
Applying	
  Nonlinear	
  Analysis	
  to	
  Learn	
  the	
  
Fundamentals	
  of	
  Structural	
  Stability	
  

	
  
Course	
  Overview	
  –	
  By	
  using	
  nonlinear	
  structural	
  analysis	
  software	
  as	
  the	
  basis	
  for	
  
a	
  virtual	
  laboratory,	
  students	
  will	
  explore	
  and	
  learn	
  the	
  fundamentals	
  of	
  structural	
  
stability.	
  	
  Per	
  European	
  terminology,	
  methods	
  of	
  analysis	
  reviewed	
  and	
  employed	
  in	
  
this	
   course	
   include	
   linear	
   buckling	
   analysis	
   (LBA)	
   as	
  well	
   as	
   geometric	
   nonlinear	
  
analysis	
   (GNA),	
   material	
   nonlinear	
   analysis	
   (MNA),	
   and	
   geometric	
   and	
   material	
  
nonlinear	
  analysis	
  (GMNA),	
  and	
  their	
  counterparts	
  that	
  include	
  initial	
  imperfections	
  
(GNIA,	
  MNIA,	
  and	
  GMNIA).	
   	
  The	
  stability	
  of	
  members,	
  such	
  as	
  columns	
  and	
  beams,	
  
and	
  systems	
  are	
  explored.	
  
	
  
Lecturer:	
  Ronald	
  D.	
  Ziemian,	
  PhD,	
  PE	
  
	
   Professor,	
  Bucknell	
  University,	
  Lewisburg,	
  PA	
  	
  USA	
  
	
  
Software:	
  	
  MASTAN2	
  (available	
  at	
  www.mastan2.com	
  at	
  no	
  cost)	
  
	
  
Lecture	
  1	
  –	
  An	
  Introduction	
  to	
  Elastic	
  and	
  Inelastic	
  Analyses	
  
After	
  reviewing	
   the	
   finite	
  element	
  method	
  as	
  means	
   for	
  analyzing	
   two-­‐	
  and	
   three-­‐
dimensional	
  frames	
  and	
  trusses,	
  a	
  concentrated	
  plasticity	
  (plastic	
  hinge)	
  model	
  will	
  
be	
  introduced	
  as	
  a	
  means	
  for	
  accounting	
  for	
  material	
  nonlinear	
  behavior.	
  	
  Students	
  
will	
  employ	
  first-­‐order	
  elastic	
  and	
  inelastic	
  analyses	
  of	
  a	
  simple	
  structural	
  system	
  to	
  
comprehend	
   basic	
   concepts.	
   	
   The	
   impact	
   of	
   axial	
   force	
   on	
   the	
   plastic	
   strength	
   of	
  
members	
  will	
  be	
  demonstrated.	
  
	
  
Lecture	
  2	
  –	
  Geometric	
  Nonlinear	
  Analysis	
  
The	
   basic	
   concepts	
   of	
   Lecture	
   1	
   will	
   expanded	
   to	
   include	
   geometric	
   nonlinear	
  
behavior.	
  	
  Using	
  a	
  similar	
  hands-­‐on	
  approach,	
  second-­‐order	
  elastic	
  behavior	
  will	
  be	
  
explored,	
  which	
  will	
  then	
  be	
  modified	
  to	
  include	
  material	
  nonlinear	
  behavior.	
  	
  Next,	
  
an	
  explanation	
  and	
  investigation	
  of	
  elastic	
  and	
  inelastic	
  critical	
  load	
  (bifurcation	
  by	
  
eigenvalue)	
   analyses	
   will	
   be	
   completed.	
   	
   The	
   lecture	
   will	
   conclude	
   by	
   studying	
   a	
  
two-­‐dimensional	
  frame	
  to	
  illustrate	
  the	
  first-­‐	
  and	
  second-­‐order	
  elastic	
  and	
  inelastic	
  
analysis	
  capabilities	
  reviewed.	
  
	
  
Lectures	
  3	
  and	
  4	
  –	
  Behavior	
  of	
  Compression	
  Members	
  
This	
   lecture	
  will	
   focus	
  on	
  fully	
  understanding	
  the	
  behavior	
  compression	
  members,	
  
such	
  as	
  columns	
  in	
  building	
  or	
  chord	
  and	
  web	
  members	
  in	
  a	
  truss	
  bridge.	
  	
