desaparecendo 

o efeito da instabilidade, exceto quando atua uma carga vertical muito elevada, o que 

também tornaria o exemplo pouco real e improvável de ser reproduzido na prática 

(realizar ensaios de laboratório, por exemplo). 
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Isso pode servir de base para que se pesquisem e se desenvolvam novos exemplos 

nos quais seja verificada maior participação da semirrigidez da ligação no problema 

estrutural, até mesmo, nas bases das colunas, sobre as quais também se dispõe hoje de 

poucos resultados ou análises. 

Da análise do portal de Chen & Zhou (1987) modificado (CZ), no qual a viga é 

mais rígida que as colunas [isto é, a rigidez nodal G (Eq. 8.1) ≥ 1], as seguintes 

conclusões podem ser destacadas: 

a. em geral, as ligações com semiflexibilidade η ≤ 0,25 se comportaram como 

rígidas: aproximadamente a mesma carga limite (para todos η do intervalo), 

embora com respostas diferentes (deslocamentos e esforços). Nesse caso, a carga 

limite não é influenciada pela forma da curvatura inicial (CI) para cada η, 

embora as respostas sejam modificadas; e  

b. para as demais ligações, verificou-se o comportamento mais flexível, a 

influência da CI é maior e, nesse caso, todas as respostas se modificaram (cargas 

limites, deslocamentos, esforços, etc.) para cada semiflexibilidade η e para cada 

imperfeição combinada (FP+CI). 

 

Comprovou-se, também, que quando a viga é mais flexível que as colunas (ou 

seja, o parâmetro G < 1) que é o caso da seção 8.7, o comportamento rígido não pode 

ser estabelecido, e para cada valor de η se tem uma resposta diferente e uma carga limite 

também. Nessa condição, tanto a forma da CI como a ligação (η) interferem diretamente 

nos resultados produzidos, principalmente, na forma e na distribuição da plasticidade. 

O roteiro de cálculo para aplicação da Análise Avançada, já apresentado no 

trabalho anterior (Alvarenga, 2005), deve ser alterado para incluir, agora, a ligação. Em 

linhas gerais, o analista deve desenvolver os seguintes passos: 

a. fazer o lançamento da estrutura e esboçar a concepção estrutural; 

b. realizar um cálculo preliminar elástico de primeira ordem para uma visão inicial 

do comportamento estrutural, determinar onde estão as maiores necessidades de 

rigidez e inércia, proposição e compatibilização das seções, avaliação de pontos 

de esforços elevados ou movimentação excessiva;  

c. executar o cálculo elástico de segunda ordem, avaliando o estado de uso, 

determinar ligações e tipos de comportamento (rígido, flexível) esperados, obter 

uma configuração deslocada básica, avaliando da necessidade de uma análise 
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inelástica ou não. Se os valores de tensões não atingirem o escoamento da seção 

de nenhuma forma, pode-se seguir para uma segunda etapa (passo g), porém, 

agora, introduzindo as imperfeições baseando-se nessa geometria deformada. Se 

as deformações forem pequenas e não esclarecerem uma direção adequada das 

CIs, realizar um novo cálculo impondo: pequenas cargas horizontais (nocionais), 

algo em torno de 2% do vertical (quando não há vento) ou a geometria 

imperfeita com o fora de prumo apenas;  

d. quando comprovado que os esforços estão elevados, que ocorrerá escoamento 

de seções sob cargas limite, proceder à análise inelástica de segunda ordem, 

incluindo as TRs; avaliar as ligações de forma linear (inicialmente, por exemplo, 

usando η = 0,25 e η = 0,475, para as consideradas rígidas e flexíveis, 

respectivamente) e obter a deformada básica inelástica da estrutura sem 

imperfeições geométricas, para dado carregamento;  

e. definir a forma das imperfeições FP+CI, baseando-se na deformada inelástica. 

Se isso não for possível (ou não ficar muito claro), introduzir o fora de prumo 

apenas no modelo, reprocessar a análise inelástica e trabalhar com essa nova 

deformada então obtida. No caso das colunas ligadas por rótulas (colunas 

escoras), a CI pode ser colocada em qualquer direção, todavia, deve-se preferir 

aquela em que o esforço horizontal (de vento, por exemplo) provoque o aumento 

do seu arqueamento, se existir essa condição. Observar o comportamento 

dissimilar (no caso de estruturas e cargas simétricas) e os comentários 

apresentados na seção 9.3 seguinte sobre a disposição das imperfeições iniciais;  

f. realizar a Análise Avançada, comprovar se a deformada final correspondeu à 

forma das imperfeições geométricas iniciais. Se isso ocorreu, o modelo está 

correto. Caso contrário, corrigir a geometria imperfeita para que espelhe 

(reproduza aproximadamente) essa deformada;  

g. ajustar perfis e ligações conforme o atendimento às condições de projeto 

(uniformizar perfis, materiais, ligações, reduzir movimentação, etc.), fazendo a 

otimização do processo de solução, retornando aos passos (d, e & f) quando 

necessário;  

h. fazer isso para cada hipótese de carregamento, determinando, assim, o estado 

limite de dimensionamento de todo o conjunto;  
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i. avaliar as ligações quanto aos seus componentes (parafusos, soldas, chapas, 

cantoneiras), determinando se os parâmetros (Mu, θu, Rki) correspondem aos 

obtidos numericamente, e avaliar a necessidade fazer ajustes e revisões quando 

houver modificações maiores (por exemplo, redução de propriedades em 5%);  

j. tendo toda a estrutura com ligações sido aprovada pela Análise Avançada, ou 

seja, em cada hipótese (composta de carregamentos combinados de esforços de 

cálculo) se verificou que a sua aplicação representa 90% (ou menos) da carga 

limite obtida, faz-se a verificação final de estado limite de uso;  

k. não atendidas essas condições retorna-se aos passos anteriores; e  

l. atendidas todas as condições, segue-se para a avaliação dos componentes 

individuais das ligações, detalhes nos outros planos, e verificações 

complementares (painéis, enrijecedores, efeitos locais, etc.). 

 

Outro aspecto importante para desenvolver a Análise Avançada está relacionado 

ao suporte gráfico. Isso significa fornecer meios para que o projetista possa avaliar os 

seguintes pontos: 

a. a ordem de surgimento, a distribuição e a forma das zonas plásticas; 

b. o comportamento da curva M-θ empregada, em cada passo da solução; 

c. a deformada da estrutura no colapso, majorando os deslocamentos (com fator de 

escala FE = 50 ou 100, por exemplo);  

d. a modificação do comportamento de nós de vigas e colunas, provocada pela 

extensão da plasticidade (por exemplo, casos de bifurcação);  

e. identificar as rotações elevadas, rotação de contato da viga com a coluna, ou 

pontos fora da curva (nos quais a solução deixa de ser válida);  

f. a configuração geométrica inicial, para garantir que as imperfeições estejam 

dispostas de forma adequada; e  

g. visualizar o sentido de giro da ligação para não empregar curvas M-θ 

inadequadas (caso de ligações que não são simétricas, por exemplo), etc. 

 

Por fim, deve-se cuidar para que as tensões residuais sejam compatíveis com o 

material empregado. Supondo-se que, ao invés de laminados, o portal CZ do capítulo 8 

fosse de perfis soldados, a plasticidade apareceria de forma antecipada, seria mais 

acentuada e com distribuição diferente. 
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9.3 O CONCEITO ESTRUTURAL 

Esse é o maior objetivo com esta tese, por isso algumas outras análises e 

exemplos foram deixados para trabalhos futuros, bem como, separou-se esta parte das 

conclusões mais simples já apresentadas. 

A principal questão que gerou esta tese foi: pode o Teorema da Configuração 

Inicial (TCI) ser válido quando se tem a plasticidade, a ligação e outros efeitos 

geométricos não lineares associados combinados? 

Para responder essa questão, deve-se primeiro reler a sua ideia básica: 

Deseja-se definir a existência de um estado de flambagem inelástica, para o qual 

todas as configurações iniciais convergem; estado esse que independe da trajetória 

(histórico), e as diferenças encontradas nos fatores de cargas de colapso e esforços 

correspondentes, representam apenas uma medida de como a configuração inicial 

favorece ou não a estrutura atingir esse estado final (Alvarenga, 2005). 

E relembrar a sua proposição: 

A configuração de flambagem inelástica de uma estrutura com colunas robustas 

sujeita a um dado carregamento, corresponde a uma configuração geométrica com 

imperfeições iniciais de aspecto similar, na qual é necessário o menor o fator de carga 

λ para atingir o colapso que corresponde ao aparecimento de singularidade na MRG 

(Alvarenga, 2005). 

Foram realizadas muitas análises e estudos, desde sua proposição até as 

conclusões agora apresentadas. Essas informações foram agrupadas nos tópicos: 

a. antecedentes dessa proposta; 

b. comportamentos que justificam esse teorema; 

c. recomendações da atual pesquisa; e  

d. exemplo de demonstração. 

 

9.2.1  ANTECEDENTES DESSA PROPOSTA 

Informa-se que essa proposta de teorema segue as ideias de outros pesquisadores 

também (isto é, possui antecedente). Primeiramente, Chwalla (1938) e as curvas de 

colunas defletidas (“CDC, column deflection curves”), que são introduzidas no cálculo 

plástico por Higgins et al. (1971). Repare que as CDCs são as deformadas das colunas 

na flambagem inelástica construídas conhecendo-se os esforços que nela atuam.  
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Portanto, se a forma da coluna inicial seguir aproximadamente sua deformada, a 

carga que provocará a flambagem será menor (reduz-se o fator de carga), ou seja, o 

teorema proposto é um corolário da ideia desse pesquisador. Note-se que Chwalla 

(1938) apresentou um estudo sobre a flambagem com galeio lateral (“sidesway”), 

indicando que “a presença de momentos primários (cargas nas vigas) não alteram as 

características de flambagem do pórtico (deformada), mas as cargas aplicadas podem 

ser levemente menores que as cargas críticas aplicadas no topo das colunas”. Masur et 

al. (1961) refizeram o trabalho desse pesquisador e chegaram às mesmas conclusões. 

Como se verifica, esse é um precedente importante.  

Masur foi pioneiro ao fazer emprego da MRG para análises elásticas de portais e 

chegar à sua carga crítica máxima e mínima. McMinn (1961) propõe uma forma de se 

determinar a carga crítica de pórticos planos. Lu (1963) realizou investigações 

experimentais com pórticos planos e concluiu que a carga crítica de portais simétricos 

(Ncrit ≈ 0,1935 Ne, kfl ≈ 2,27) modifica-se bastante quando o carregamento é aplicado na 

viga, e não no topo da coluna. Isso foi verificado também aqui, pois a carga de 

flambagem do portal foi reduzida consideravelmente [no caso (3P0+q0)/4, por exemplo]. 

