
Applying	  Nonlinear	  Analysis	  to	  Learn	  the	  
Fundamentals	  of	  Structural	  Stability	  

	  
Course	  Overview	  –	  By	  using	  nonlinear	  structural	  analysis	  software	  as	  the	  basis	  for	  
a	  virtual	  laboratory,	  students	  will	  explore	  and	  learn	  the	  fundamentals	  of	  structural	  
stability.	  	  Per	  European	  terminology,	  methods	  of	  analysis	  reviewed	  and	  employed	  in	  
this	   course	   include	   linear	   buckling	   analysis	   (LBA)	   as	  well	   as	   geometric	   nonlinear	  
analysis	   (GNA),	   material	   nonlinear	   analysis	   (MNA),	   and	   geometric	   and	   material	  
nonlinear	  analysis	  (GMNA),	  and	  their	  counterparts	  that	  include	  initial	  imperfections	  
(GNIA,	  MNIA,	  and	  GMNIA).	   	  The	  stability	  of	  members,	  such	  as	  columns	  and	  beams,	  
and	  systems	  are	  explored.	  
	  
Lecturer:	  Ronald	  D.	  Ziemian,	  PhD,	  PE	  
	   Professor,	  Bucknell	  University,	  Lewisburg,	  PA	  	  USA	  
	  
Software:	  	  MASTAN2	  (available	  at	  www.mastan2.com	  at	  no	  cost)	  
	  
Lecture	  1	  –	  An	  Introduction	  to	  Elastic	  and	  Inelastic	  Analyses	  
After	  reviewing	   the	   finite	  element	  method	  as	  means	   for	  analyzing	   two-‐	  and	   three-‐
dimensional	  frames	  and	  trusses,	  a	  concentrated	  plasticity	  (plastic	  hinge)	  model	  will	  
be	  introduced	  as	  a	  means	  for	  accounting	  for	  material	  nonlinear	  behavior.	  	  Students	  
will	  employ	  first-‐order	  elastic	  and	  inelastic	  analyses	  of	  a	  simple	  structural	  system	  to	  
comprehend	   basic	   concepts.	   	   The	   impact	   of	   axial	   force	   on	   the	   plastic	   strength	   of	  
members	  will	  be	  demonstrated.	  
	  
Lecture	  2	  –	  Geometric	  Nonlinear	  Analysis	  
The	   basic	   concepts	   of	   Lecture	   1	   will	   expanded	   to	   include	   geometric	   nonlinear	  
behavior.	  	  Using	  a	  similar	  hands-‐on	  approach,	  second-‐order	  elastic	  behavior	  will	  be	  
explored,	  which	  will	  then	  be	  modified	  to	  include	  material	  nonlinear	  behavior.	  	  Next,	  
an	  explanation	  and	  investigation	  of	  elastic	  and	  inelastic	  critical	  load	  (bifurcation	  by	  
eigenvalue)	   analyses	   will	   be	   completed.	   	   The	   lecture	   will	   conclude	   by	   studying	   a	  
two-‐dimensional	  frame	  to	  illustrate	  the	  first-‐	  and	  second-‐order	  elastic	  and	  inelastic	  
analysis	  capabilities	  reviewed.	  
	  
Lectures	  3	  and	  4	  –	  Behavior	  of	  Compression	  Members	  
This	   lecture	  will	   focus	  on	  fully	  understanding	  the	  behavior	  compression	  members,	  
such	  as	  columns	  in	  building	  or	  chord	  and	  web	  members	  in	  a	  truss	  bridge.	  	  Using	  the	  
analysis	  capabilities	  learned	  in	  Lectures	  1	  and	  2,	  a	  hands-‐on	  approach	  will	  be	  used	  
to	  systematically	  retract	   the	  assumptions	  related	  to	  Euler	  buckling.	   	  The	   impact	  of	  
factors	   such	   a	   material	   yielding,	   residual	   stresses,	   initial	   out-‐of-‐straightness,	   and	  
support	  conditions	  will	  be	  explored.	  
	  