  Using	
  the	
  
analysis	
  capabilities	
  learned	
  in	
  Lectures	
  1	
  and	
  2,	
  a	
  hands-­‐on	
  approach	
  will	
  be	
  used	
  
to	
  systematically	
  retract	
   the	
  assumptions	
  related	
  to	
  Euler	
  buckling.	
   	
  The	
   impact	
  of	
  
factors	
   such	
   a	
   material	
   yielding,	
   residual	
   stresses,	
   initial	
   out-­‐of-­‐straightness,	
   and	
  
support	
  conditions	
  will	
  be	
  explored.	
  
	
  
Lectures	
  5	
  and	
  6	
  –	
  Behavior	
  of	
  Flexural	
  Members	
  
This	
   lecture	
   will	
   focus	
   on	
   understanding	
   the	
   behavior	
   flexural	
   members,	
   such	
   as	
  
beams	
  in	
  a	
  building	
  or	
  girders	
  in	
  bridge.	
  	
  Continuing	
  with	
  a	
  hands-­‐on	
  approach,	
  the	
  



strength	
  limit	
  states	
  of	
  beams,	
  including	
  full	
  yielding	
  and	
  in/elastic	
  lateral	
  torsional	
  
buckling,	
  will	
  be	
  explored.	
   	
  The	
  impact	
  of	
  factors	
  such	
  a	
  material	
  yielding,	
  residual	
  
stresses,	
   initial	
   out-­‐of-­‐straightness,	
   lateral	
   bracing,	
   and	
   moment	
   gradient	
   will	
   be	
  
studied.	
  
	
  
Lecture	
  7	
  –	
  Behavior	
  of	
  Beam-­‐Columns	
  and	
  Structural	
  Systems	
  
With	
  the	
  basics	
  now	
  in	
  hand,	
  this	
  lecture	
  will	
  explore	
  the	
  behavior	
  of	
  members	
  and	
  
systems	
  with	
  members	
  subject	
  to	
  the	
  combined	
  effects	
  of	
  compression	
  and	
  flexure.	
  	
  
Students	
  will	
  compare	
  hand	
  methods	
  for	
  approximating	
  geometric	
  nonlinear	
  effects	
  
with	
   results	
   obtained	
   using	
   rigorous	
   second-­‐order	
   computational	
   analysis.	
   	
   The	
  
lecture	
   will	
   conclude	
   with	
   an	
   overview	
   on	
   how	
   some	
   international	
   specifications	
  
permit	
  the	
  use	
  of	
  advanced	
  methods	
  of	
  nonlinear	
  analysis	
  (GMNIA)	
  to	
  design	
  steel	
  
structures.	
  
	
  
	
  
	
  
	
  
	
  
About	
  the	
  Speaker	
  
Ron	
   Ziemian	
   is	
   a	
   Professor	
   of	
   Civil	
   and	
   Environmental	
   Engineering	
   at	
   Bucknell	
  
University	
   in	
   Lewisburg,	
   PA,	
   USA.	
   He	
   received	
   his	
   BSCE,	
  MENG,	
   and	
   PhD	
   degrees	
  
from	
  Cornell	
  University.	
  In	
  addition	
  to	
  authoring	
  papers	
  and	
  completing	
  research	
  in	
  
the	
  design	
  and	
  analysis	
  of	
  steel	
  and	
  aluminum	
  structures,	
  Dr.	
  Ziemian	
  is	
  co-­‐author	
  of	
  
the	
   textbook	
  Matrix	
   Structural	
   Analysis	
   (Wiley,	
   2000)	
   and	
   the	
   editor	
   for	
   the	
   6th	
  
edition	
  of	
  the	
  Guide	
  to	
  Stability	
  Design	
  Criteria	
  for	
  Metal	
  Structures	
  (Wiley,	
  2010).	
  He	
  
is	
  currently	
  chair	
  of	
  the	
  American	
  Institute	
  of	
  Steel	
  Construction’s	
  Task	
  Committee	
  