Comprovou-se, porém, que a estrutura assimétrica é menos afetada pelos momentos 

iniciais (com se viu no caso da curvatura inicial) que a simétrica. Além disso, que a 

carga crítica obtida é bem inferior (Ncrit ≈ 0,1094 Ne, relação 56,5%, com kfl ≈ 3,02).  

Posteriormente, Chen & Zhou (1987) indicaram que “há uma troca de restrições 

entre as colunas e a viga, que depende do carregamento aplicado”, o que concorda com 

a proposta deste trabalho de utilizar a deformada inelástica para cada hipótese de 

carregamento. Além disso, informaram que, “algumas vezes, a viga transfere as cargas, 

e a coluna fornece o travamento, e em outras situações acontece o inverso”. Verifica-se, 

no caso da Fig. 8.28(a), por exemplo, que, embora as colunas tenham 2 ZPs cada, a viga 

não tem plasticidade e estabiliza as colunas até a flambagem. No caso da Fig. 8.28(b), a 

plasticidade toma conta da viga e da coluna C-D, mas a coluna A-B mantém o conjunto. 

Ou seja, estes resultados corroboram com as conclusões desses pesquisadores. Esses 

pesquisadores informaram, ainda, que, “se o momento último da ligação supera o 

momento plástico da coluna, a ligação se comporta como rígida” (como verificado), e 

que a “flexibilidade da ligação não reduz a capacidade de carga do portal”. Aqui 

aparece uma diferença, pois neste trabalho verificou-se que isso só ocorre quando a 

semiflexibilidade é η ≤ 0,25 (ligação rígida). 
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Figura  9.1  Zonas plásticas do portal com ligação midirrígida e carga q0: 
convenção: (����) tração, (����) compressão. 

 

Deve-se lembrar de que no capítulo 3 indicou-se a possibilidade de formação de 

um mecanismo plástico de viga, incluindo a coluna, embora a ligação fosse semirrígida. 

Isso também foi comprovado, como mostra a Fig. 9.1, relativamente ao portal com 

ligação midirrígida somente com carga distribuída q0. Observe-se que se a ligação não 

for resistente ou não tiver uma rotação última adequada (capaz), essa é que se romperá 

antes da flambagem e da formação de mecanismo [ver subseção 7.5.2, na qual o portal 

TC2 de Chan & Chui (2000) tem a formação de mecanismo plástico e o colapso da 

ligação quase simultaneamente]. 

Clarke et al. (1992) realizaram estudos similares aos de Alvarenga (2005), todavia 

sem cobrir todos os casos, e reconheceram que “é difícil definir recomendações sobre a 

forma de dispor essas imperfeições deixando isso aos cuidados e experiência do 

projetista”. Entretanto, recomendaram que “se coloquem as imperfeições da pior forma 

para a estrutura (se isso for possível)”, sugerindo que “uma alternativa é considerar a 

forma de flambagem elástica da estrutura sujeita às cargas verticais apenas”.  Aqui há 

duas diferenças em relação ao teorema proposto: 

a. é importante a formação das zonas plásticas, porque são elas que determinam a 

deformada inelástica final, ou seja, isso identifica os pontos onde a plasticidade 

se manifesta modificando o comportamento estrutural; e   

b. não apenas a carga vertical, mas todo o carregamento é importante, pois para 

cada carregamento pode-se ter uma deformada limitadora diferente. Isso é 

comprovado no portal do capítulo 8, caso da carga q0/2 em que ocorre 
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mecanismo de viga e a geometria deixa de ser importante. Mas ao se incluir a 

carga H, mudou-se de CI limitadora, quando a semiflexibilidade η cresceu. 

 

Hajjar et al. (1997) indicaram a mesma dificuldade. Em várias normas há 

prescrições para o fora de prumo (FP) e para se majorar tal imperfeição considerando 

que a curvatura inicial seja sobrepujada dessa forma, com cargas nocionais calibradas, 

ou mesmo adotando uma imperfeição dita equivalente (De Luca & Stefano, 1994). 

 

9.2.2  COMPORTAMENTOS QUE JUSTIFICAM O TEOREMA 

Esse teorema da configuração inicial mostrou-se coerente nas diversas etapas 

desta tese. Mesmo no caso da coluna birrotulada (escora) na qual se pode ter a CI nos 

dois sentidos, ou seja, duas configurações imperfeitas, sem que a resposta final (carga 

limite) seja alterada. Isso ocorre porque a rótula não transmite os efeitos da CI e, então, 

basta incluir a imperfeição na coluna escora. Porém, observe-se que: 

a. havendo cargas internas (na coluna escora), ocorrerá a deformada, então a CI 

deve acompanhá-la (como previsto pelo teorema); e   

b. sendo possíveis duas CIs, não modifica o fato de que a CI colocada segundo a 

deformada inelástica é governante, ou seja, não o contradiz; apenas cria outra 

possibilidade, que não modifica o resultado ou a aplicabilidade. 

 

Deve-se indicar que a formação de mecanismos de colapso, efeito ligado ao 

comportamento plástico, se mistura, em geral, ao processo da flambagem inelástica. Ou 

seja, a coluna, por meio da plasticidade, perde sua estabilidade e tem uma expressiva 

deformação, caracterizada por um grande (ou descontrolado) movimento lateral que 

leva ao colapso. 

Como se mostrou na seção 8.5, algumas vezes a combinação de carregamentos 

pode levar a estrutura a pontos estacionários da solução numérica. Isto é, ocorrem 

tendências opostas, um ponto de bifurcação da trajetória. Algumas situações exigem um 

deslocamento horizontal maior (para ocorrer a flambagem) e, por isso, o colapso da viga 

ou da ligação pode ocorrer antes. 

Todavia, são pontos estacionários, mas a carga limite é definida ali. O eventual 

prolongamento da trajetória está muito mais ligado aos aspectos numéricos do modelo 

(folgas), do que ao conceito que é: existem tendências antagônicas que findam a 
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trajetória e definem o ponto limite, mesmo porque ambos os estados já são limites: a 

viga degenerando por elevada plasticidade e a coluna sem estabilidade flambando (ver 

Fig. 8.13). Naturalmente, o projetista verificará essas condições e determinará meios de 

reforçar a viga, se necessário, e assim, não havendo esse colapso da viga, sobrevém a 

flambagem inelástica, e a proposta continuará válida, visto que a mesma foi feita para 

esse estado limite apenas. 

Procurou-se ilustrar a existência do fenômeno chamado dissimilar, que representa 

a tendência de estruturas simétricas e sob carregamento simétrico passarem (dar um 

salto) para um comportamento assimétrico, dada às pequenas diferenças existentes 

(mesmo numericamente), que quebram essa simetria e proporcionam cargas limites 

menores. Isso foi descoberto também por Chwalla (1938), segundo Lu (1963), que 

comprova que a carga crítica é menor para a forma antisimétrica que para a simétrica.  

No regime elástico, tanto o estudo de arcos (Pinheiro, 2003) como de portais em L 

mostraram que se encontravam trajetórias de equilíbrio bem diversas a partir de 

pequenas excentricidades de carga introduzidas no modelo, e que revelaram cargas 

críticas menores (ou mais graves) que as previstas em condições em que a simetria era 

preservada (Galvão et al., 2005).  

A contribuição desta tese é mais abrangente, pois está associada à carga limite, e 

emprega-se a Análise Avançada, na qual se incluíram, também, as tensões residuais, as 

imperfeições geométricas e, agora, as ligações semirrígidas. 

Neste trabalho, verificou-se que algumas configurações de geometria inicial 

imperfeita (FP+CI), incluindo a ligação, obtiveram, por diferentes trajetórias, o mesmo 

fator λc de colapso, comprovando a ideia de um estado “único” proposto originalmente. 

Além dessas trajetórias diferentes, todavia, verificam-se esforços e deslocamentos 

diferentes, sendo que a trajetória com menores esforços e maiores deslocamentos (que é 

a limitadora) correspondeu à obtida aplicando o teorema. Nos casos em que não houve 

esse fator de carga de colapso único, o menor fator correspondeu à configuração 

indicada pelo teorema proposto (ver seção 8.4, por exemplo). 

Pode acontecer que a deformada inelástica da estrutura perfeita, ainda assim, não 

seja tão conclusiva para o projetista como se deseja. Entretanto, no portal da Fig. 8.7(a), 

aplicou-se um pequeno fora de prumo, e a deformada inelástica então obtida permitiu 

definir as imperfeições geométricas preponderantes. Ou seja, há casos em que se pode 
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substituir a deformada inelástica da estrutura com geometria perfeita pela obtida apenas 

com o fora de prumo, para determinar o sentido adequado da curvatura inicial. 

O caso das duplas ZPs em toda extensão da coluna, ou de ZPs em ambas as 

extremidades da coluna, ou na extremidade da viga e base da coluna associada, requer 

maiores cuidados. Em geral, as ZPs tendem a ser maiores quando o seu aparecimento é 

antecipado em relação às demais, e isso faz com que uma das formas da CI {“–(” ou 

“)+”} seja preponderante sobre a outra, o que determina a condição de FP+CI 

limitadora. 

Quando uma ZP possui maior plasticidade (extensão, efeito nas seções, etc.) para 

o carregamento da hipótese considerada, a deformada inelástica correspondente da 

estrutura tende a mostrar qual é o lado da CI mais limitador naturalmente, mesmo 

quando não há imperfeição geométrica incluída (como propõe o teorema). 

De maneira geral, justifica-se essa conclusão porque a deformada inelástica 

identifica a formação de ZPs para aquele carregamento, então a disposição de 

imperfeições tende a minimizar essa energia, isto é, reduz a quantidade de carga 

necessária para que se atinja o colapso. 

Portanto, em linhas gerais, nesta tese comprovou-se que o teorema é válido e que 

podem existir casos de configurações similares ou que se obtém o mesmo valor de carga 

limite, mas a obtida pelo teorema é a configuração sempre limitadora. 

 

9.2.3  RECOMENDAÇÕES DA ATUAL PESQUISA 

Uma importante constatação é que, em geral, as configurações geométricas 

imperfeitas simétricas são menos limitadoras que as assimétricas quando a geometria 

básica da estrutura e seu carregamento são simétricos. Não constitui novidade que a 

quebra da simetria leve a fatores de carga menores, mas é uma diretriz para o projetista. 