Lectures	  5	  and	  6	  –	  Behavior	  of	  Flexural	  Members	  
This	   lecture	   will	   focus	   on	   understanding	   the	   behavior	   flexural	   members,	   such	   as	  
beams	  in	  a	  building	  or	  girders	  in	  bridge.	  	  Continuing	  with	  a	  hands-‐on	  approach,	  the	  



strength	  limit	  states	  of	  beams,	  including	  full	  yielding	  and	  in/elastic	  lateral	  torsional	  
buckling,	  will	  be	  explored.	   	  The	  impact	  of	  factors	  such	  a	  material	  yielding,	  residual	  
stresses,	   initial	   out-‐of-‐straightness,	   lateral	   bracing,	   and	   moment	   gradient	   will	   be	  
studied.	  
	  
Lecture	  7	  –	  Behavior	  of	  Beam-‐Columns	  and	  Structural	  Systems	  
With	  the	  basics	  now	  in	  hand,	  this	  lecture	  will	  explore	  the	  behavior	  of	  members	  and	  
systems	  with	  members	  subject	  to	  the	  combined	  effects	  of	  compression	  and	  flexure.	  	  
Students	  will	  compare	  hand	  methods	  for	  approximating	  geometric	  nonlinear	  effects	  
with	   results	   obtained	   using	   rigorous	   second-‐order	   computational	   analysis.	   	   The	  
lecture	   will	   conclude	   with	   an	   overview	   on	   how	   some	   international	   specifications	  
permit	  the	  use	  of	  advanced	  methods	  of	  nonlinear	  analysis	  (GMNIA)	  to	  design	  steel	  
structures.	  
	  
	  
	  
	  
	  
About	  the	  Speaker	  
Ron	   Ziemian	   is	   a	   Professor	   of	   Civil	   and	   Environmental	   Engineering	   at	   Bucknell	  
University	   in	   Lewisburg,	   PA,	   USA.	   He	   received	   his	   BSCE,	  MENG,	   and	   PhD	   degrees	  
from	  Cornell	  University.	  In	  addition	  to	  authoring	  papers	  and	  completing	  research	  in	  
the	  design	  and	  analysis	  of	  steel	  and	  aluminum	  structures,	  Dr.	  Ziemian	  is	  co-‐author	  of	  
the	   textbook	  Matrix	   Structural	   Analysis	   (Wiley,	   2000)	   and	   the	   editor	   for	   the	   6th	  
edition	  of	  the	  Guide	  to	  Stability	  Design	  Criteria	  for	  Metal	  Structures	  (Wiley,	  2010).	  He	  
is	  currently	  chair	  of	  the	  American	  Institute	  of	  Steel	  Construction’s	  Task	  Committee	  
10	  on	  Frame	  Stability,	  and	  he	  recently	  completed	  his	  terms	  as	  chair	  of	  the	  Structural	  
Stability	  Research	  Council	  and	  chair	  of	  AISC's	  Task	  Group	  on	  Inelastic	  Analysis	  and	  
Design.	  He	  serves	  on	  the	  AISC	  and	  Aluminum	  Association	  Specification	  Committees	  
and	   is	   active	   with	   the	  Steel	   Joist	   Institute.	   Dr.	   Ziemian,	   with	   W.	   McGuire	   and	   G.	  
Deierlein,	   were	   awarded	   the	   ASCE	   Norman	   Medal	   (1994)	   for	   their	   paper	   on	  
employing	   advanced	  methods	   of	   inelastic	   analysis	   in	  
the	  limit	  states	  design	  of	  steel	  structures,	  and	  he	  was	  
the	   recipient	   of	   the	  AISC	   Special	  Achievement	  Award	  
(2006)	   for	   his	   innovative	   development	   of	   the	  
advanced	   structural	   analysis	  MASTAN2	   software	   and	  
his	   key	   role	   in	   its	   use	   to	   develop	   the	   fully-‐revised	  
2005	   AISC	   Specification	   provisions	   for	   stability	  
analysis	  and	  design	  of	  steel	  structures.	   	  In	  April	  2013,	  
Dr.	   Ziemian	   received	   the	   ASCE	   Shortridge	   Hardesty	  
Award	   for	   his	   "substantial	   accomplishments	   in	  
research,	   service,	   and	   teaching,	   as	  well	   as	   advancing	  
practice	   in	   the	   field	   of	   structural	   stability."	   	   He	   has	  
also	  received	  Bucknell	  University’s	  Presidential	  Award	  
for	   Teaching	   Excellence	   (2000),	   and	   in	   2010	   was	  
named	  a	  Bucknell	  University	  Presidential	  Professor.	  
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Course Overview

