Applying Nonlinear Analysis to Learn the
Fundamentals of Structural Stability

Course Overview - By using nonlinear structural analysis software as the basis for
a virtual laboratory, students will explore and learn the fundamentals of structural
stability. Per European terminology, methods of analysis reviewed and employed in
this course include linear buckling analysis (LBA) as well as geometric nonlinear
analysis (GNA), material nonlinear analysis (MNA), and geometric and material
nonlinear analysis (GMNA), and their counterparts that include initial imperfections
(GNIA, MNIA, and GMNIA). The stability of members, such as columns and beams,
and systems are explored.

Lecturer: Ronald D. Ziemian, PhD, PE
Professor, Bucknell University, Lewisburg, PA USA

Software: MASTAN?2 (available at www.mastanZ2.com at no cost)

Lecture 1 - An Introduction to Elastic and Inelastic Analyses

After reviewing the finite element method as means for analyzing two- and three-
dimensional frames and trusses, a concentrated plasticity (plastic hinge) model will
be introduced as a means for accounting for material nonlinear behavior. Students
will employ first-order elastic and inelastic analyses of a simple structural system to
comprehend basic concepts. The impact of axial force on the plastic strength of
members will be demonstrated.

Lecture 2 - Geometric Nonlinear Analysis

The basic concepts of Lecture 1 will expanded to include geometric nonlinear
behavior. Using a similar hands-on approach, second-order elastic behavior will be
explored, which will then be modified to include material nonlinear behavior. Next,
an explanation and investigation of elastic and inelastic critical load (bifurcation by
eigenvalue) analyses will be completed. The lecture will conclude by studying a
two-dimensional frame to illustrate the first- and second-order elastic and inelastic
analysis capabilities reviewed.

Lectures 3 and 4 - Behavior of Compression Members

This lecture will focus on fully understanding the behavior compression members,
such as columns in building or chord and web members in a truss bridge. Using the
analysis capabilities learned in Lectures 1 and 2, a hands-on approach will be used
to systematically retract the assumptions related to Euler buckling. The impact of
factors such a material yielding, residual stresses, initial out-of-straightness, and
support conditions will be explored.

Lectures 5 and 6 - Behavior of Flexural Members
This lecture will focus on understanding the behavior flexural members, such as
beams in a building or girders in bridge. Continuing with a hands-on approach, the



strength limit states of beams, including full yielding and in/elastic lateral torsional
buckling, will be explored. The impact of factors such a material yielding, residual
stresses, initial out-of-straightness, lateral bracing, and moment gradient will be
studied.

Lecture 7 - Behavior of Beam-Columns and Structural Systems

With the basics now in hand, this lecture will explore the behavior of members and
systems with members subject to the combined effects of compression and flexure.
Students will compare hand methods for approximating geometric nonlinear effects
with results obtained using rigorous second-order computational analysis. The
lecture will conclude with an overview on how some international specifications
permit the use of advanced methods of nonlinear analysis (GMNIA) to design steel
structures.

About the Speaker
Ron Ziemian is a Professor of Civil and Environmental Engineering at Bucknell
University in Lewisburg, PA, USA. He received his BSCE, MENG, and PhD degrees
from Cornell University. In addition to authoring papers and completing research in
the design and analysis of steel and aluminum structures, Dr. Ziemian is co-author of
the textbook Matrix Structural Analysis (Wiley, 2000) and the editor for the 6th
edition of the Guide to Stability Design Criteria for Metal Structures (Wiley, 2010). He
is currently chair of the American Institute of Steel Construction’s Task Committee
10 on Frame Stability, and he recently completed his terms as chair of the Structural
Stability Research Council and chair of AISC's Task Group on Inelastic Analysis and
Design. He serves on the AISC and Aluminum Association Specification Committees
and is active with the Steel Joist Institute. Dr. Ziemian, with W. McGuire and G.
Deierlein, were awarded the ASCE Norman Medal (1994) for their paper on
employing advanced methods of inelastic analysis in
the limit states design of steel structures, and he was
the recipient of the AISC Special Achievement Award
(2006) for his innovative development of the
advanced structural analysis MASTAN2 software and
his key role in its use to develop the fully-revised
2005 AISC Specification provisions for stability
analysis and design of steel structures. In April 2013,
Dr. Ziemian received the ASCE Shortridge Hardesty
Award for his "substantial accomplishments in
research, service, and teaching, as well as advancing
practice in the field of structural stability." He has
also received Bucknell University’s Presidential Award
for Teaching Excellence (2000), and in 2010 was
named a Bucknell University Presidential Professor.
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Course QOverview