10	
  on	
  Frame	
  Stability,	
  and	
  he	
  recently	
  completed	
  his	
  terms	
  as	
  chair	
  of	
  the	
  Structural	
  
Stability	
  Research	
  Council	
  and	
  chair	
  of	
  AISC's	
  Task	
  Group	
  on	
  Inelastic	
  Analysis	
  and	
  
Design.	
  He	
  serves	
  on	
  the	
  AISC	
  and	
  Aluminum	
  Association	
  Specification	
  Committees	
  
and	
   is	
   active	
   with	
   the	
  Steel	
   Joist	
   Institute.	
   Dr.	
   Ziemian,	
   with	
   W.	
   McGuire	
   and	
   G.	
  
Deierlein,	
   were	
   awarded	
   the	
   ASCE	
   Norman	
   Medal	
   (1994)	
   for	
   their	
   paper	
   on	
  
employing	
   advanced	
  methods	
   of	
   inelastic	
   analysis	
   in	
  
the	
  limit	
  states	
  design	
  of	
  steel	
  structures,	
  and	
  he	
  was	
  
the	
   recipient	
   of	
   the	
  AISC	
   Special	
  Achievement	
  Award	
  
(2006)	
   for	
   his	
   innovative	
   development	
   of	
   the	
  
advanced	
   structural	
   analysis	
  MASTAN2	
   software	
   and	
  
his	
   key	
   role	
   in	
   its	
   use	
   to	
   develop	
   the	
   fully-­‐revised	
  
2005	
   AISC	
   Specification	
   provisions	
   for	
   stability	
  
analysis	
  and	
  design	
  of	
  steel	
  structures.	
   	
  In	
  April	
  2013,	
  
Dr.	
   Ziemian	
   received	
   the	
   ASCE	
   Shortridge	
   Hardesty	
  
Award	
   for	
   his	
   "substantial	
   accomplishments	
   in	
  
research,	
   service,	
   and	
   teaching,	
   as	
  well	
   as	
   advancing	
  
practice	
   in	
   the	
   field	
   of	
   structural	
   stability."	
   	
   He	
   has	
  
also	
  received	
  Bucknell	
  University’s	
  Presidential	
  Award	
  
for	
   Teaching	
   Excellence	
   (2000),	
   and	
   in	
   2010	
   was	
  
named	
  a	
  Bucknell	
  University	
  Presidential	
  Professor.	
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Course Overview

� Employ a virtual laboratory to learn basic 
concepts of structural stability

� Seven 90-minute lectures
• Lectures 1 & 2  Introduction to Nonlinear Analysis

• Lectures 3 & 4 Behavior of Compression Members

• Lectures 5 & 6 Behavior of Flexural Members

• Lecture 7 Beam-columns and Structural Systems

� Software employed is MASTAN2 which is 
available at no cost at www.mastan2.com

Better designs will come from a 
better understanding of behavior
G. Winter, W. McGuire, T. Pekoz, A. Nilson,
J. Abel, P. Gergely, R. White, T. Ingrafea
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Introduction to
Nonlinear Analysis

Ron Ziemian

Lectures 1 & 2:  13-Aug-2014

The function of a structural engineer is 
to design — not to analyze

Norris and Wilbur
1960

Analysis is a means to an end
rather than the end itself.
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Role of the analysis:

• forces, moments and deflections  --> design equations

• insight into the behavior of a structure
--> better the understanding, better the design

Limit States Design:
Prior to limit of resistance, significant nonlinear 
response, including
- geometrical effects (P-Δ, P-δ)
- material effects (yielding, cracking, crushing)
- combined effects

AISC Ch. C: P-Δ, P-δ (App. 7)
App. 1:  Inelastic Analysis

AS4100  Section 4, App. D,E,F
App. D: Advanced Analysis

Seismic:  Pushover Analysis
Other:  Progressive Collapse

Impetus:

Nonlinear Analysis

Limit States Design

Available Software

Research

Education
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Nonlinear Analysis
� Hand methods

• Second-order effects (focus of later lectures)
– i.e. Moment Amplification Factors (B1 and B2 factors)

• Material nonlinear effects
– i.e. plastic analysis (upper and lower bound theories)

� Computer Methods (focus of these lectures)
• Lots of variations

– all use same basic concepts (most important to today)

– one approach will be presented (basis for MASTAN2)

� Please keep in mind
• All methods are approximate

• Not a substitute, but a complement to good engineering
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Lecture Overviews

� Lecture 1
• Brief Introduction (done!)