� Employ a virtual laboratory to learn basic 
concepts of structural stability

� Seven 90-minute lectures
• Lectures 1 & 2  Introduction to Nonlinear Analysis

• Lectures 3 & 4 Behavior of Compression Members

• Lectures 5 & 6 Behavior of Flexural Members

• Lecture 7 Beam-columns and Structural Systems

� Software employed is MASTAN2 which is 
available at no cost at www.mastan2.com

Better designs will come from a 
better understanding of behavior
G. Winter, W. McGuire, T. Pekoz, A. Nilson,
J. Abel, P. Gergely, R. White, T. Ingrafea



8/12/2014

Introduction to
Nonlinear Analysis

Ron Ziemian

Lectures 1 & 2:  13-Aug-2014

The function of a structural engineer is 
to design — not to analyze

Norris and Wilbur
1960

Analysis is a means to an end
rather than the end itself.
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Role of the analysis:

• forces, moments and deflections  --> design equations

• insight into the behavior of a structure
--> better the understanding, better the design

Limit States Design:
Prior to limit of resistance, significant nonlinear 
response, including
- geometrical effects (P-Δ, P-δ)
- material effects (yielding, cracking, crushing)
- combined effects

AISC Ch. C: P-Δ, P-δ (App. 7)
App. 1:  Inelastic Analysis

AS4100  Section 4, App. D,E,F
App. D: Advanced Analysis

Seismic:  Pushover Analysis
Other:  Progressive Collapse

Impetus:

Nonlinear Analysis

Limit States Design

Available Software

Research

Education
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Nonlinear Analysis
� Hand methods

• Second-order effects (focus of later lectures)
– i.e. Moment Amplification Factors (B1 and B2 factors)

• Material nonlinear effects
– i.e. plastic analysis (upper and lower bound theories)

� Computer Methods (focus of these lectures)
• Lots of variations

– all use same basic concepts (most important to today)

– one approach will be presented (basis for MASTAN2)

� Please keep in mind
• All methods are approximate

• Not a substitute, but a complement to good engineering
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Lecture Overviews

� Lecture 1
• Brief Introduction (done!)

• Computer Structural Analysis (Review?)

• Basis for Material Nonlinear Models

� Lecture 2
• Incorporating Geometric Nonlinear Behavior

• Critical Load Analysis

• Summary and Concluding Remarks 

How does the computer get 
these results?

� State-of-the-Art Crystal Ball?  Not quite.

� By applying 2 requirements and 1 translator
• Two Requirements:

– Equilibrium (equations in terms of F’s and M’s, 1 per d.o.f.)

– Compatibility (equations in terms of Δ’s and θ’s, 1 per d.o.f.)

• Translator “apples to oranges”
– Constitutive Relationship (i.e. Hooke’s Law, σ = E Є )

– Generalized to Force-to-Displacement (i.e. F=kΔ)

– Re-write equilibrium eqs. in terms of unknown displacements

� # of Equil. Eqs. = # of Unknown Displacements   
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Equilibrium Equations

A B C

D 40 kips
40 kipsD

Free Body
Diagram

Translator:  Forces � Displacements

ui

vi

vj

uj

i’

j’

(Deformed)

i

j
(Undeformed)

fxi

fxj

fyj

fyi

Big Question:
Where do these known stiffness coefficients k’s 
come from? Little Answer:

Function of member’s material and geometric 
properties, including its orientation. 
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F � Δ for all members

A B C

D 
uD

vD

uA

vA

uB

vB

uC

vC

Substituting into Equil. Eqs.