<« Employ a virtual laboratory to learn basic
concepts of structural stability

+ Seven 90-minute lectures
* Lectures 1 & 2 Introduction to Nonlinear Analysis
* Lectures 3 & 4 Behavior of Compression Members
» Lectures 5 & 6 Behavior of Flexural Members
* Lecture 7 Beam-columns and Structural Systems

+ Software employed is MASTANZ2 which is
available at no cost at www.mastan2.com

Better designs will come from a

\\ better understanding of behavior
G. Winter, W. McGuire, T. Pekoz, A. Nilson,
J. Abel, P. Gergely, R. White, T. Ingrafea

S8 M American
@w Iron and Steel
M Institute




Introduction to
Nonlinear Analysis

Ron Ziemian

Lectures 1 & 2: 13-Aug-2014

The function of a structural engineer is
to design — not to analyze
Norris and Wilbur
1960

Analysis is a means to an end
rather than the end itself.

8/12/2014



Role of the analysis:

» forces, moments and deflections --> design equations

- insight into the behavior of a structure
--> better the understanding, better the design

Limit States Design:
Prior to limit of resistance, significant nonlinear
response, including
- geometrical effects (P-A, P-6)
- material effects (yielding, cracking, crushing)
- combined effects

Impetus: AISC Ch. C: P-A, P- (App. 7)
App. 1: Inelastic Analysis

AS4100 Section 4, App. D.EF

Limit States Design App. D: Advanced Analysis

Other: Progressive Collapse

\ Seismic: Pushover Analysis

Nonlinear Analysis
Available Software \ Education

Research

8/12/2014



Computers and Structures Inc. <education@csiamerica.com> May 7, 2014 2:30 AM l
To: Ron Ziemian \

Reply-To: education@csiamerica.com
Performance Based Design Seminar in Los Angeles

Web version Update preferences  Unsubscribe

A One-Day Technology Transfer Event
The theory and practice of

oy PERFORMANCE-BASED DESIGN
| THE FUTURE OF EARTHQUAKE ENGINEERING

A SEMINAR FOR EVERY PRACTICING ENGINEER
BRIDGING THE GAP BETWEEN RESEARCH AND PRACTICE

Performance-based design is a major shift from traditional structural design concepts and represents the future
of earthquake engineering. The procedure provides a method for determining acceptable levels of earthquake
damage. Also, it is based on the recognition that yielding does not constitute failure and that preplanned
yielding of certain members of a structure during an earthquake can actually help to save the rest of the
structure. In this technology-packed seminar, Ashraf will present the theory and practical application of
nonlinear analysis and performance-based design in terms and analogies that are very familiar to the practicing
structural engineer. Attendees will leave the seminar empowered with a clear understanding of this new
technology.

Nonlinear Analysis

< Hand methods

- Second-order effects (focus of later lectures)
- i.e. Moment Amplification Factors (Bl and B2 factors)

* Material nonlinear effects
- i.e. plastic analysis (upper and lower bound theories)
< Computer Methods (focus of these lectures)

* Lots of variations
- all use same basic concepts (most important to today)
- one approach will be presented (basis for MASTANZ)
< Please keep in mind
* All methods are approximate

* Not a substitute, but a complement to good engineering

8/12/2014



Lecture Overviews

«Lecture 1
» Brief Introduction (donel)
- Computer Structural Analysis (Review?)
- Basis for Material Nonlinear Models
< Lecture 2
* Incorporating Geometric Nonlinear Behavior
* Critical Load Analysis
+ Summary and Concluding Remarks

How does the computer get
these results?