• Computer Structural Analysis (Review?)

• Basis for Material Nonlinear Models

� Lecture 2
• Incorporating Geometric Nonlinear Behavior

• Critical Load Analysis

• Summary and Concluding Remarks 

How does the computer get 
these results?

� State-of-the-Art Crystal Ball?  Not quite.

� By applying 2 requirements and 1 translator
• Two Requirements:

– Equilibrium (equations in terms of F’s and M’s, 1 per d.o.f.)

– Compatibility (equations in terms of Δ’s and θ’s, 1 per d.o.f.)

• Translator “apples to oranges”
– Constitutive Relationship (i.e. Hooke’s Law, σ = E Є )

– Generalized to Force-to-Displacement (i.e. F=kΔ)

– Re-write equilibrium eqs. in terms of unknown displacements

� # of Equil. Eqs. = # of Unknown Displacements   
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Equilibrium Equations

A B C

D 40 kips
40 kipsD

Free Body
Diagram

Translator:  Forces � Displacements

ui

vi

vj

uj

i’

j’

(Deformed)

i

j
(Undeformed)

fxi

fxj

fyj

fyi

Big Question:
Where do these known stiffness coefficients k’s 
come from? Little Answer:

Function of member’s material and geometric 
properties, including its orientation. 
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F � Δ for all members

A B C

D 
uD

vD

uA

vA

uB

vB

uC

vC

Substituting into Equil. Eqs.

A B C

D 
40 kN
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Substituting into Equil. Eqs. (cont.)

A B C

D 
40 kN

So, where are we at?
� We have two equilibrium equations (1 per 

d.o.f.) in terms of a lot of displacements:

What card haven’t we played yet?
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Compatibility Eqs. (consistent deflections)

CD
CC 0vv ==

CD
CC 0uu ==

AD
AA 0vv ==

AD
AA 0uu ==

BD
BB 0vv ==

BD
BB 0uu ==

Member-to-Support

A B C

D 

D

M
em

be
r 

C
D

CD
D

BD
D

AD
DD vvvv ===

CD
D

BD
D

AD
DD uuuu ===

Member-to-Member
Dv

AD
Dv

AD
Du

BD
Dv

BD
Du

CD
Dv

CD
Du

Du

Time for some serious simplifying

� Applying Compatibility to Equil. Eqs.:

Which simplifies to…

All = 0

All = uD

All = vD
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After simplifying…

A B C

D 
40 kN 

Solve for Unknown Displacements

Since k’s are known, we have
2 Equations and 2 Unknowns

? ?

? ?

uD = # and  vD = ##

With all displacements, solve for 
member forces…
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Summary of Computer Approach
� For each d.o.f., write an equilibrium equation:

Fexternal = Σ fmember (Equil. Eqs.)
� Re-write (translate) each member force in terms of 

its end displacements (Stiffness Eqs.)

fmember = Σ k member Δ member end

� Substitute Stiffness Eqs. into above Equil. Eqs.

� Simplify Equil. Eqs. by applying member-to-member 
and member-to-support compatibility conditions

� Solve n Equil. Eqs. for the n unknown displacements

� Use Stiffness Eqs. to calculate member forces

� Apply Equil. Eqs. to solve for reactions

Lot’s of Questions

� So, this is how most commercial programs such 
as SAP2000, RISA, STAAD, etc. get the 
answer?
• Yes!  Known as “Direct Stiffness Method”

� So, all such programs will give the same answer?
• Yes, as long as it is a static 1st-order elastic analysis.

� Wait a minute…Is this the basic analysis 
procedure for the “finite element method”?
• Yes!  Bit more tricky to get k’s, σ‘s, and Є’s
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Two Big Questions

� Where do those stiffness coefficients 
come from?
• You mean the ones that relate member end 

forces to member end displacements?

• Yeah, those k’s !  <More to come on this>

� What happens when we go static nonlinear 
or even dynamic?
• Same basic procedure, but apply loads in 

increments and perform a series of analyses.  
Then, sum incremental results.