Na análise de várias imperfeições geométricas iniciais, verificou-se o seguinte: 

a. quando a formação de ZPs é maior no extremo da viga ou no topo das colunas 

do que na base dessas colunas (andar inferior),  o portal tende  a se comportar 

como se a viga fosse apenas uma escora e as colunas fossem independentes. Isso 

nos remete ao comportamento indicado nas Figs. 9.2(a-b), na qual a forma da 

imperfeição inicial limitadora é FP+CI +/-, que corresponde a de uma coluna 

engastada e livre;  
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b. quando a formação de ZPs é maior na base das colunas (do andar inferior) que 

no topo (ou na viga do patamar superior), o portal tende a se comportar como se 

tivesse a base com rótulas e houvesse um deslocamento de andar, para o qual a 

forma da imperfeição inicial limitadora é FP+CI -/+, indicada na Fig. 9.2(c); e   

c. podem ocorrer, ainda, casos em que as 2 ZPs se formem simultaneamente, ou 

que não se consiga facilmente detectar qual a imperfeição FP+CI adequada a ser 

adotada. Quando as ZPs aparecem de forma conjugada, possuem a mesma 

plasticidade (tamanho e extensão) e a deformada inelástica sem imperfeição não 

permite maiores conclusões, é porque a estrutura não é sensível à CI, que pode 

ter então qualquer direção. Sugere-se que o projetista avalie essas situações 

independentemente (uma a uma) em caso de dúvidas. 

 

São aspectos que devem ser avaliados no comportamento da estrutura: 

a. modificar seção da viga (rigidez) – provoca outro comportamento, como o 

exemplo da seção 8.7 do portal modificado AA (Alvarenga, 2005) no qual a 

FP+CI -/+ foi governante, enquanto no CZ (Chen e Zhou, 1987) a outra 

configuração de FP+CI +/- é que predominou;  

b. modificar a rigidez da ligação – também modificou o comportamento (por 

exemplo, no portal modificado AA só com cargas verticais da mesma seção 8.7);  

c. ligações não lineares rígidas podem ter o mesmo comportamento das lineares – 

(trechos até M ≤ Mu/4) modificando-se os deslocamentos (rotações), que tendem 

a aumentar. Esse crescimento dos deslocamentos pode gerar algum efeito P∆ 

adicional, o que causa pequenas diferenças (ver seção 8.9);  

d. cargas diferentes (combinação ou tipo) – provocam respostas diferentes, 

portanto, a configuração limitadora será diferente em cada hipótese de cargas; e   

(c)(b)

P P P P

A

C

B

D

A B

D

CI: (+/-( CI: )-/+)
FP: /+/ FP: /+/ ZPA FP: /+/

(a)
CI: (+/-(

ZP

C

P

B

ZP

D

P
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Figura  9.2  Efeito das ZPs na configuração inicial do portal:   
(a) ZP ▼ no topo da coluna; (b) ZP (►,◄) nos extremos da viga; (c) ZP▲ na base das colunas. 
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e. rigidez nodal entre a viga e a coluna [(G), Eq. 8.3] – vigas com relação G > 1 e 

ligações rígidas (η ≤ 0.25) são menos sensíveis às modificações da CI. 

Inversamente, tornam-se mais sensíveis quando G < 1 com qualquer ligação. 

 

Considerando o efeito horizontal do FP + (este deverá corresponder à direção do 

esforço horizontal atuante H, se houver), pode-se fazer um resumo para o projetista 

sobre o comportamento da CI limitadora da seguinte forma: 

a. quando a ZP se forma no topo da coluna (ou na extremidade da viga apoiada 

nesse ponto B), a curvatura limitadora dessa coluna deverá ser na forma “(” à 

esquerda [ver Fig. 9.3(a)]; 

b. se a ZP aparece na base da coluna (ou na extremidade da viga apoiada nesse 

ponto A) primeiro e predomina, a curvatura limitadora será a oposta, “)” à 

direita [ver Fig. 9.3(b)]; e  

c. se as ZPs ocorrem igualmente em ambas as extremidades (A e B), essa coluna 

será insensível à direção da CI, que pode ter qualquer sentido, pois a diferença 

entre as duas situações torna-se pequena [ver Fig. 9.3(c)]. 

 

Essas definições são consequências da proposta original do teorema (pois têm o 

mesmo conceito) e acompanham o comportamento dos portais estudados. Entretanto, 

isso não quer dizer que todas as configurações assimétricas sejam limitadoras em 

relação aos diversos carregamentos. Ou seja, podem ocorrer carregamentos nos quais 

combinações simétricas e pouco usuais de FP+CI sejam as limitadoras. 
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Figura  9.3  Direção da CI limitadora: 
(a) ZP ▼maior superior – CI à esquerda; (b) ZP ▲ maior inferior – CI à direita;  

(c) 2 ZPs aproximadamente iguais (▲,▼) – a CI pode ter qualquer direção. 
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9.2.4  EXEMPLO DEMONSTRATIVO 

Para demonstrar a última recomendação, na Fig.9.4(a) ilustra-se o portal CZ de 

Chen & Zhou (1987) modificado, da seção 8.8, com ligação midirrígida (η = 0,25) e 

sujeito a um carregamento especial (P = 1125 kN, q = 140,6 kN/m e H = 75 kN). 

Alguns pesquisadores sugeriram que se empregue a deformada elástica da 

estrutura, que é representada na Fig. 9.4(b). Daí se poderia concluir que a geometria 

inicial imperfeita limitadora (inferior) seria a FP+CI +/-, porém isso não é procedente, 

tampouco modificando as imperfeições para FP+CI +/+. 

Para determinar essa configuração inicial limitadora, aplica-se o teorema, e assim 

consegue-se a deformada inelástica mostrada na Fig. 9.5(b) que foi obtida da geometria 

perfeita e não é diferente da produzida com as imperfeições geométricas. 

Todavia, ainda essa deformada inelástica pode permitir alguma dúvida se a CI a 

ser adotada para a coluna B-D seria de sinal “–(“ ou “+)”. Poder-se-ia ficar tentado a 

empregar a configuração assimétrica, mas deve-se lembrar de que o carregamento não é 

simétrico e, assim, o comportamento dissimilar não se aplica para esse caso. 

A solução provém da avaliação das zonas plásticas (ZP): a sua ordem de formação 

e tamanho. Em todas as análises deste modelo, as ZPs se formam na sequência dos 

pontos A-D-B-C, significando que os pontos A & D possuirão mais fatias plásticas que 

os demais. Essa informação é fundamental para se chegar a FP+CI limitadora. 

Na figura 9.5(a) estão ilustradas as ZPs existentes no colapso da configuração 

limitadora (que produz menor número de ZPs), no qual se constata que o nó A (52,8%) 

está mais plástico do que o nó C (47,5%). Portanto, essa coluna possui a movimentação 

de andar, e a CI limitadora é “-)”, conforme a Fig. 9.3(b). 
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Figura  9.4  Portal com ligação midirrígida e carga especial: 
(a) modelo com cargas; (b) deformada elástica do portal. 
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Figura  9.5  Portal com ligação midirrígida e carga especial: 
(a) zonas plásticas [%]; (b) deformada inelástica e configuração imperfeita limitadora;  

(c) convenção: (����) tração, (����) compressão 
 
 

  Já na outra coluna, o nó D (50,5+10,1= 60,6%) possui mais ZPs que B (49,1+2,5 

= 51,6%). Disso se conclui que o ponto D faz como se a coluna fosse do tipo engastada 

e livre, tal que a CI limitadora é “–(”, indicada na Fig. 9.3(a). Conclui-se, então, que 

esse exemplo possui a configuração imperfeita FP+CI -/- como limitadora 

[representada toda em linha cheia na Fig. 9.5(b)]. 

Na tabela 9.1 são apresentados os resultados obtidos dessa estrutura na situação 

pré-colapso para as diversas configurações de FP+CI e na Fig. 9.6, as trajetórias de 

equilíbrio correspondentes.  

Tabela 9.1 Limites do portal com ligação midirrígida e carga especial. 

Imperfeições Fator de Carga Ligações: momentos e rotações Esf. axiais  Momentos nas 
Iniciais [%] [kNcm] [mrad] bases [kN]  bases [kNcm] 

ZP FP+CI λy λc  -MC -MD -θC -θD NA NB MA MB 
A-B -/+ 55,5 89,4 3457 11038  0,906 2,894 1062 279 3921 10789 
A-D -/- 55,5 89,3 3392 11033  0,889 2,893 1061 278 3927 10683 
C-B +/+ 57,9 89,8 3597 10980  0,943 2,879 1067 280 3842 10678 
C-D +/- 57,8 89,7 3562 10978  0,934 2,878 1066 280 3845 10563 

 
Imperfeições Deslocamentos Momentos Fatias 

Iniciais ∆xC -∆yE [kNcm] Plásticas 
ZP FP+CI [cm] [cm] ME [%] 

A-B -/+ 3,299 1,176   19595 1973 
A-D -/- 3,196 1,171 19545 1892 
C-B +/+ 3,121 1,189 19797 2156 
C-D +/- 3,035 1,185 19756 2107 

Notas: 1) resultados no estado pré-colapso; 2) a configuração limitadora (█).  
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Figura  9.6  Trajetórias de equilíbrio do Portal com carga especial. 
 

Verifica-se que a diferença entre as últimas configurações [FP+CI -/- e -/+] é 

pequena (0,1%) comprovando que a coluna B-D é quase insensível à direção da CI. 

Observe-se que se formam duas ZPs quase do mesmo tamanho, elucidando também o 

caso da Fig. 9.3(c). 

No apêndice A.10 em anexo, inclui-se a listagem com os dados e os resultados 

produzidos pela última versão do programa computacional PPLANAVA deste portal 

com FP+CI -/-. Mais detalhes desse exemplo, e de outros, desta tese, pode ser visto no 

CD, como se descreve no apêndice A.11. 