+ State-of-the-Art Crystal Ball? Not quite.

<+ By applying 2 requirements and 1 translator
-+ Two Requirements:
- Equilibrium (equations in terms of F's and M's, 1 per d.o.f.)
- Compatibility (equations in terms of A's and €'s, 1 per d.o.f.)
« Translator "apples to oranges”
- Constitutive Relationship (i.e. Hooke's Law, 0= E €))
- Generalized to Force-to-Displacement (i.e. F=kA)
- Re-write equilibrium egs. in terms of unknown displacements

+ # of Equil. Eqs. = # of Unknown Displacements

8/12/2014



Equilibrium Equations

D 40 kips Aae Body f;c%D*
' Diagram fx%o<— D 40 kips
o ﬁ

CL:)D‘_
X.
.4D1 Z!VD ngD
D fyD V2
A B C — . AD
O CD
T 4 fyD
@-d.o.f. up: 2F, =O\ A lfCD
xD
Q
0= f 4 20+ 1P ;
y-dof vp: XF,=0 é
~v /

\ Ozfy%D—i_ y?DD—i_fy%?/

Translator: Forces > Displacements

fy J
Su =kt + kv + ks + kv,

Syi =kt +kyve +kysu; +kyyv;

fyg =k + kv + kysu; +kyv,

Ui
Big Question:
Where do these known stiffness coefficients k's
come from?

Little Answer:

Function of member's material and geometric
properties, including its orientation.
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F > A for all members

Member AD:

S22 =P + KPP+ P + kPP
S22 =Pt + PP kP + kPP
142 ~KPu + BPVEP kP + PP

AD _ 1 AD, AD | 1. AD, AD | 1. AD, AD | 7 AD. AD
fyD =kyuy +kp vy +hkgup +kigvp

Member BD:
BD _ 1 BD. BD . 1.BD.BD , 1.BD, BD , 1.BD.BD
S =k ug +hky vy +hkyup +kgvp
BD _ 1 BD BD , 1 BD.BD , 1 BD, BD , 1 BD.BD
Sop =k up +kpvg +hkyzup +kyvp
BD _ 1 BD. BD 1 BD.BD , 1.BD, BD , 1.BD. BD
fip =ksyup +hky vy thup + ks vp

BD _ BD, BD , 1 BD.BD , 1.BD, BD , 1,BD.BD
Sop =k up kg vy +thiup +kgyvp

Member CD:
¢D _ 1CD.CD , 1.CD.CD , 1.CD. CD . 1.CD.CD
fro =l uc +hkyve +hkzup +kg v
C¢D €D, CD , ,.CD.CD , 1.CD. CD = ;.CD.CD
fyc =kyuc +kp've +kypup +kyvp
¢D _ 1.CD.CD , 1.CD.CD , 1.CD. CD  1.CD.CD
fip =l uc vk ve thyup + ks v
CD €D, CD , ,.CD.CD , 1.CD. CD = 1.CD.CD
fip =kguc +kgve +tkgup +kgvp

Substituting into Equil. Egs.

Member AD:

Do
40 kN
@ kPP & kfPvAP 1 ki Pu P + kPP
Member BD:
C

rdof ZD Z/ F =0

BD\_ 1 BD, BD | 1 BD. BD _ 1 BD, BD _ 1 BD_BD
/ ksvug +kp'vyg +hky3up +kyy vp

Member CD:

4D BD' [
€D, CD |, ;€D CD , 1.CD, CD | ;CD, CD
40 @ -.__ ks uc® + kvl vk ugn” + ki vy

A D

_ AD, AD AD_,AD AD, AD AD_,AD
40 = (k3 ui? + ki v + kPup” + kiPvpP )+

(K5t u

BD_ B

upy: Y F.=0 (ks
( 1 Ue

D | 1 BD. BD

k
Dy D | jCD,CD | 1CD, CD

BD, BD BD_  BD
+ky, vy, )+

CD, ,CD
32 Ve 3 Uy kv )
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Substituting into Equil. Egs. (cont.)