< Much more to come on this! >

Important Points
� The only opportunity for most computer 

analysis software to model the actual 
behavior of the structure is through the 
member stiffness terms.

� So, to include
• first-order effects

• second-order effects

• material nonlinear behavior

Must modify member stiffness!!!

�Let’s review member stiffness
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Stiffness Coefficients, k’s

� Let’s start with high school physics
• Extension Spring Experiment

After:

F

Δ

Δ

F

k

1

F = k Δ

Before:
Force

Displacement

After:

θ

M

k

1

M = k θ

M

θ

Stiffness Coefficients, k’s (cont.)

� More “advanced” high school physics lab
• Rotational Spring Experiment

Before:
Moment

Rotation
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How about real structural members?
� Axial force member

Δ

F = k(A,L,E) Δ

� Stiffness k function of:
• Geometry: Area and Length (A↑,k↑ & L↑, k↓)

• Material: Elastic Modulus (E↑,k↑)

After:

F

Δ

F

k
1

Before:

How about real members? (cont.)
� Flexural members

Before:

� Stiffness k function of:
• Geometry: Moment of Inertia & Length (I↑,k↑& L↑, k↓)

• Material: Elastic Modulus (E↑,k↑)

Before:

After:

F

Δ

After:
M

θ

F = k(I,L,E) ΔM = k(I,L,E) θ
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Other factor impacting stiffness
� Orientation of member

• consider axial force member:

kv=EA/L
kh=0

Vertical 
Member

kh=EA/L

kv=0

Horizontal 
Member

Orientation of axial force member

Important Point:  Less vertical a member, 
the less stiffness to resist vertical loads.

kv=(sin2φ)EA/L

φ

kh=(cos2φ)EA/L

φ



8/12/2014

Summary: Three Perspectives

� Reality:  What you see…

F1

Three Perspectives (cont.)
� What you see on your computer screen:

DL

WL

Collection of elements 
connected by sharing 
common nodes



8/12/2014

Three Perspectives
� What your computer actually sees:

Assemblage of 
equivalent springs {F} = [K]{Δ}

Σ k

DL
WL

Analysis Review: Key Points

� Reviewed the “Direct Stiffness Method”
• Equilibrium � Translator F(Δ) � Compatibility

� Response of structure controlled by 
stiffness of members (a.k.a. springs)

� First-order elastic stiffness of member 
function of:
• Material Property (E)

• Geometric Properties (A, I, L, and orientation)

� Time to go nonlinear…
let’s begin with material nonlinear
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Material Nonlinear (Inelastic)

� Best place to start is with a tensile test

σ = P/A

Є = Δ/L

E

1

σyield Perfectly Plastic (E = 0)

Normal Stress:  Structural Members
� For typical structural steel members (L/d>10), 

elastic/inelastic behavior controlled by normal 
stresses σ’s acting along the length axis of the 
member.

� Normal stress produced by:
• Axial force (P/A)

• Major and/or minor axis flexure (Mc/I)

• Combination of above effects (i.e. P/A + Mc/I)

• Warping (not today!)

� We will assume elastic-perfectly-plastic 
material (often done for steel) 
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E=0 � k=0

Post-Yield: Δ

σ = σy

Inelastic Behavior:  Axial Force
Originally:

Δ

P
σ =P/A=0

Yield:

Py

Δ

Py=Aσy

σ = σy
Plastic Hinge
at P = Py or
when  P/Py = 1.0

k=EA/L
1

Elastic:

P

Δ

σ < σy

Inelastic Behavior:
Flexure

Mp=Sσy

M

θ

My=Zσy

M
θA

A

k=4EI/L

1
E Ielastic

-σy +σy

M < My

Section A-A
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Inelastic Behavior:
Flexure (cont.)

M
θA

A

Mp=Sσy

k=4EI/L

1

M

θ

My=Zσy

Section A-A

E Ielastic

-σy +σy

M=Zσy=My

Inelastic Behavior:
Flexure (cont.)

Mp=Sσy

k=4EI/L

1

M

θ

My=Zσy

Section A-A -σy +σy

E=0

EI<EIelastic My<M<Mp

M
θA

A
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Inelastic Behavior:
Flexure (cont.)