Este exemplo foi deixado propositalmente na parte final para mostrar que mesmo 

configurações aparentemente absurdas, a primeira vista, podem, surpreendentemente, 

ser limitadoras, dependendo do carregamento aplicado. Isso mais uma vez justifica e 

demonstra o teorema da configuração inicial e os seus corolários complementares. 
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9.4 ASPECTOS CRÍTICOS 

No trabalho de dissertação do autor (Alvarenga, 2005), foram citadas várias 

circunstâncias que propiciam divergências numéricas, computacionais e também de 

modelagem. Consideram-se válidos e aplicáveis todos os aspectos críticos anteriores, 

incluindo agora apenas os mais diretamente ligados a este trabalho (em particular, às 

ligações), ou seja: 

a. falhas decorrentes de modelos de ligação, nos quais nem todos os dados 

fornecidos estão coerentes;  

b. custo de obter a convergência (muitos ciclos de iteração) com dada tolerância 

em alguns incrementos, nos quais a iteração ótima permitiu seguir com a análise 

e chegar ao colapso;  

c. dificuldades para avaliar o comportamento da ligação, quando muitas decisões 

são baseadas em acréscimos de rotações nos quais pequenos desvios podem 

causar grandes diferenças;  

d. o ajuste do estado do EF com ligação na iteração seguinte. Seria ideal fazê-lo na 

própria iteração, mas isso cria um novo processo iterativo (similar ao IIEA), o 

que complica ainda mais a lógica e a eficiência computacional do programa;  

e. falhas das aproximações numéricas da formulação. Nesse caso, verificou-se que 

a precisão da avaliação da deformação média εm fica muito aquém de um valor 

calibrado, e essas aproximações são piores na medida em que os deslocamentos 

crescem. Portanto, foi necessária a redução do passo incremental em problemas 

com ligação para obter bons resultados;  

f. diferença do momento avaliado numa ligação não linear e seu ajuste em relação 

ao momento obtido no EF de ligação, encontrada nos métodos S-XX-ME, como 

já foi indicado. A natureza das diferenças e os estudos realizados para cada 

método funcionar adequadamente, a confiança nos resultados, em todo o 

processo, consumiu um período importante desta pesquisa, cujo resultado final 

só poderá ser avaliado no futuro;  

g. no cálculo da rigidez linear (para as ligações do portal do capítulo 8) 

considerou-se a inércia da viga um pouco menor (25430 cm4), o que provocou 

um desvio de 7,9% (a ligação é um pouco menos rígida), mas o valor de η 

variou muito pouco;  
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h. não se conseguiu reproduzir alguns exemplos, como o portal de Liew et al. 

(1997), que foi também estudado por Liu (2007). Embora empregando todos os 

dados fornecidos, bem como diversos modelos, as respostas produzidas ficaram 

a menos de 50% do previsto por esses pesquisadores. Isso também foi razão de 

outro período de resultados improdutivos;  

i. de igual forma citam-se os portais de Sekulovic & Salatic (2001) que são 

estruturas elásticas analisadas com ligações lineares. Esses pesquisadores, 

porém, mencionam duas ligações de cantoneiras (DWA e TSDWA), sendo que 

são ligações também lineares. Esse exemplo foi desenvolvido e conseguiram-se 

alguns resultados bons, mas foi retirado da tese, por ter poucas análises. Nessa 

lista podem-se colocar outros exemplos desenvolvidos, como portais de Ackroyd 

(1979) e de Lui & Chen (1988) não utilizados;  

j. há uma carência de exemplos completos e confiáveis. Pode-se citar, dentre eles, 

o exemplo 7.5 desta tese. Note-se que foram empregadas as curvas aproximadas 

por pontos (tabelada, ver apêndice A.8) e os modelos RBL, embora as curvas M-

θ sejam do modelo de Richard & Abbott (1975). Os autores não os forneceram 

no livro (Chan & Chui, 2000), e por consulta informaram que não possuíam os 4 

parâmetros desse modelo para as 3 curvas mencionadas (C1-C3). 

 

Houve situações em que o processo numérico mostrou divergências, cujas causas 

não foram ainda estabelecidas, mas isso ocorreu numa pequena parte das estruturas 

analisadas. Podem ser causas dessas divergências: 

a. as diferentes expressões para as curvas M-θ; 

b. o controle para acompanhar as curvas M-θ feito pelo programa computacional; 

c. a correção da rotação específica das ligações não lineares, realizada na iteração 

seguinte; e 

d. conjugação dos efeitos da excentricidade, da ligação não linear e IIEA. 

 

Do ponto de vista de procedimentos, podem-se indicar os seguintes comentários: 

a. o sucesso na atualização completa da linguagem do programa, de “TURBO-

BASIC” (Miller, 1987) para “POWER-BASIC” (2005), incluindo a montagem e 

a solução (dupla, no caso de controle dos deslocamentos) do sistema de 

equações na memória, a passagem das operações nas fatias também na memória, 
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otimização dos programas. A parte computacional e a de arquivos novos para o 

caso das ligações funcionaram de forma satisfatória;  

b. reduziu-se o tempo computacional de 4 horas para 1 hora em análises de portais 

inelásticos com ligação linear. Para estudos menores, como vigas e colunas, o 

tempo caiu de 1 hora para alguns minutos, em média;  

c. o sistema Windows reduz a velocidade do processamento. Para melhorar o 

desempenho, faz-se a remoção de módulos de antivírus, desligam-se todos os 

componentes, inclusive a internet, e outros residentes “TSR” (Howe, 2010); para 

o programa PPLANAVA utilizar a máquina livremente, sem compartilhar outras 

tarefas;  

d. a ferramenta “POWER-BASIC” (2005) é bastante versátil, tem várias opções de 

comandos disponíveis, mas nem todos são tão eficientes, como o próprio 

inversor de matrizes interno, que é um pouco lento. A parte de saída de 

resultados possui melhores recursos que a linguagem anterior. Também a parte 

de detecção de erro em tempo de execução (via simulação) auxilia muito. Não 

houve muito serviço perdido nessa transcrição ou retrabalho da parte já testada, 

além de gerar código compacto;  

e. foram desenvolvidas 7 versões do módulo de ligações e testes PPLANV8Cp, 12 

do PPLANV8Bp e, por compatibilidade, 6 do PPLANV8Ap. Do programa 

completo, foram feitas 6 versões, todas com alguns bons resultados parciais e 

uma parte aguardando modificações/ajustes do algoritmo. As duas últimas 

versões, nov./09 e jan./10, estão operacionais (funcionam corretamente);   

f. a maior desvantagem é o elevado acesso direto ao HD, quando muitas das 

informações intermediárias antes ficavam em arquivos de memória (mais 

rápidos e eficientes). Ocorre que a plataforma do “WINDOWS” (2001) não 

trabalha com o módulo “RAMDRIVE.sys”, enquanto outros fornecedores 

(jogos, MP3 e etc.) aplicam esse software para aumentar-lhe a velocidade por 

meio indireto, descarregando nele seus componentes e parâmetros, ao mesmo 

tempo travando ou bloqueando  o acesso por terceiros. Assim, uma possível 

melhoria que seria o emprego desse módulo, fica inacessível. 
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9.5 CONTINUAÇÃO DA PESQUISA 

Na finalização do primeiro trabalho do autor (Alvarenga, 2005) foi apresentada 

uma proposta da constituição de linhas de pesquisa, com base nesse estudo, que envolve 

a Estabilidade, a Plasticidade, os Elementos Finitos, as Técnicas Numéricas, etc. Assim, 

aquelas possibilidades de pesquisa continuam válidas, e não tem sentido repeti-las aqui. 

Entretanto, sobre o que se produziu de novidade neste trabalho, aparecem novas 

ideias e desdobramentos imediatos, descritas a seguir: 

a. fazer um estudo paramétrico dos coeficientes de forma (βL, κp, κA, α1, α2 & α3) 

da curva RBL, com vistas a reproduzir valores de tabelas como o do “Steel 

Connection Data Bank − SCDB” (Kishi & Chen, 1990). A mesma ideia pode ser 

estendida aos demais conjuntos de ligações, dados e parâmetros existentes de 

outros pesquisadores (Sherbourne & Bahari, 1994; Kukreti et al., 1990);  

b. idêntico ao item (a), para as curvas limites do Eurocode 3 (2000), estendendo-se 

ao método dos componentes para ligações padronizadas (Faella et al.,  2000);  

c. Análise Avançada com outros tipos de ligação semirrígida, de estruturas 

assimétricas, com mais vãos e andares, como o pórtico de Ziemian (1990);  

d. inclusão da excentricidade da ligação, cuja formulação e implementação já 

foram desenvolvidas, mas não foram testadas;  

e. vários estudos de estruturas incluindo as ligações nas bases das colunas, 

incluindo curvas, parâmetros e formulação;  

f. Análise Avançada de portais em L (Galvão et al., 2005) empregando, também, o 

controle do deslocamento selecionado e o generalizado, para melhor avaliar o 

seu desempenho. 

 

Como se pode constatar, ainda existe muita pesquisa a ser realizada. O autor 

espera que esta tese seja o início de vários outros trabalhos a desenvolver e publicar. 

Espera, também, que a sua experiência na vida não acadêmica possa ajudar em 

contribuições significativas para os que estão hoje no projeto das estruturas de aço, seja 

no Brasil seja no exterior.  
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A.1  LIMITES DE ESBELTEZ PARA A FLAMBAGEM LOCAL E LATERAL 

Na subseção 3.2.3 (item f.), foram indicados os limites de esbeltez para partes 

componentes dos perfis Is que sejam compactos [isto é, que suportem a formação de ZP 

(ou RP), com tensões de escoamento sem que ocorra a flambagem local] apresentados 

por Salmon & Johnson (1990), sob a ótica do AISC LRFD (1993). Como esses 

componentes da seção vão sofrer elevada plasticidade, então, a deformação plástica 

pode atingir a ordem de εp = [7 a 9] εy (ou seja, εp = 8,75 a 11,25 mm/m). 

Para tanto, as normas definem valores limites, garantindo que os perfis sejam 

compactos, segundo os critérios: 

 a. para a aba de colunas   (com ou sem flexão): ][kN/cm2
yfc  Etb σ≤ C ; 

         b. para a aba de vigas       (somente na flexão):  ][kN/cm2
yff  Etb σ≤ C ; 

 c. para a alma de colunas (com ou sem flexão): ydca Ead σ≤ C ; e  

 d. para a alma de vigas     (somente na flexão):  ydfa Ead σ≤ C . 

 

Definem-se os coeficientes de comportamento compacto da aba e da alma, para 

perfis laminados, em partes comprimidas e flexionadas (Cfc, Cdc, Cff, e Cdf), 

respectivamente, pela Tab. A.1. Considerando E = 20000 kN/cm2, como adotam as 

normas (AISC LRFD, 2005; NBR 8800, 2007 & Eurocode 3, 1992), obtêm-se os limites 

{108,2/158,3/533} dados por Salmon & Johnson (1990) para o cálculo plástico, que 

foram adotados nesta tese (█) e são mais rigorosos do que os das normas atuais. 

Para manter a coerência com os resultados dos exemplos que foram abordados na 

tese, (e são daquele período), consideram-se válidos esses limites anteriores. Note-se 

que a razão principal dessa diferença é a falta de recursos (na época) para a medição 

precisa da capacidade de rotação da seção com plasticidade e maiores incertezas na 

avaliação da dutilidade pós-escoamento. Os critérios da norma americana e da brasileira 

são os mesmos; já a europeia separa condições de perfis soldados e laminados, dentre 

outros parâmetros. Os coeficientes de Higgins et al. (1971) são os mais restritivos, 

ligados ao início da aplicação do método rígido-plástico. 