A B C

D 
40 kN
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Substituting into Equil. Eqs. (cont.)

A B C

D 
40 kN

So, where are we at?
� We have two equilibrium equations (1 per 

d.o.f.) in terms of a lot of displacements:

What card haven’t we played yet?
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Compatibility Eqs. (consistent deflections)

CD
CC 0vv ==

CD
CC 0uu ==

AD
AA 0vv ==

AD
AA 0uu ==

BD
BB 0vv ==

BD
BB 0uu ==

Member-to-Support

A B C

D 

D

M
em

be
r 

C
D

CD
D

BD
D

AD
DD vvvv ===

CD
D

BD
D

AD
DD uuuu ===

Member-to-Member
Dv

AD
Dv

AD
Du

BD
Dv

BD
Du

CD
Dv

CD
Du

Du

Time for some serious simplifying

� Applying Compatibility to Equil. Eqs.:

Which simplifies to…

All = 0

All = uD

All = vD
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After simplifying…

A B C

D 
40 kN 

Solve for Unknown Displacements

Since k’s are known, we have
2 Equations and 2 Unknowns

? ?

? ?

uD = # and  vD = ##

With all displacements, solve for 
member forces…
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Summary of Computer Approach
� For each d.o.f., write an equilibrium equation:

Fexternal = Σ fmember (Equil. Eqs.)
� Re-write (translate) each member force in terms of 

its end displacements (Stiffness Eqs.)

fmember = Σ k member Δ member end

� Substitute Stiffness Eqs. into above Equil. Eqs.

� Simplify Equil. Eqs. by applying member-to-member 
and member-to-support compatibility conditions

� Solve n Equil. Eqs. for the n unknown displacements

� Use Stiffness Eqs. to calculate member forces

� Apply Equil. Eqs. to solve for reactions

Lot’s of Questions

� So, this is how most commercial programs such 
as SAP2000, RISA, STAAD, etc. get the 
answer?
• Yes!  Known as “Direct Stiffness Method”

� So, all such programs will give the same answer?
• Yes, as long as it is a static 1st-order elastic analysis.

� Wait a minute…Is this the basic analysis 
procedure for the “finite element method”?
• Yes!  Bit more tricky to get k’s, σ‘s, and Є’s
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Two Big Questions

� Where do those stiffness coefficients 
come from?
• You mean the ones that relate member end 

forces to member end displacements?

• Yeah, those k’s !  <More to come on this>

� What happens when we go static nonlinear 
or even dynamic?
• Same basic procedure, but apply loads in 

increments and perform a series of analyses.  
Then, sum incremental results.

< Much more to come on this! >

Important Points
� The only opportunity for most computer 

analysis software to model the actual 
behavior of the structure is through the 
member stiffness terms.

� So, to include
• first-order effects

• second-order effects

• material nonlinear behavior

Must modify member stiffness!!!

�Let’s review member stiffness
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Stiffness Coefficients, k’s

� Let’s start with high school physics
• Extension Spring Experiment

After:

F

Δ

Δ

F

k

1

F = k Δ

Before:
Force

Displacement

After:

θ

M

k

1

M = k θ

M

θ

Stiffness Coefficients, k’s (cont.)