Mp=Sσy

k=4EI/L

1

M

θ

My=Zσy

Section A-A -σy +σy

E=0

EI<<EIelastic My<<M<Mp

M
θA

A

EI=0 � k=0

Inelastic Behavior:
Flexure (cont.)

Mp=Sσy

k=4EI/L

1

M

θ

My=Zσy

Section A-A

EI = 0

-σy +σy

E=0

M=Sσy=Mp

M
θA

A
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EI=0 � k=0

Inelastic Behavior:  Flexure

Mp=Sσy

Elastic:
M < Mp

θM

θ

k=4EI/L

1
Plastic: θ

M = Mp

Plastic

� Plastic Hinge Model – Assume section as fully 
elastic or fully plastic (neglect partial yielding)

� Plastic Hinge at M = Mp or when  M/Mp = 1.0

Types of inelastic models
� We will employ a plastic hinge model

• A.K.A. “Concentrated Plasticity”

• Section is fully elastic or fully yielded

• Plastic hinges only at element ends

� Distributed plasticity (still line elements)
• A.K.A. “Plastic Zone”

• Captures gradual yielding through depth and along 
length

• More accurate, but computationally more $$

� Finite element with continuum elements ($$$$)
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Simple Example:

E = 29,000 ksi
σy = 50 ksi

12’ - 0”

W12x50

12’ - 0” 12’ - 0”

100 kips

It's
MASTAN2

time!
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Inelastic Behavior:
Combination P & M

Mp=Sσy

k=4EI/L

1

M

θ

M
θA

A
P

-σy

+σy

M < Mp

σ = Mc/I + P/A

+σy

-σy

Plastic

Inelastic Behavior:
Combination P & M
for Plastic Hinge

M
θA

A
P

+σy

-σy

+σy

-σy

+σy

-σy= +

M < Mp

M/Mp < 1
P < Py

P/Py < 1
Fully yielded
section when:
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Elastic

Plastic Hinge Criterion: 
P/Py

M
θA

A
P

M/Mp

1.0

1.0

-σy P=Py

M=0

+σy

-σy
P<Py

M<Mp

+σy

-σy P=0
M=Mp

+σy

-σy P<Py

M<Mp

Material Nonlinear Analysis
� Employ “Direct Stiffness Method” applying loads 

in increments:  [K]{dΔ} = {dF}

� During the load increment, check to see if 
plastic hinge(s) form.  If so, scale back load 
increment accordingly.

� Reduce stiffness of yielded members and 
continue load increments
• k = kelastic + kplastic with kplastic = plastic reduction

� Continue to accumulate results of load 
increments until all of load is applied or a plastic 
mechanism forms.
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Simple Example

(with axial force):

P = 400 kips

E = 29,000 ksi
σy = 50 ksi

12’ - 0”

W12x50

12’ - 0” 12’ - 0”

100 kips

It's
MASTAN2

time!

No
Axial Force
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Second-Order Effects

� A.K.A. “Geometric Nonlinear Behavior”

� Equilibrium Equations
• Reality: Should be formulated on deformed 

shape

• Difficulty: Deformed shape (deformations) is 
a function of the member forces, which are in 
turn a function of the deformations
(Chicken ‘n Egg)

• Remedy:  Perform a series of analyses with 
loads applied in small increments and update 
geometry after each load increment.
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Truss is susceptible to 
2nd-Order effects, 
luckily Δ is often
quite small.

Equilibrium Equations
� Formulated on 

Undeformed Shape
� Formulated on 

Deformed Shape

H
P P

Δ

H

Different reactions and member forces.

Δ

Δ

Δ

k=3EI/L3

1

H

Equilibrium Equations

H
P

M=HL

Δ

k=3EI/L3

1

H

keff < k
1

Effective 
lateral 
stiffness 
is reduced!