Além disso, aplicam-se as restrições nos comprimentos destravados transversais, 

indicadas na subseção 3.2.3 (item d.), para impedir a flambagem lateral ou por flexo-

torção, ou sua combinação. Existem duas regiões de plasticidade a considerar: 
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a. próximo as zonas plásticas, na qual ( ) ][kN/cm2
yzpyt  ErL σ≤ C ; e  

b. trechos elásticos (sem escoamento), em que ( ) ][kN/cm2
yeyt  ErL σ≤ C . 

 

Nesse caso, há uma diferença, pois, na norma brasileira e na americana, indicam-

se limites exigidos para vigas com perfis laminados (do padrão americano). Porém, 

quando se faz uma análise inelástica, nem sempre se pode garantir que a ZP (ou RP) 

será formada na viga apenas. Algumas vezes, a ZP pode-se formar na coluna, também. 

Os valores desses parâmetros (Czp & Ce) são apresentados na Tab. A.2, tendo sido 

adotados, nesta tese (█), os fornecidos por Higgins et al. (1990) que são mais rigorosos 

e observam a presença ou não da zona plástica (caso do coeficiente Czp). 

 

Tabela A.1 Coeficientes de comportamento compacto. 

Compressão Flexão 
Fonte 

Cfc Cdc Cff Cdf 
AISC LRFD (2005) 1,12 (1) 1,49 (2) 0,76 (3) 3,76 (3) 

Higgins et al., (1971) (4) 0,63     0,31   0,63 0,50 

Salmon & Johnson (1990) (5) 0,76  1,12   1,12  3,76  

AISC SAC (1997) (6) 0,76 var. (11)  0,60  2,45  

ABNT NBR 8800 (2007) 1,12 (7) 1,49 (7) 0,76 (8) 3,76 (8) 

Eurocode 3 (1992) 0,64 (9)  1,16 (11) 0,64 (9)  2,55 (10) 
Notas: 1) não limitado conforme nota 3; 2) Cdc ≤ 1,12 (2,33 -1,12 N/Ny) ≥ 1,49; 3) ver Tab. B4.1 AISC 
LRFD (2005); 4) ver Eq.(6.30) a (6.32) da seção 6.2 e, também, Galambos (1982); 5) ver Tab. 9.6.1; 

 6) restrições de áreas sísmicas; 7) ver Tab. F.1; 8) ver Tab. G.1; 9) para classe 1, ver Tab. 5.3.1, adota-se 
20f (18f) caso laminado (soldado); classe 2 para flexão, 22f (20f) para os mesmos casos (não depende de 

ser compressão por flexão); 10) para alma classe 1, ver Tab. 5.3.1 pp. 1, 33f (72f) para compressão e 
flexão, respectivamente, com f = (23,5/σy)

0,5; 11) para Ca > 0,125 (compressão) Cdc = 1,12(2,33-Ca) ≥ 
1,49, senão (flexão) Cdf = 3,14(1-1,154 Ca), sendo Ca = Nd/(0,9 Ny), ver Tab. I-8.1, também, subseção 

8.2b; 12) as indicações dessas “notas” correspondem às fontes citadas. 
 

Tabela A.2 Comprimentos máximos para não ocorrer a flambagem lateral. 

Fonte Czp Ce 

AISC LRFD (2005) (1) – 1,76  

Salmon & Johnson (1990) (2) – 1,76 

Higgins et al., (1971) (3)  0,45 0,70  

AISC SAC (1997) (4)    0,48       0,97  

ABNT NBR 8800 (2007) (5) – 1,76 

Eurocode 3 (1992) (6) 2d  0,63  
Notas: 1) conforme Eq. F2-5, ver apêndice 1, também, Tab. B5.1 do AISC (2000); 2) ver Tab. 9.6.1 que 

equivale ao anterior AISC LRFD B5.1; 3) indicado o mínimo, ver seção 6.2 e Eq. [(6.47), (6.60) & 
(6.65)]; há variações dependendo do diagrama de momentos: avalia-se a extensão de transição entre a ZP  

e a parte elástica, tipo de perfil, etc.; 4) Czp para colunas e Ce para vigas com ZP nas extremidades, ver 
subseções 9.8 & 10.8, atender Eq. A.6.7 & A.6.8 do apêndice 6; 5) ver Tab. G.1; mínimo Lt/ry ≤ 50; 

6) ver seção 5.5.2, listam-se os mínimos; 7) as indicações dessas “notas” são referentes às fontes. 
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A.2  CRITÉRIOS DAS NORMAS PARA A RESISTÊNCIA DAS LIGAÇÕES  

Foram estudados alguns parâmetros das ligações no capítulo 2, dando-se mais 

ênfase ao conceito de versões contemporâneas ao Eurocode 3 (1992), que difere um 

pouco tanto da versão atual como da forma empregada no AISC LRFD (2005) e, 

também, da norma brasileira (NBR 8800, 2007). 

Indicou-se a ligação do tipo resistência-plena como a que naturalmente atende 

qualquer tipo de análise plástica (ou inelástica) sem qualquer limitação. Note-se que, 

não ocorrendo a formação prevista da zona plástica (ZP) ou rótula plástica (RP), ainda 

assim, a ligação é capaz de atender à demanda de rotação plástica (da viga) pela sua 

própria rotação, validando a análise empregada (atingir a rotação θp). Essa definição 

auxilia a realizar verificações mais expeditas, também, quando se emprega uma ligação 

padronizada numa viga que possui um momento plástico (Mp) sabidamente menor que o 

último da ligação (Mu). Essa ideia, entretanto, não foi mantida nas normas, porque a 

ligação não precisaria ter sua capacidade de rotação verificada, o que, então, passou a 

ser uma exigência. 

Nas normas prevalece, agora, apenas o termo “resistente” significando que na 

ligação atuará um momento da ordem de Mp da viga. Dessa forma, a ligação terá um 

dado giro e a viga deverá fornecer com a ZP (ou RP) o giro adicional, que se soma ao 

anterior para suprir aquela demanda prevista na análise plástica (ou inelástica). Veja-se 

que isso não indica que a ligação seja capaz, ou melhor, caberá ao projetista comprovar 

que as rotações obtidas estão adequadas à situação de colapso prevista pelas análises. 

Já na consideração “parcialmente resistente” fica implícito o comportamento 

semirrígido, logo, não se atinge Mp da viga em nenhum instante, porém a ligação deverá 

atender à demanda de rotação da análise. Ou seja, deve-se avaliar a capacidade de 

rotação. Isso equivale a um comportamento de um novo tipo de RP, no qual atua um 

momento menor (Mu) que o da viga (Mp), mas que corresponde a dada rotação (θu) que 

será realmente atingida. 

No caso da ligação “flexível”, a atenção fica realmente com a capacidade de 

rotação, visto que essas ligações apresentam grandes deformações (giro próprio). Nessa 

condição, entretanto, o projetista deverá cuidar, pelos resultados da sua análise 

computacional, para que a rotação obtida não supere a do ângulo de contato (θcn), 

garantindo a segurança do projeto. Deve-se refazer a análise caso isso aconteça. 
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Portanto, o conceito ligação capaz foi, de certa maneira, abandonado nas normas 

atuais, o qual se procurou resgatar nesta tese. Para isso, apresentaram-se os conceitos, 

em separado, visando à maior clareza. Deve ser alertado, novamente, que algumas 

curvas M-θ não incluem, no seu traçado, a rotação da viga, o que obriga o projetista a 

ter meios de avaliá-la com o programa computacional. Já, a capacidade de rotação passa 

a ser fundamental para a validade das análises e evitar o colapso da ligação por rotação 

excessiva quando essas rotações estiverem incluídas nas curvas.  

 

A.3  ESTRUTURAS CONTRAVENTADAS E NÃO CONTRAVENTADAS   

Aqui cabe uma pequena discussão em relação às nomenclaturas adotadas para 

classificar o comportamento da estrutura quanto ao galeio lateral (“sidesway”). 

Denomina-se “deslocável” a estrutura que não dispõe de suporte ou travamento 

lateral para garantir sua estabilidade. Assim, a própria estrutura responsabiliza-se por 

sua estabilidade e por resistir às cargas laterais atuantes.  

Já a consideração “indeslocável” admite que a movimentação lateral seja 

minimizada, ou que a estabilidade é garantida, por meio de apoios laterais ou estruturas 

com tal finalidade. Esses termos são mais próprios da norma americana (AISC, 2005).  

A estrutura é dita “contraventada” quando é impedida de deslocar-se lateralmente 

por meio do contraventamento, que é uma versão em estruturas de aço da chamada 

“viga-parede”, empregada nas estruturas de concreto. Já a estrutura que absorve os 

esforços horizontais, garantindo sua própria estabilidade, é dita não contraventada. 

Quando essa estrutura garante a estabilidade das demais partes, é chamada de 

“contraventamento”. Esses termos são mais conhecidos e aplicados no Brasil. 

O contraventamento é, em geral, uma estrutura de treliças, um pórtico especial à 

momento, etc., que possuirá determinado deslocamento lateral, que é minimizado, tendo 

em vista a ação dos efeitos secundários (cargas verticais sob condições de 

excentricidade gerando momentos). No caso da construção em treliças, a adoção da 

forma composta por triângulos resultará num conjunto indeformável ou de menor 

movimentação lateral. Todavia, deve-se ter atenção com os seus deslocamentos laterais, 

seja em condições de serviço seja nas últimas, pois isso interfere na estabilidade das 

demais partes da construção que estiverem dependentes dele e cujas cargas nocionais 

(ou que desestabilizam) devem ser incluídas na análise do último. 
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Assim, deve-se considerar como “travada” a estrutura que se apoia nessa viga-

parede de aço e dela obtém sua estabilidade (ou seja, tal estrutura torna-se, então, do 

tipo “indeslocável”), e “destravada”, a estrutura que não depende do contraventamento, 

ou seja, uma estrutura deslocável. O termo “deslocável” é mais empregado no contexto 

do Eurocode 3 (1992).  

Verifica-se, em todos os casos, que essas classificações estão diretamente 

relacionadas com a gravidade do efeito P∆ (P-delta) nas estruturas “destravadas”, “não 

contraventadas” ou “deslocáveis”. E quando essas estruturas são qualificadas como 

“travadas” ou “indeslocáveis” ou “contraventadas”, o efeito secundário da curvatura 

(entre os travamentos) Pδ (P-deltinha) passa a ser mais importante. 