� More “advanced” high school physics lab
• Rotational Spring Experiment

Before:
Moment

Rotation
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How about real structural members?
� Axial force member

Δ

F = k(A,L,E) Δ

� Stiffness k function of:
• Geometry: Area and Length (A↑,k↑ & L↑, k↓)

• Material: Elastic Modulus (E↑,k↑)

After:

F

Δ

F

k
1

Before:

How about real members? (cont.)
� Flexural members

Before:

� Stiffness k function of:
• Geometry: Moment of Inertia & Length (I↑,k↑& L↑, k↓)

• Material: Elastic Modulus (E↑,k↑)

Before:

After:

F

Δ

After:
M

θ

F = k(I,L,E) ΔM = k(I,L,E) θ
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Other factor impacting stiffness
� Orientation of member

• consider axial force member:

kv=EA/L
kh=0

Vertical 
Member

kh=EA/L

kv=0

Horizontal 
Member

Orientation of axial force member

Important Point:  Less vertical a member, 
the less stiffness to resist vertical loads.

kv=(sin2φ)EA/L

φ

kh=(cos2φ)EA/L

φ
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Summary: Three Perspectives

� Reality:  What you see…

F1

Three Perspectives (cont.)
� What you see on your computer screen:

DL

WL

Collection of elements 
connected by sharing 
common nodes
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Three Perspectives
� What your computer actually sees:

Assemblage of 
equivalent springs {F} = [K]{Δ}

Σ k

DL
WL

Analysis Review: Key Points

� Reviewed the “Direct Stiffness Method”
• Equilibrium � Translator F(Δ) � Compatibility

� Response of structure controlled by 
stiffness of members (a.k.a. springs)

� First-order elastic stiffness of member 
function of:
• Material Property (E)

• Geometric Properties (A, I, L, and orientation)

� Time to go nonlinear…
let’s begin with material nonlinear
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Material Nonlinear (Inelastic)

� Best place to start is with a tensile test

σ = P/A

Є = Δ/L

E

1

σyield Perfectly Plastic (E = 0)

Normal Stress:  Structural Members
� For typical structural steel members (L/d>10), 

elastic/inelastic behavior controlled by normal 
stresses σ’s acting along the length axis of the 
member.

� Normal stress produced by:
• Axial force (P/A)

• Major and/or minor axis flexure (Mc/I)

• Combination of above effects (i.e. P/A + Mc/I)

• Warping (not today!)

� We will assume elastic-perfectly-plastic 
material (often done for steel) 
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E=0 � k=0

Post-Yield: Δ

σ = σy

Inelastic Behavior:  Axial Force
Originally:

Δ

P
σ =P/A=0

Yield:

Py

Δ

Py=Aσy

σ = σy
Plastic Hinge
at P = Py or
when  P/Py = 1.0

k=EA/L
1

Elastic:

P

Δ

σ < σy

Inelastic Behavior:
Flexure

Mp=Sσy

M

θ

My=Zσy

M
θA

A

k=4EI/L

1
E Ielastic

-σy +σy

M < My

Section A-A
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Inelastic Behavior:
Flexure (cont.)

M
θA

A

Mp=Sσy

k=4EI/L

1

M

θ

My=Zσy

Section A-A

E Ielastic

-σy +σy

M=Zσy=My

Inelastic Behavior:
Flexure (cont.)

Mp=Sσy

k=4EI/L

1

M

θ

My=Zσy

Section A-A -σy +σy

E=0

EI<EIelastic My<M<Mp

M
θA

A
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Inelastic Behavior:
Flexure (cont.)

Mp=Sσy

k=4EI/L

1

M

θ

My=Zσy

Section A-A -σy +σy

E=0

EI<<EIelastic My<<M<Mp

M
θA

A

EI=0 � k=0

Inelastic Behavior:
Flexure (cont.)