A B

Member AD:

BOC

Doy
40 kN
@ kleuj‘D + kszij + kffuﬁD +k4‘f1Dvg‘D
Member BD:
c BD\_ ;BD, BD , 1.BD..BD . 1.BD, BD . 1.BD.BD
Kiwup  +ky'vg +kyup” +kegvp

f— /
/Z/FJ,/—O/ |
Member CD:

CD, CD CD. CD CD_ CD CD. CD
-q— k4|. T/fc +k42 VC +k43 T/[D +k44 VD

_ AD _ AD AD_ . AD
0= k41 u +k42 V)

41

BD_ BD BD_ BD BD_ BD BD_ BD
(k41 U, +k, vy +kiu, +k, v, )+
CD, CD CD,,CD D, CD CD.,CD
(k us +kove +kguy +kyvp )

AD, AD AD_ AD
+ksuy” +ky v, )+

B B

C

So, where are we at?
+ We have two equilibrium equations (1 per
d.o.f.) in ferms of a lot of displacements:

_(7,AD, AD _ 7 AD_AD | .AD, AD | 7 AD_ AD
40—(/{31 u, +k; v vk uy kv )+

BD_  BD BD _  BD BD_ BD BD_ BD
(k31 u, +k, vy +kgu, +k; v, )+

Up:
CD_ CD CD_ CD CD_ CD CD_.CD
(lf;1 us +ko v +kguy + kg vy )

_ _ (24D, AD | AD AD | 7.AD, AD , 7.AD_ AD
Vp: O—(k41 u, kv, +ksuy kv, )+

BD _ BD BD _ BD BD _ BD BD_ BD
(k41 Uy +ky, vy +kyuy +k; vy )+

CD_ CD CD_,CD CD, CD CD_.CD
(k41 u, +ky,ve +kgu, +k, vy, )

What card haven't we played yet?
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Compa’ribili’ry EQS. (consistent deflections)
Member-To-MembeN

VD
D
AD ©) Lb
4, ,CD
7k s
BD CD
N o
Member-to-Support ) ©
— AD — —,,CD — =
Uy =Up — Uc —Uc — %
—,,AD — —,,CD —
Va=Va ~ Ve Ve ~ ;\/
—,,AD — BD —,,CD
Us =ug- =0 Up =Up~ =Up = Up
Vg =VeP =0 ) \VD=VQD=VSD=VSD/

Time for some serious simplifying

+ Applying Compatibility to Equil. Egs.: :AII = Uy ]

: +k_3Dv_‘:D + k Dll;D + k DvD]) +
-I—k;,!Dng +kaugDI:kf vy

D CD @ _ CD
i s

) ab ap ) 1 4b. ap
Fk-’l{VA Fhun” Fegvs )+
b sp | .88 o | . B4 BD
-k g ve Yholu, Yhalvs )+

chb.co | .ch co |k oo
e ve Tha|up 1o )

a0 =" Naiew

Which simplifies to...
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After simplifying...

D] 2
uy: 40 = (k2 + k2 + kP s + (kP + k2P + kP v
2 9
vyt 0= (K2 k2 4 kP Vud 4 (k2 + k2 kYo

Since k's are known, we have
2 Equations and 2 Unknowns

Solve for Unknown Displacements
Up = # and Vp = ##

With all displacements, solve for
member forces..  MemberAD:

kPudP + kAPyAD kAP A0 4 APy AP

EPuAP + kfPvAP 4 kSPufP + kfDvAP

k2 Pui® + kiPvAP + k5PufP + kfDvaP

kiPuAP + kEPvAP + kAPusP + k2PvaP

Member BD:

——

FED & kP B0 kBPyER 4k BPuBP 4 kEPvEP

S Elarup + ki val + kpup” + kyy vy’
BD L EBPyBP | kBDyBD | By BD | kBDyED

fip Fliug. + kvl +kpup’ +kjyvp”

ve=ve =0 Member CD:

= uB‘D = u("u :# x%D :kﬁDuéD+klc2:Dng+klc3DugD+k1CPng

D D

D . b 18 EhsPus® + ksPvel +kGug? + ks vg?
= = = = ep| ,CD, €D, 1 CD.CD , 4,€D, CD , 1.CD. CD
vD vD vD D # # D ke thyve thyup thyvp

cp| D, D, 1CD.CD | 1CD,CD | 1.CD. CD
S Fhiyuc +kgve tkgup +kigvp




Summary of Computer Approach

+ For each d.o.f., write an equilibrium equation:
FCXTCI"HOI - Z fmember' (Equil' Eqs‘)

+ Re-write (translate) each member force in terms of
its end displacements (Stiffness Egs.)

fmember =2k member A member end
+ Substitute Stiffness Egs. into above Equil. Egs.

+ Simplify Equil. Egs. by applying member-to-member
and member-to-support compatibility conditions

<+ Solve n Equil. Egs. for the n unknown displacements

+ Use Stiffness Egs. to calculate member forces

< Apply Equil. Egs. o solve for reactions

Lot's of Questions

+ S0, this is how most commercial programs such
as SAP2000, RISA, STAAD, efc. get the
answer?

» Yes! Known as "Direct Stiffness Method"

+ So, all such programs will give the same answer?
* Yes, as long as it is a static 15"-order elastic analysis.
+ Wait a minute..Is this the basic analysis
procedure for the "finite element method"?

* Yes! Bit more tricky to get k's, d's, and €'s

8/12/2014
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Two Big Questions

+ Where do those stiffness coefficients
come from?

* You mean the ones that relate member end
forces to member end displacements?

* Yeah, those k's | <More to come on this>

< What happens when we go static nonlinear
or even dynamic?

* Same basic procedure, but apply loads in
increments and perform a series of analyses.
Then, sum incremental results.

< Much more to come on this! >

Important Points

+ The only opportunity for most computer
analysis software to model the actual
behavior of the structure is through the
member stiffness terms.

+ S0, to include

- first-order effects
- second-order effects
- material nonlinear behavior

Must modify member stiffnessll!
+Let's review member stiffness




Stiffness Coefficients, k's

+ Let's start with high school physics
« Extension Spring Experiment

® Before:

‘ A
® After:

NN \——>F

A Displacement

Stiffness Coefficients, k's (cont.)

+ More "advanced" high school physics lab
* Rotational Spring Experiment

Moment
M -

® Before: @

M

After: @j’)ﬂe

©  Rotation

8/12/2014



How about real structural members?

+ Axial force member

® Before:
i By e
I ‘ A
Jk I After: _"
L 1 I —> F

A

« Stiffness k function of:
- Geometry: Area and Length (At kT & L1, k|)
* Material: Elastic Modulus (E1 k1)

F=k(ALE)A

How about real members? (cont.)

< Flexural members
® Before: ® Before:

Mm Q\Tl“

Stiffness k function of:
+ Geometry: Moment of Inertia & Length (I1,k1& LT, k|)
* Material: Elastic Modulus (E1 k1)

8/12/2014



Other factor impacting stiffness

+ Orientation of member
- consider axial force member:

W~ kVZEA/L kV:O §

kh:O é A
~ 3

Vertical Horizontal

Member Member k:_:,\g;/L

Orientation of axial force member

kn=(cos?@)EA/L ;

W\~

Important Point: Less vertical a member,
the less stiffness to resist vertical loads.

8/12/2014
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Summary: Three Perspectives

<+ Reality: What you see...

Three Perspectives (cont.)

< What you see on your computer screen:

DL
" !