A NBR 8800 (2007), seguindo conceitos do AISC (2005), define um parâmetro de 

deslocabilidade relativa, que se confunde com uma forma de avaliação do fator de 

deslocabilidade B2 = ∆H2/ ∆H1, que relaciona os deslocamentos horizontais obtidos em 

uma análise elástica de segunda (∆H2) com os de primeira ordem (∆H1), aplicando o 

mesmo carregamento (incluindo esforços horizontais, ou na sua falta, as cargas 

nocionais). Dessa forma, as seguintes “classes de deslocabilidade” podem ser adotadas: 

a. pequena – quando B2 ≤ 1,1; ou seja, a estrutura tem bastante rigidez própria e a 

estrutura pode ser analisada até por um método elástico de primeira ordem; 

b. média – para 1,1 < B2 ≤ 1,5; consideração que exige o emprego de um método 

elástico de segunda ordem no mínimo; e  

c. grande – sendo 1,5 < B2; caso em que se recomenda uma análise inelástica de 

segunda ordem (ou, mais propriamente, a análise avançada). 
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A.4  DEFORMAÇÕES DO PONTO E DA FIBRA 

De forma geral, quando se abstrai um ponto (A) de um corpo, pode-se situá-lo no 

espaço definido por um sistema coordenado local, por exemplo, x^ = {x1, x2, x3}, que é 

relacionado a um sistema coordenado de eixos globais, X^ = {X, Y, Z} que descreve 

todos os pontos desse corpo, como representado na Fig. A.1(a).  

Seguindo a ideia do referencial lagrangiano atualizado (RLA), o ponto A descreve 

um movimento, quando parte do estado conhecido (Ac) e atinge o deformado (Ad), 

havendo 6 deslocamentos possíveis (3 lineares e 3 rotações): u^ = {u1, u2, u3, α1, α2, α3}. 

Na figura A.1(a), por simplicidade, mostrou-se apenas os referentes à tese, para a 

análise no plano (x, y), ou seja, u = {uA, vA, θA}.  

Esse movimento pode provocar tensões e deformações no corpo, avaliadas 

naquele ponto A (aqui representado como um cubo, para melhor visualização), ou seja, 

tensões σ^ = {σ1, σ2, σ3, τ12, τ23, τ31}, como as mostradas na Fig. 1.A(b). Para o 

cisalhamento, indicam-se apenas as tensões do plano (x, y) e são adotados os índices (12) 

e (21), colocando-se a direção do eixo em que atuam no primeiro índice.  

De forma similar, as deformações associadas a essas tensões desse ponto A podem 

ser definidas como ε^ = {ε 1, ε 2, ε 3, γ12, γ 23, γ 31}.   

Por hipótese, supõe-se que o comportamento seja isotrópico e que obedeça, no 

primeiro instante, à lei de Hooke, considerando um material perfeitamente elástico 

ideal, quando essas grandezas podem ser relacionar pela expressão (Mase, 1970):  
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Figura  A.1 Comportamento geral de um ponto de um corpo: 
(a) coordenadas e movimento; (b) tensões. 
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na qual, D representa um módulo de rigidez conforme definido na Fig. 3.3 e os 

parâmetros dentro da matriz (chamados constantes de Lamé) são: 

em que ν é o coeficiente de Poisson (Timoshenko & Goodier, 1970) 

Considerando, então, alinhados os eixos (z) de x e o global (Z) de X, admite-se o 

estado plano de tensões, do que as grandezas σz =  τxz = τyz = 0, ou seja, não existem 

esforços fora do plano (x, y). Mas, haverá deformações fora do plano, consideradas 

insignificantes, sendo desprezadas para efeito de análise. Portanto, os vetores podem ser 

simplificados para: deslocamentos u = {u, v, θ}, tensões σ# = {σ1, σ2, τ12} e 

deformações ε# = {ε1, ε2, γ12}, e, então, a expressão Eq. A.1 é rescrita na forma: 

Como, também por hipótese, o efeito de Poisson é desprezado, fazendo-se o 

coeficiente ν = 0, tem-se que λd = 0, µd = 0,5 e κd = 1, do que a Eq. A.3 resulta em: 

Considera-se que não ocorrem tensões transversais (σ2 = 0) e que o cisalhamento 

está aparecendo como condição de equilíbrio, desprezando-se a tensão τ12 (→ 0). 

Além disso, desprezam-se as deformações transversais ao eixo da barra (também 

consideradas insignificantes em relação as que ocorrem no eixo das barras) [e, por 

extensão, dos elementos finitos (EF)], ou bem, ε2 ≈ γ12 ≈ 0. Conclui-se, dessa forma,  

que para a fibra considera-se apenas σ = D ε, que é outra forma da equação Eq. 3.3. 

A forma mais adequada de obter essas deformações é utilizar-se um conjunto de 

grandezas conjugadas energeticamente. Dentre essas grandezas, existem as mais 

empregadas no MEF, que são as deformações de Green-Lagrange. Elas podem ser 
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estabelecidas, na forma de taxa de variação dos deslocamentos em relação às 

coordenadas em que são medidas, pela expressão geral indiciada (Bathe, 1996): 

 que estão associadas às tensões de Piola-Kirchoff, expressas, normalmente, como 

tensores. Entretanto, esse tensor de tensões não tem muito sentido prático para a 

engenharia, por essa razão faz-se a conversão para o tensor de Cauchy (Mase, 1970). 

Como já foram desprezadas as deformações transversais, a Eq. A.5 será reduzida 

apenas à direção axial também, sendo rescrita simplesmente como: 

Assim, a maior diferença entre a formulação da tese e a tradicional, é que em vez 

de empregar a expressão de Green-Lagrange e as tensões de Cauchy, adotam-se as 

deformações de engenharia (desprezando-se o segundo termo do lado direito da Eq. 

A.6) com as tensões de Biot (1939), que são conjugadas energéticas da última. 

Ao se fazerem essas simplificações, os tensores de rotação, os invariantes e outras 

considerações formais adotadas no estudo de corpos (Mase, 1970) são ignoradas. Com 

essa abordagem mais simples, aproxima-se o comportamento da fibra como se existisse, 

apenas, a deformação axial, ou seja, trata-se como unifilar. 

As hipóteses e definições usuais no estudo da plasticidade, como descreveram 

Chen & Han (1987), não foram adotadas nesta tese, em que se acompanha, tão-somente, 

o diagrama tensão-deformação. Por isso, também, não foram consideradas: 

a. a definição de superfícies de escoamento baseadas no critério de Tresca, de von 

Mises e de outros,  

b. a identificação da pressão hidrostática, bem como das tensões principais; 

c. a identificação de invariantes, tensor das deformações principais e de rotações; 

d. a expansão (ou variação) volumétrica; e  

e. a regra de fluxo plástico para materiais como Prandtl-Reuss (teoria J2). 

 

Embora seja considerado o regime de encruamento isotrópico, não se leva em 

conta o efeito Bauschinger e a acomodação (“shakedown”, Chen & Han, 1987).  

 

 



























∂

∂
⋅

∂

∂
+

∂

∂
+

∂

∂
=ε ∑

k j

k

i

k

i

j

j

i
ij x

u

x

u

x

u

x

u

2

1
 (A.5) 

2

dx

dv

2

1

dx

du








+=ε  (A.6) 



Tese • AR Alvarenga • Apêndices 

 

431 

A.5  PARTICIPAÇÃO DO ESTIRAMENTO NAS FUNÇÕES VO  

Ao se estabelecerem as funções de forma em relação ao deslocamento vertical do 

eixo do EF [vO(x)] e as suas derivadas, surge o questionamento sobre a presença do 

estiramento ξ = (1 +q1/L0). Como mostrado na subseção 3.3.3, a função vO(x) é definida 

pela Eq. 3.21 como o produto desse termo pela avaliação do comportamento rotacional 

da posição do ponto x: [Ψ2q2 + Ψ3q3]. Os valores de vO(x)/L0 são mostrados nas Figs. 

3.11(a-b) com rotações unitárias q2 e q3, respectivamente, para as semiflexibilidades de 

η = {0/0,25/0,5}, mas considerando-se q1 = 0. 

Ao se considerar apenas a rotação unitária em A (q2 = 1), ou em B (q3 = 1), para a 

semiflexibilidade η = 0,25 (midirrígido), como se constata nas Figs. A.2(a-b), 

colocando-se (q1/L0) como +10 (-10)%, os deslocamentos vO(x) correspondentes ficam 

maiores (menores) que a função original. 

Na figura A.3 fica claro qual é o efeito de q1 com a função Ψ2 (ou Ψ3) constante, 

correspondendo à rotação q2 (ou q3). Quando o comprimento do EF (que define a base 

da tangente) cresce (ou reduz), então, vO(x) é afetado diretamente, visto que a função 

(Ψj) é apenas um fator comprimento e (qj) representa o ângulo de giro ( que confunde-se 

com a sua tangente). Isso indica que no futuro, deve-se incluir o fator ξ  na Eq. 4.35. 

A.6  MATRIZ DE ROTAÇÃO 

Na montagem da rigidez global (S), é necessário tanto realizar a ordenação dos 

GDLs como a rotação dos eixos locais de cada EF para o sistema coordenado global, 

utilizando o ângulo de giro atualizado θg, ou seja, fazer a transformação linear descrita 

por Weaver Jr & Gere (1990): 

( ) ( ) ( )gg
T

g θθθ KTTK =  (A.7)
 

na qual a matriz de transformação T ( )gθ  [6×6] é expressa como: 

( )    θ g 
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sendo 0 [3×3] a matriz nula de ordem 3 e, R ( )gθ  [3×3] a matriz de rotação dada por: 
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Figura  A.2 Efeito de q1 nos deslocamentos vO(x): 
(a) com rotação unitária em A; (b) com rotação unitária em B. 
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Figura  A.3 Efeito de q1 nos deslocamentos vO(x) com Ψ constante: 
(a) com Ψ2 e rotação unitária q2; (b) com Ψ3 e rotação unitária q3. 
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A.7  TERMOS DE RIGIDEZ GERADOS PELAS PROPRIEDADES MÉDIAS  

Quando se definiram as novas aproximações das propriedades médias do EF na 

subseção 3.4.4, empregando-se as Eqs. 3.92(a-b), os termos referentes à D1m não se 

alteram. Os demais termos, porém, sofrem correções porque, agora, existem as 

grandezas {D2A, D2B, D3Am, D3Bm e D3ABm}, que não são mais englobadas por {D2m e 

D3m}, respectivamente. Ou seja, os coeficientes e expressões com η que eram somados 

após realizar-se a transformação (fT) devem ser alterados, substituindo-se as Eqs. 