Mp=Sσy

k=4EI/L

1

M

θ

My=Zσy

Section A-A

EI = 0

-σy +σy

E=0

M=Sσy=Mp

M
θA

A
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EI=0 � k=0

Inelastic Behavior:  Flexure

Mp=Sσy

Elastic:
M < Mp

θM

θ

k=4EI/L

1
Plastic: θ

M = Mp

Plastic

� Plastic Hinge Model – Assume section as fully 
elastic or fully plastic (neglect partial yielding)

� Plastic Hinge at M = Mp or when  M/Mp = 1.0

Types of inelastic models
� We will employ a plastic hinge model

• A.K.A. “Concentrated Plasticity”

• Section is fully elastic or fully yielded

• Plastic hinges only at element ends

� Distributed plasticity (still line elements)
• A.K.A. “Plastic Zone”

• Captures gradual yielding through depth and along 
length

• More accurate, but computationally more $$

� Finite element with continuum elements ($$$$)
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Simple Example:

E = 29,000 ksi
σy = 50 ksi

12’ - 0”

W12x50

12’ - 0” 12’ - 0”

100 kips

It's
MASTAN2

time!
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Inelastic Behavior:
Combination P & M

Mp=Sσy

k=4EI/L

1

M

θ

M
θA

A
P

-σy

+σy

M < Mp

σ = Mc/I + P/A

+σy

-σy

Plastic

Inelastic Behavior:
Combination P & M
for Plastic Hinge

M
θA

A
P

+σy

-σy

+σy

-σy

+σy

-σy= +

M < Mp

M/Mp < 1
P < Py

P/Py < 1
Fully yielded
section when:
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Elastic

Plastic Hinge Criterion: 
P/Py

M
θA

A
P

M/Mp

1.0

1.0

-σy P=Py

M=0

+σy

-σy
P<Py

M<Mp

+σy

-σy P=0
M=Mp

+σy

-σy P<Py

M<Mp

Material Nonlinear Analysis
� Employ “Direct Stiffness Method” applying loads 

in increments:  [K]{dΔ} = {dF}

� During the load increment, check to see if 
plastic hinge(s) form.  If so, scale back load 
increment accordingly.

� Reduce stiffness of yielded members and 
continue load increments
• k = kelastic + kplastic with kplastic = plastic reduction

� Continue to accumulate results of load 
increments until all of load is applied or a plastic 
mechanism forms.
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Simple Example

(with axial force):

P = 400 kips

E = 29,000 ksi
σy = 50 ksi

12’ - 0”

W12x50

12’ - 0” 12’ - 0”

100 kips

It's
MASTAN2

time!

No
Axial Force
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Second-Order Effects

� A.K.A. “Geometric Nonlinear Behavior”

� Equilibrium Equations
• Reality: Should be formulated on deformed 

shape

• Difficulty: Deformed shape (deformations) is 
a function of the member forces, which are in 
turn a function of the deformations
(Chicken ‘n Egg)

• Remedy:  Perform a series of analyses with 
loads applied in small increments and update 
geometry after each load increment.
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Truss is susceptible to 
2nd-Order effects, 
luckily Δ is often
quite small.

Equilibrium Equations
� Formulated on 

Undeformed Shape
� Formulated on 

Deformed Shape

H
P P

Δ

H

Different reactions and member forces.

Δ

Δ

Δ

k=3EI/L3

1

H

Equilibrium Equations

H
P

M=HL

Δ

k=3EI/L3

1

H

keff < k
1

Effective 
lateral 
stiffness 
is reduced!

� Formulated on 
Undeformed Shape

H
P

M=HL+PΔ

Δ

� Formulated on 
Deformed Shape
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Focus on Lateral Stiffness
� Formulated on Undeformed Shape: Linear Response

Before:

kspring
P Δ

H

After:

Δ

klateral = kspring
1

H

Lateral Stiffness 
is slope of H-Δ
response curve

Focus on Lateral Stiffness (cont.)
� Formulated on Deformed Shape: Nonlinear Response

Before:

kspring
PΔ

H

After:

Δ

klateral < kspring
1

H kspring

1

Effective lateral 
stiffness is reduced
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Focus on Lateral Stiffness (cont.)
� Equilibrium Formulated on Deformed Shape

PΔ

H kspring

R=kspringΔ

ΣMo = 0 RL = HL + PΔ

R = H + PΔ/L

H = klateralΔ with  klateral = kspring – P/L

� Lateral Stiffness (slope of response curve)