� Formulated on 
Undeformed Shape

H
P

M=HL+PΔ

Δ

� Formulated on 
Deformed Shape
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Focus on Lateral Stiffness
� Formulated on Undeformed Shape: Linear Response

Before:

kspring
P Δ

H

After:

Δ

klateral = kspring
1

H

Lateral Stiffness 
is slope of H-Δ
response curve

Focus on Lateral Stiffness (cont.)
� Formulated on Deformed Shape: Nonlinear Response

Before:

kspring
PΔ

H

After:

Δ

klateral < kspring
1

H kspring

1

Effective lateral 
stiffness is reduced
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Focus on Lateral Stiffness (cont.)
� Equilibrium Formulated on Deformed Shape

PΔ

H kspring

R=kspringΔ

ΣMo = 0 RL = HL + PΔ

R = H + PΔ/L

H = klateralΔ with  klateral = kspring – P/L

� Lateral Stiffness (slope of response curve)

Pt. o

L’ L

Let’s start by assuming L’ ≈ L,

kspringΔ = H + PΔ/L

H = kspringΔ – PΔ/L

H = (kspring – P/L) Δ

Some thoughts here…

� This simple analysis becomes less “accurate” as 
Δ/L becomes large (i.e. Δ/L >> 1/5)
• Remedy: Perform an incremental analysis and update 

geometry after each load increment…hence, limit Δ/L 
in each step to some small amount

• Keep in mind serviceability limits are often something 
like Δ/L < 1/400

� Most importantly, klateral = kspring – P/L takes on 
the form:

k2nd-Order El. = k1st-Order El. + kg

Geometric Stiffness
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Geometric Stiffness

� Effective lateral stiffness of a member:
• decreases as a member is compressed

– kg is negative for compressive P

– backpacker example

• increases when subjected to tension
– kg is positive for tensile P

– guitar string example

� Employing geometric stiffness approach
• Other methods exist (i.e. stability functions)

How about real members? (recall…)
� Flexural members subjected to axial force

F

Δ

� Stiffness k function of:
• Geometry: Moment of Inertia & Length (I↑,k↑& L↑, k↓)

• Material: Elastic Modulus (E ↑,k↑)

• Axial Force:  Compressive (P↑, k↓)

M
θ

P
P

F = k(I,L,E,P) ΔM = k(I,L,E,P) θ
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Closer look at stiffness terms…

� Flexural members subjected to axial force

M = k(I,L,E,P) θ with
k = 4EI/L – 2PL/15

M
θ

P

F = k(I,L,E,P)Δ with
k = 12EI/L3 – 6P/5L

F

Δ
P

Again, basic form:

k2nd-Order El. = k1st-Order El. + kg

Geometric Nonlinear Analysis
� Employ “Direct Stiffness Method” applying loads 

in increments:  Solve Equil. Eqs. {dF} = [K]{dΔ} 

� At start of increment, modify member stiffness 
to account for presence of member forces (such 
as axial force):
• k = kelastic + kg with kg = geometric stiffness

� At end of increment, update model of structural 
geometry to include displacements

� Continue to accumulate results of load increments 
(Δi = Δi-1 + dΔ and fi = fi-1 + df) until all of load is 
applied or elastic instability is detected.
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Comparison: 1st- and 2nd-Order Analysis Results

Moments increase by ~10%
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2nd-Order Inelastic Analysis
� Employ “Direct Stiffness Method” applying loads 

in increments:  Solve Equil. Eqs. {dF} = [K]{dΔ} 

� At start of increment, modify member stiffness 
to account for presence of member forces and 
any yielding:

k = kelastic + kgeometric + kplastic

� At end of increment, update model of structural 
geometry to include displacements

� Continue to accumulate results of load increments 
(Δi = Δi-1 + dΔ and fi = fi-1 + df) until all of load is 
applied or inelastic instability is detected.
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Critical Load Analysis  (Basics)
� Definition:  Critical or buckling load is the 

load at which equilibrium may be satisfied 
by more than one deformed shape.

Big Q: How does computer software calculate this?

P Solution 
#1 P

Solution 
#2

P

Critical Load Analysis  (Background)

� Elastic stiffness of a member k = kel + kg

• kel is f(A or I, L, and E)

• kg is f(P,L), also note directly proportional to P

� Elastic stiffness of structure [K] = Σk
• [K] = [Kel] + [Kg]

• [Kg] directly proportional to applied force
– i.e. Double applied forces, hence, double internal force 

distribution and double [Kg]

� To the computer, “buckling” will occur when 
our equilibrium equations {F} = [K]{Δ} permit 
non-unique solutions, e.g. det[K] = 0. 
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Example

Demonstrate computational 
method for calculating the 
elastic critical load (buckling 
load) for the structural 
system shown.