3.80(a-j) pelas expressões: 

Basicamente, os termos afetados foram {B, E, F, G e I}. Nos termos {H e J}, as 

inércias chamadas “médias” (D3m) apenas foram substituídas por termos equivalentes no 

nó A: (3D3A+D3ABm) ou no nó B: (3D3B+D3ABm). A mais interessante mudança é a dos 

termos {I e J} que, agora, são bem distintos (antes, J = 2 I). Essas modificações da 

matriz Kep foram empregadas na tese a partir dos problemas inelásticos, incluindo vigas, 

colunas e portais do capítulo 7, permitindo, aparentemente, melhor rapidez (menor 

quantidade de iterações no processo de solução) e pequenas diferenças nos 

deslocamentos em relação ao anterior. Nos capítulos seguintes (8 & 9), adotaram-se 

essas equações para todos os exemplos.  
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A.8  RESULTADOS GRÁFICOS OBTIDOS DE FIGURAS IMPRESSAS  

Um dos desafios para se desenvolver uma formulação numérica é a validação por 

comparação dos resultados obtidos com os fornecidos na literatura mundial. Além de 

não se dispor, às vezes, de todos os dados, de existir eventuais falhas de edição, torna-se 

necessário, em geral, reproduzir os gráficos da literatura para uma forma que possibilite 

essa confrontação. Essa seção serve como informação complementar de como fazê-lo 

com alguma precisão. 

O primeiro passo é conseguir a cópia (“Xerox”) de boa qualidade (definição). Às 

vezes, é melhor que seja em preto e branco, ou caso o documento possibilite (por 

exemplo, revista não muito grossa), a colocação de forma plana (sem forçar as folhas) 

sobre o vidro da máquina, reproduzi-la para o meio eletrônico via “scanner”, gerando 

um arquivo do tipo “JPEG” [extensão (.jpg), Hoffman (2003)]. Antes de seguir, é 

interessante abrir a figura da página reproduzida, selecionar apenas a informação 

necessária, cortar todas as bordas, girar para deixar o mais horizontal possível, aumentar 

um pouco o tamanho (dimensão visual), sem perder a nitidez da figura e salvando essa 

imagem final [por exemplo, com o “Picture manager”, Windows (2001)]. Na figura 

A.4(a-b), mostra-se a página “Xerox” do artigo de Chan & Chuí (2000) e a parte 

selecionada do “JPEG” que foi utilizada no processo posterior. [Deve-se mencionar que 

o autor (Chan) autorizou o emprego do seu material, neste trabalho de pesquisa, por 

correspondência eletrônica]. 

Em seguida, cria-se um arquivo de desenho no “AutoCAD” [extensão (.dwg), 

Stellman & Krishnan, 2002], insere-se a imagem “JPEG” (“Insert ►Raster image”), 

copiam-se as curvas usando camadas (“layers”) diferentes, com a melhor proximidade 

da figura possível (não exagerar no “zoom”), salvando-se apenas as linhas (“lines”) 

como blocos (“block”, por exemplo, BLK_01). É importante definir o enquadro da 

figura (usando, em geral, apenas semirretas, ou seja, selecionados apenas os 2 pontos 

extremos para cada lado e 4 para o quadro. Além de mais simples, isso reduz os 

desvios). 

Posteriormente, deve-se reinserir (“insert”) o bloco explodindo, ainda na mesma 

escala em que foi gerado, dispor os eixos coordenados (x, y), coincidindo a origem (O: 

0.0, 0.0) com a do bloco, girar todo o bloco aplicando o comando de alinhar (“align”) 

sem corrigir dimensões, medir quantas unidades possui os pontos extremos do gráfico 
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[por exemplo, (301,5/248,3)]; e salvar novamente todo o bloco (“block”) com outro 

nome (por exemplo, BLK_O1_CV). Esse processo é ilustrado na Fig. A.5. 

O próximo passo é reintroduzir o último bloco, porém, além de explodir, deve-se 

fazer o ajuste de escalas, para a figura sair com as dimensões necessárias à recuperação 

dos valores numéricos adequados. Esse ajuste significa calcular os fatores de escala que 

resultam dos limites do gráfico (fornecidos pelo autor) e divididos pelas medidas em 

unidades do bloco salvo, de tal forma, que na imagem final resultem as grandezas 

desejadas. No gráfico mostrado na Fig. A.5(a), as medidas do autor são [0,05 (rad) e 1,5 

(M/Mp)]. Adotam-se valores maiores [(500, 300), da ordem de centenas para fazer a 

etapa de leitura posterior], resultando nos fatores de escala (para o “AutoCAD”) na 

introdução desse bloco: [fator x = (500/301,5044 =) 1,65835 e y = (300/248,2775 =) 

1,20835]. Acompanhando a Fig. A.6, agora, faz-se um arranjo horizontal do eixo y 

(“array horizontal”) copiando-o a cada 10 unidades, ou seja, no exemplo serão gerados 

49 eixos paralelos, com cotas de 10, isto é, medidas x = {10, 20, 30, ..., 490 e 500}.  

Em seguida, dever-se selecionar a linha gráfica da curva desejada e executa-se o 

corte (“trim”) das extremidades [aplica-se a opção “F” (“fence”) do comando], 

chegando-se ao estado representado na Fig. A.6(b). 

Nesse instante, deve-se acionar um arquivo para “AutoLISP” desenvolvido antes, 

com o nome TABELA.lsp, que segue no CD anexo à tese. Esse arquivo é instalado no 

“AutoCAD” pelo comando de carregamento (“appload”) e possui dois módulos que 

simulam novos comandos para o “AutoCAD” (2002): 

a. TAB –  que permite medir as linhas verticais (eixos y cópias) obtendo as cotas, 

automaticamente, salvando-as em um arquivo eletrônico. Com os dados desse 

arquivo eletrônico, pode-se regenerar o gráfico por meio de programas como o 

“Grapher” (2005) ou outros, e até mesmo corrigir os dados por fatores de 

escala [por exemplo, para (mrad) e 1,5 (M/Mp) originais], etc.; e  

b. ITAB – que lista a tabela de dados em arquivo, quando desejado, no próprio 

desenho do AutoCAD.  

 

Esses pseudo comandos requisitam os dados em cada módulo, diretamente, 

usando a tela e o teclado, no instante da operação, como se fosse um comando do 

próprio “AutoCAD” (2002), e o processo posterior é imediato (instantâneo). Pode, 

também, ser desfeito (pelo “undo”) ou paralisado [pela tecla “ESC” (“escape”)]. 
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Figura  A.4 Reprodução de gráfico impresso: 
(a) Xerox da página para o scanner; (b) ajustes mínimos do “JPEG” . 

 

 

Figura  A.5 Geração da cópia do gráfico via “AutoCAD” (2002): 
(a) copiar “JPEG” salvando bloco BLK_01; (b) ajustando e salvando BLK_01_CV. 

 

Figura  A.6 Geração da tabela da curva via “AutoCAD” (2002): 
(a) gerar cópias do eixo y; (b) cortar selecionando a curva C1. 
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A.9  CONCEITO DE ANALOGIA ADOTADO NESTA TESE  

Uma parte que pode levar a alguma controvérsia, além de ser novidade, é a 

aproximação das curvas de ligação com o método RBL por analogia, apresentado na 

seção 8.9. 

Partindo da Fig. 2.35, admite-se que os efeitos da ligação C2 são muito mais 

concentrados (menor área para dissipar efeitos locais) do que na ligação D2. O painel de 

alma da coluna C2 correspondente (181×181) é bem inferior a (180×381) e, embora a 

espessura seja maior (10,12 > 7,27) [mm], o aço é menos resistente (A7 < A 36). Como 

se faz a analogia considerando que a ligação é rígida, então se pode enrijecer a alma da 

coluna com chapas duplas e enrijecedores transversais, de tal forma que não serão esses 

os estados limites governantes (compressão e cisalhamento da alma da coluna). 

Adotando-se ligações padronizadas do BCSA (1997), verifica-se que os esforços 

nos parafusos não se modificam muito, para ligações de aço grau 43 com parafusos 

M20, classe 8.8. Na tabela A3, reproduzem-se os esforços indicados para chapa de 

largura 200×20 mm de espessura, 50 mm de borda, considerando a viga da seção 254 

UB 28 para a ligação C2 e, a 406 UB 46, para a D2. Obtêm-se os momentos resistentes 

Mr = {9620,0 (C2), 19378,1 (D2)} [kNcm], com base nos quais se chega à relação: 

MD2/MC2 = 19378,1 /  9620,0 = 2,014 ≈ 2.  

Comprova-se, assim, que usando ligações padronizadas (os mesmos elementos 

componentes da união), pode-se alcançar a relação de analogia proposta. Observe-se, 

ainda, que os momentos adotados {18700, 37400} [kNcm] são muito superiores aos da 

ligação padronizada, mesmo para o aço grau 50, quando M = 25400 kNcm (68%). 
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Figura  A.7 Esforços nas ligações não lineares 
(a) original C2; (b) aproximada por analogia D2. Obs. dimensões em [mm]. 
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Verifica-se que a rigidez inicial dessa ligação depende, basicamente, da rigidez da 

coluna ao corte Rcws, à compressão Rca, da rigidez dos parafusos RΣb e da altura média 

da seção, expressa pela equação (Faella et al., 2000): 

1
b

1
ca

1
cws

2
s

ki RRR

h
R

−
Σ

−− ++
≈  (A.11)

 

Observa-se que a rigidez RΣb varia muito pouco (de 3 a 5)% nesse caso, 

concluindo-se, daí, que quando os valores de rigidez {Rcws, Rca, RΣb} são 

aproximadamente os mesmos nas duas ligações (C2 e D2) o que interfere no resultado 

final será o parâmetro (hs)
2, como previsto na Eq. 8.5(b). 

Mediante o roteiro de Chen et al. (1996) para ligações 2 Ls de alma, com 

dimensões [mm]: {aba aL = 101,6; gabarito ga = 76,2; borda pL = 32}, parafusos ASTM 

A 325, aço ASTM A 36 (E = 20000, σy = 25) kN/cm2, calcula-se a ligação flexível 

produzindo a Tab. A.4, com as seguintes relações:  

a. cantoneira leve (espessura ta = 9,5 diâmetro parafuso db = 19,0): 

i. momentos MD2/MC2 = 4443,6 / 1352,6 = 3,29 > 2; e   

ii. rigidez: RkD2/MkC2 = 3346,0 / 711,8 = 4,84 > 4. 

b. cantoneira pesada (espessura ta = 25,4 diâmetro parafuso db = 25,4): 

i. momentos MD2/MC2 = 18885,6 / 8106,6 = 2,33 > 2; e   

ii. rigidez: RkD2/MkC2 = 616511,4 / 179553,0 = 3,43 < 4. 

 

A cantoneira pesada extrapola a condição ligação “flexível”, observando-se, até 

mesmo, que a distância de borda é maior (pL =38 > 32) que a empregada e que a 

espessura ta = 25,4 é improvável de ser adotada, com extensão tão pequena (ha = 190). 