Pt. o

L’ L

Let’s start by assuming L’ ≈ L,

kspringΔ = H + PΔ/L

H = kspringΔ – PΔ/L

H = (kspring – P/L) Δ

Some thoughts here…

� This simple analysis becomes less “accurate” as 
Δ/L becomes large (i.e. Δ/L >> 1/5)
• Remedy: Perform an incremental analysis and update 

geometry after each load increment…hence, limit Δ/L 
in each step to some small amount

• Keep in mind serviceability limits are often something 
like Δ/L < 1/400

� Most importantly, klateral = kspring – P/L takes on 
the form:

k2nd-Order El. = k1st-Order El. + kg

Geometric Stiffness
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Geometric Stiffness

� Effective lateral stiffness of a member:
• decreases as a member is compressed

– kg is negative for compressive P

– backpacker example

• increases when subjected to tension
– kg is positive for tensile P

– guitar string example

� Employing geometric stiffness approach
• Other methods exist (i.e. stability functions)

How about real members? (recall…)
� Flexural members subjected to axial force

F

Δ

� Stiffness k function of:
• Geometry: Moment of Inertia & Length (I↑,k↑& L↑, k↓)

• Material: Elastic Modulus (E ↑,k↑)

• Axial Force:  Compressive (P↑, k↓)

M
θ

P
P

F = k(I,L,E,P) ΔM = k(I,L,E,P) θ
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Closer look at stiffness terms…

� Flexural members subjected to axial force

M = k(I,L,E,P) θ with
k = 4EI/L – 2PL/15

M
θ

P

F = k(I,L,E,P)Δ with
k = 12EI/L3 – 6P/5L

F

Δ
P

Again, basic form:

k2nd-Order El. = k1st-Order El. + kg

Geometric Nonlinear Analysis
� Employ “Direct Stiffness Method” applying loads 

in increments:  Solve Equil. Eqs. {dF} = [K]{dΔ} 

� At start of increment, modify member stiffness 
to account for presence of member forces (such 
as axial force):
• k = kelastic + kg with kg = geometric stiffness

� At end of increment, update model of structural 
geometry to include displacements

� Continue to accumulate results of load increments 
(Δi = Δi-1 + dΔ and fi = fi-1 + df) until all of load is 
applied or elastic instability is detected.
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Comparison: 1st- and 2nd-Order Analysis Results

Moments increase by ~10%
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2nd-Order Inelastic Analysis
� Employ “Direct Stiffness Method” applying loads 

in increments:  Solve Equil. Eqs. {dF} = [K]{dΔ} 

� At start of increment, modify member stiffness 
to account for presence of member forces and 
any yielding:

k = kelastic + kgeometric + kplastic

� At end of increment, update model of structural 
geometry to include displacements

� Continue to accumulate results of load increments 
(Δi = Δi-1 + dΔ and fi = fi-1 + df) until all of load is 
applied or inelastic instability is detected.
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Critical Load Analysis  (Basics)
� Definition:  Critical or buckling load is the 

load at which equilibrium may be satisfied 
by more than one deformed shape.

Big Q: How does computer software calculate this?

P Solution 
#1 P

Solution 
#2

P

Critical Load Analysis  (Background)

� Elastic stiffness of a member k = kel + kg

• kel is f(A or I, L, and E)

• kg is f(P,L), also note directly proportional to P

� Elastic stiffness of structure [K] = Σk
• [K] = [Kel] + [Kg]

• [Kg] directly proportional to applied force
– i.e. Double applied forces, hence, double internal force 

distribution and double [Kg]

� To the computer, “buckling” will occur when 
our equilibrium equations {F} = [K]{Δ} permit 
non-unique solutions, e.g. det[K] = 0. 
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Example

Demonstrate computational 
method for calculating the 
elastic critical load (buckling 
load) for the structural 
system shown.