A, I
L, E

P
Rigid Beam

Example:  Key Stiffness Terms

Δvert

A, I
L, E

H
P

Lateral Stiffness:

klateral

H = klateral Δlat

klateral = 12EI/L3 – 6P/5L

kvertical

Vertical Stiffness:

P = kvertical Δvert

Δlat
P

Rigid BeamH
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Example:  Solution

1. Apply reference load, and use 1st-
order elastic analysis to obtain 
internal force distribution.

A, I
L, E

P
Rigid Beam

klateral = 12EI/L3 – 6λP/5L

klateral = 0 when λP = 10EI/L2

(Ptheory=9.87EI/L2)Pcr = λP = 10EI/L2

Pcr

2. Determine load factor λ at which 
system stiffness degrades to 
permit buckling.

P = 400 kipsW12x50

100 kips

λ=1.7

λ=9.4
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Thoughts on Critical Load Analysis
� Computer analysis for a large system:

• First, apply reference and perform analysis
– Solve equilibrium eqs. {Fref} = [K]{Δ}

– With displacements solve for member forces

• Second, assemble [Kel] and [Kg] based on {Fref}

• Finally, determine load factor λ causing instability; 
computationally this means find load factor λ at which 
[K]=[Kel]+λ[Kg] becomes singular
– Determine λ at which det([Kel]+λ[Kg) = 0

– “Eigenvalue” problem: Eigenvalues = Critical Load Factors, λ‘s
Eigenvectors = Buckling modes

� Accuracy increases with more elements per 
compression members (2 often adequate)

Basic Introduction Complete

Acquire nonlinear analysis software
• Commercial programs

• Educational software

• (i.e. MASTAN2, Strand7, …)

� Where do I go from here?  (Learning to drive)
• Review the slides (Read the driver’s manual)

• Acquire nonlinear software (Borrow a friend’s car)

• Work lots of examples (Go for a drive, scary at first…)

• Apply nonlinear analysis in design
(Formula One? not quite)
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MASTAN2

1st-Order Elastic: [Ke]{Δ}={F}

Levels of Analysis:

2nd-Order Elastic: [Ke + Kg]{dΔ}={dF}

1st-Order Inelastic: [Ke + Kp]{dΔ}={dF}

2nd-Order Inelastic: [Ke + Kg + Kp]{dΔ}={dF}

Critical Load: [Ke + λKg]{dΔ}={0}

Yield Surface:
Function of P, Mmajor, and Mminor

1st-Order

Elastic

Lateral displacement, ∆

2nd-Order

Elastic

Elastic Stability Limit
Hes

Lateral
load,
H

1st-Order Inelastic Inelastic Limit LoadHp

H = αP

H = αP
∆

P

P

Elastic Critical Load

Inelastic Critical Load

Hec

Hic

2nd-Order

Inelastic

Inelastic Stability

Limit
His

Actual
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1st-Order

Elastic

ud (in.)

Load

Factor

First 

hingeSecond hinge

8783 (1st-Order)

8783 (2nd-Order)

14

1831
1665

1720

Mechanism Moments at Limit (in. kips)

Planar

Frame:
2nd-Order

Elastic

2nd-Order

Inelastic

1st-Order

Inelastic

E = 29,000 ksi
σy = 36 ksi

MASTAN2

Summary and Conclusions

� Provided an introduction to nonlinear analysis
• Review of direct stiffness method

• Material nonlinear analysis (Inelastic hinge)

• Geometric nonlinear analysis (2nd-Order)

• 2nd-Order inelastic analysis (combine above)

• Critical load analysis (“eigenvalue analysis”) 

� Nonlinear…think modifying member stiffness!

� All of the above analysis methods appear in and 
AISC 360, AS4100, and Eurocode 3
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References

� Matrix Structural Analysis, 2nd Ed., by 
McGuire, Gallagher, and Ziemian (Wiley, 
2000)

� MASTAN2 at  www.mastan2.com

� Tutorial that comes with MASTAN2

� OK, time to jump in and start driving…
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