Verifica-se, então, que a ligação C2 é pouco flexível, visto que seu momento 

último (Mu = 80,6 kNm) é superior ao de uma ligação com chapa cortada [Fig. 2.4(i)] 

do BCSA [(1997), com espessura 20 mm, 6 parafusos M 20, classe 8.8] para viga 254 

UB 28, com Mu = 69 kNm. Para esse tipo de ligação, a aproximação de hs deverá ser 

redefinida (por exemplo, uma tentativa a ser avaliada no futuro) como: 

( ) 2dpdh gLs /++≈  (A.12)
 

na qual a distância de borda é (pL) e, (dg) é a entre parafusos mais extremos. 

Para ligações desse tipo, seguindo os padrões do BCSA [(1997), com aço grau 43 

com parafusos M20, classe 8.8, chapa de largura 200×20 mm de espessura, 50 mm de 

borda], considerando a viga da seção 254 UB 28 para a ligação C2, e, a 406 UB 46, para 
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a D2, são construídas a Tab. A.5 e, de forma similar, a Tab. A.3. Para esses dados, 

chega-se à relação: MD2/MC2 = 14621,2 / 4717,6 = 3,10 > 2. Observa-se, mais uma vez, 

que a ligação C2 não atinge o momento último esperado (Mu = 80,6 kNm), mas que a 

relação de momentos obtida supera o valor 2 previsto pelo parâmetro (hs). 

Nesse caso, não é possível avaliar a rigidez, pois, como se percebe na Eq. A.11, 

sendo a ligação flexível, as rigidezes {Rcws e Rca} serão menores, e isso afeta a grandeza 

desejada (Rki). Esse é um assunto que será alvo de pesquisa complementar, como 

proposto no capítulo 9.  Comprova-se que a aproximação D3, feita na seção 8.9.2 por 

analogia, subestima um pouco os valores, trazendo, assim, um pequeno benefício, sem 

ser contra a segurança. A resposta real, entretanto, estará mais próxima dela do que a 

obtida com a ligação C3, que sequer pode ser construída com a nova viga proposta.  

 

Tabela A.3 Cálculo dos momentos das ligações rígidas com chapa de topo. 

a. d = 216 (C2) b. d = 414 (D2) Tipo 
Fx [kN] y [cm] Fx.y [kNcm] Fx [kN] y [cm]  Fx.y [kNcm] 

T1 +226 25,60 5785,6 +222 45,40 10078,8 

T2 +274 15,60 4274,4 +274 35,40   9699,6 

N3 
(1) -500  0,88 -440,0 -496   0,81   -400,3 

Soma   9620,0   19378,1 
Notas: 1) N3 = T1+T2; 2) para o caso d = 406, o padrão possui 3 linhas de parafusos, com o que  

T3 = 118 kN, y3 = 26,4 cm, T3.y3 = 3115,3; N4 = -614; N4.y4 = -986,7 (descontando 0,8 da altura);  
soma = 21906,9 kNcm  (teórico 21800 kNcm, 99,5% do calculado). 

 

Tabela A.4 Cálculo dos momentos das ligações flexíveis com 2 Ls de alma. 

Ligação d [mm] ha [mm] θ0 [mrad] Mu [kNcm] C1 
(2) Rki [kNm/rad] 

a. Cantoneira leve (espessura ta = 9,5; diâmetro db = 19,0) 
C2 216 160 19,02   1352,6 1,677      711,8 
D2 414 290 13,28   4443,6 1,471    3346,0 

b. Cantoneira pesada (espessura ta = 25,4; diâmetro db = 25,4) 
C2 216 160 0,451   8106,6 0,573 179553,0 
D2 414 290 0,306 18885,6 0,573 616511,4 

Notas: 1) θ0 = Mu / Rki; 2) expoente Tab. 2.10 da curva M-θ potencial Eq. 2.31; 3) alturas: (d) da seção, 
(ha) da cantoneira; 4) resultados do “CONANA”.for (Chen et al., 1996). 

 
Tabela A.5 Cálculo dos momentos das ligações com chapa de cabeça. 

a. d = 216 (C2) b. d = 414 (D2) Tipo 
 Fx [kN] y [cm] Fx.y [kNcm] Fx [kN] y [cm]  Fx.y [kNcm] 

T1 +274 15,60 4274,4 +274 35,40  9699,6 

T2 +119  6,60   785,4 +201 26,40   5306,4 

N3 
(1) -393  0,88 -345,8 -475   0,81   -384,8 

Soma   4717,6   14621,2 
Notas: 1) N3 = T1+T2; 2) para o caso d = 406, o padrão possui 3 linhas de parafusos, com o que  

T3 = 128 kN, y3 = 17,4 cm, T3.y3 = 2227,2; N4 = -603; N4.y4 = -488,4 (descontando 0,8 da altura);  
soma = 16744,8 kNcm (teórico 16200 kNcm, 96,7% do calculado). 
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A.10 LISTAGEM DE SAÍDA DO EXEMPLO DO CAPÍTULO 9  

Nesta seção, apresentam-se os dados e os resultados produzidos pelo sistema 

PPLANAVA para a análise do exemplo especial da subseção 9.3.4. Na figura A.7(a), 

indicam-se as coordenadas dos 25 nós, 24 EFs, etc., e na A.7(b), as imperfeições 

geométricas iniciais consideradas. Na figura A.7(c), mostram-se os carregamentos 

aplicados, sendo as demais características indicadas na seção 8.2 desta tese. 

Para esse exemplo, empregou-se o processo de solução automático de PPLANAVA 

(2010), que produziu os seguintes históricos: 

a. versão ELAST: (13×4%, 1×2%, 1×1%, 5×0,1%, 1×0,5%, 44×1%); 

b. versão PLAST: (...1×0,5%, 31×1%, 3×0,5%, 20×0,1%). 
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Figura  A.8 Dados do portal especial: 
(a) nós e EFs; (b) geometria imperfeita inicial; (c) cargas aplicadas. 
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As partes sublinhadas no histórico correspondem a ajustes que foram feitos no 

processo, por exemplo, na parte ELAST foram previstos 44 passos de 1%, que se 

transformaram em apenas 31, pois ocorre o primeiro colapso com λ = 90% (em passos 

de 1%). Na versão PLAST, corrigem-se os 20 passos de 0,1%, que não foram 

necessários. 

 

São fornecidas, a seguir, as seguintes partes da saída: 

a. listagem dos dados introduzidos em PPLANAVA, para solução desse problema; 

b. listagem inicial confirmando os dados fornecidos e, também, demais opções de 

processamento selecionadas; 

c. listagem de todos os resultados produzidos para: 

i.    incremento 20, fator de carga λ = 55,5%, quando ocorre o escoamento da 

primeira fatia (final do regime elástico); 

ii.  incremento 63, fator de carga λ = 89,3%, que é o último passo no qual 

ocorre a convergência antes do colapso; e  

iii. incremento 64, fator de carga λ = 89,4%, que é a última iteração 

previamente ao colapso, na qual o processo de análise é finalizado. 

 

A listagem completa, em arquivo neutro “PDF” [extensão (.pdf), 1993], está 

disponível no CD que acompanha esta tese (veja descrição na próxima seção). 
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A.10.1. Dados fornecidos. 
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A.10.2 Listagem da saída dos dados. 
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Observações: 

1- todas as cargas são incrementais e simultâneas, com os fatores 0,75 (1); 0,25 (2) 

e 0,50 (3); 

2- processo incremental automático (em cargas); 

3- ao superar 400 iterações no passo, o problema será finalizado; 

4- critério de convergência 0,1% da norma das cargas, em separado, e dos 

deslocamentos, em separado [opção (g)]; 

5- rotação avaliada pelo método S (simplificado), ignorando a tolerância; e  

6- resultado final após convergir apenas (1 saída, a da última iteração). 
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A.10.3 Listagem da saída do incremento do início do escoamento. 
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A.10.4 Listagem da saída do incremento de pré-colapso. 
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A.10.5 Listagem da saída do incremento do colapso. 

 

 

 

 



Tese • AR Alvarenga • Apêndices 

 

456 

 

 

 

 



Tese • AR Alvarenga • Apêndices 

 

457 

  

 



Tese • AR Alvarenga • Apêndices 

 

458 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tese • AR Alvarenga • Apêndices 

 

459 

A.11 NOTAS SOBRE O CD ANEXO 

Terminando esta tese, envia-se em anexo um CD com o seguinte conteúdo: 

a. cópia impressa em “PDF” (1993) colorido da tese, em formato A4; 

b. cópia impressa em “PDF” (1993) preto e branco da tese, em formato A4; 

c. versão em FORTRAN do programa “SCDB.for” modificado por Alvarenga 

(2010), com saída para tela e arquivos para arquivos (.txt); 

d. programas FORTRAN “BCIN.for”, “FRAMP.for” e “FRAMH.for” conforme 

desenvolvido por Chen & Toma  (1994) e a versão em “TURBO-BASIC” 

FLEXCOMP (2010) em formato [(.exe), compatível com Wiundows (2001)];   

e. listagem dos arquivos de dados (.dat) e resultados (.pdf) dos exemplos: 

    i. coluna de Van Kuren & Galambos (1964) seção 5.3; 

    ii. portal de Chen et al., (1996), seção 5.5 ; 

    iii. portal de Arnold et al. (1968), seção 5.6; 

    iv. coluna de Hajar et al. (1997), seção 6.3; 

    v. coluna de Lu & Kamalvand (1968), seção 6.4; 

    vi. portal de Kanchanalai (1977), seção 6.5, caso D; 

    vii. portal de Hajar et al. (1997), seção 6.6, caso coluna CD 14WF74; 

    vii. viga biligada, seção 7.2, (casos diversos); 

    viii. coluna de Hajar et al. (1997), seção 7.3, (casos diversos); 

    ix. portal de Yau & Chan (1994), seção 7.4; 

    x. portal de Chan & Chuí (2000), seção 7.5, [CC, TC e RC (1-3)]; 

    xi. portal de Chan & Zhou (1987), cap. 8, (casos diversos); 

    xii. portal especial de Alvarenga (2010), cap. 9;  

f. apresentação [Power Point, Windows (2001, extensão (.PPS)] sonorizada, com 

os mesmos “slides” empregados na defesa desta tese ,em 30/04/2010; e  

g. arquivo TABELA.lsp para “AutoCAD” (20020), (ver seção A.8). 

 

Solicitamos ao leitor, que comunique, por favor, qualquer falha de edição ou 

dificuldade de leitura ou entendimento, pelo endereço: artalavarenga@ig.com.br ou pela 

página “PROPEC” (PROgrama de Pós-graduação em Engenharia Civil) da EM/UFOP 

na Internet, com o endereço:  http://www.propec.ufop.br/. 
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