A, I
L, E

P
Rigid Beam

Example:  Key Stiffness Terms

Δvert

A, I
L, E

H
P

Lateral Stiffness:

klateral

H = klateral Δlat

klateral = 12EI/L3 – 6P/5L

kvertical

Vertical Stiffness:

P = kvertical Δvert

Δlat
P

Rigid BeamH
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Example:  Solution

1. Apply reference load, and use 1st-
order elastic analysis to obtain 
internal force distribution.

A, I
L, E

P
Rigid Beam

klateral = 12EI/L3 – 6λP/5L

klateral = 0 when λP = 10EI/L2

(Ptheory=9.87EI/L2)Pcr = λP = 10EI/L2

Pcr

2. Determine load factor λ at which 
system stiffness degrades to 
permit buckling.

P = 400 kipsW12x50

100 kips

λ=1.7

λ=9.4
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Thoughts on Critical Load Analysis
� Computer analysis for a large system:

• First, apply reference and perform analysis
– Solve equilibrium eqs. {Fref} = [K]{Δ}

– With displacements solve for member forces

• Second, assemble [Kel] and [Kg] based on {Fref}

• Finally, determine load factor λ causing instability; 
computationally this means find load factor λ at which 
[K]=[Kel]+λ[Kg] becomes singular
– Determine λ at which det([Kel]+λ[Kg) = 0

– “Eigenvalue” problem: Eigenvalues = Critical Load Factors, λ‘s
Eigenvectors = Buckling modes

� Accuracy increases with more elements per 
compression members (2 often adequate)

Basic Introduction Complete

Acquire nonlinear analysis software
• Commercial programs

• Educational software

• (i.e. MASTAN2, Strand7, …)

� Where do I go from here?  (Learning to drive)
• Review the slides (Read the driver’s manual)

• Acquire nonlinear software (Borrow a friend’s car)

• Work lots of examples (Go for a drive, scary at first…)

• Apply nonlinear analysis in design
(Formula One? not quite)
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MASTAN2

1st-Order Elastic: [Ke]{Δ}={F}

Levels of Analysis:

2nd-Order Elastic: [Ke + Kg]{dΔ}={dF}

1st-Order Inelastic: [Ke + Kp]{dΔ}={dF}

2nd-Order Inelastic: [Ke + Kg + Kp]{dΔ}={dF}

Critical Load: [Ke + λKg]{dΔ}={0}

Yield Surface:
Function of P, Mmajor, and Mminor

1st-Order

Elastic

Lateral displacement, ∆

2nd-Order

Elastic

Elastic Stability Limit
Hes

Lateral
load,
H

1st-Order Inelastic Inelastic Limit LoadHp

H = αP

H = αP
∆

P

P

Elastic Critical Load

Inelastic Critical Load

Hec

Hic

2nd-Order

Inelastic

Inelastic Stability

Limit
His

Actual
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1st-Order

Elastic

ud (in.)

Load

Factor

First 

hingeSecond hinge

8783 (1st-Order)

8783 (2nd-Order)

14

1831
1665

1720

Mechanism Moments at Limit (in. kips)

Planar

Frame:
2nd-Order

Elastic

2nd-Order

Inelastic

1st-Order

Inelastic

E = 29,000 ksi
σy = 36 ksi

MASTAN2

Summary and Conclusions

� Provided an introduction to nonlinear analysis
• Review of direct stiffness method

• Material nonlinear analysis (Inelastic hinge)

• Geometric nonlinear analysis (2nd-Order)

• 2nd-Order inelastic analysis (combine above)

• Critical load analysis (“eigenvalue analysis”) 

� Nonlinear…think modifying member stiffness!

� All of the above analysis methods appear in and 
AISC 360, AS4100, and Eurocode 3
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References

� Matrix Structural Analysis, 2nd Ed., by 
McGuire, Gallagher, and Ziemian (Wiley, 
2000)

� MASTAN2 at  www.mastan2.com

� Tutorial that comes with MASTAN2

� OK, time to jump in and start driving…
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