Collection of elements
connected by sharing
common nodes

787
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Three Perspectives
< What your computer actually sees:

Assemblage of \
equivalent springs {F} = [K{A}

Analysis Review: Key Points

+ Reviewed the "Direct Stiffness Method"
- Equilibrium > Translator F(A) > Compatibility
+ Response of structure controlled by
stiffness of members (a.k.a. springs)
+ First-order elastic stiffness of member
function of:
* Material Property (E)
* Geomeftric Properties (A, I, L, and orientation)

+ Time o go nonlinear...
let's begin with material nonlinear




Material Nonlinear (Inelastic)

<+ Best place to start is with a tensile test

og=P/A
Oyield X Perfectly Plastic (E = 0)

v

\0. L

o

: P Il =
1 L+A [
€=A/L

Normal Stress: Structural Members

<+ For typical structural steel members (L/d>10),
elastic/inelastic behavior controlled by normal
stresses d's acting along the length axis of the
member.

<+ Normal stress produced by:
* Axial force (P/A)
* Major and/or minor axis flexure (Mc/I)
+ Combination of above effects (i.e. P/A + Mc/T)
 Warping (not today!)

+ We will assume elastic-perfectly-plastic
material (often done for steel)

8/12/2014
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Inelastic Behavior: Axial Force
P ) _ ® Originally:
P -Aq, » HU L 0 =P/A=0
A
ﬁkEA/L Elastic: ‘_"
" —— -
Y
® Yield: ‘AA"
Plastic Hinge < ——,
at P = Py or ©Post-Yield: | A .
when P/P =10 e
o = Oy

Inelastic Behavior:
) 7

Flexure "
M — N
A
MP'SOY Section A-A -0, +0,
/V\Y=ZOy -------------- |

k=4EI/L

1

E Ielas’ric
0




Inelastic Behavior:
Flexure (cont.)

M

M,=Sa, | —

k=4EI/L

1

/\/\Y=Zc:y

—l N
A

Section A-A g5 +q

....................................................

E Ielas‘ric M:ZOy:IMy

)

Inelastic Behavior:
Flexure (cont.)

M

M,=Sa, |

My=Zc5y

. M
,[ \i;) 6
A

.............................................

k=4EI/L

1

EI<EL, ustic | N\y< M<Mp

)
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Inelastic Behavior:
Flexure (cont.)

M

M,=Sa, | —

/V\Y=Zcry

.....................................................

k=4EI/L

1

ETCE T e My<<MM,

<
Y

)

Inelastic Behavior:
Flexure (cont.)

M

M,=Sa, |

MYZZOY

EI=-0 > k=0

Section A-A _

+G,

E=0

k=4EI/L

1

EI=0 M=So,=M,

)
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Inelastic Behavior: Flexure
M<Mp

Plastic: M = M}
astic: 24\9

+ Plastic Hinge Model - Assume section as fully
elastic or fully plastic (neglect partial yielding)

+Plastic Hinge at M = M, or when M/M, =10

Types of inelastic models

+ We will employ a plastic hinge model
- A.K.A. "Concentrated Plasticity”
« Section is fully elastic or fully yielded
* Plastic hinges only at element ends
+ Distributed plasticity (still line elements)
- AK.A. "Plastic Zone"

« Captures gradual yielding through depth and along
length

» More accurate, but computationally more $$
+ Finite element with continuum elements ($$$%)

8/12/2014
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. It's

Simple Example: MASTAN2
100 kips
W12x50
-—12'-0" ——‘—— 12'- 0" —»P 12'-0" —

E = 29,000 ksi

o, = 50 ksi

' z:r : and Wy \MAST) MISCExample.mat

¥ Deflected Shape: 1st-Order Inelastic, Incr # 12, Applied Load Ratio = 0.99874 ***

0.832 i 0.999
0.588 =
0.999
0.888
100
Deflected Shape: 1st-C
—~ 80
0.832 3
<
_%‘\E o 60 _
0.888] 3 —1. 1st-Order Elastic
% 40 ——2. 1st-Order Inelastic (P=0)
Deflected Shape: 1st-§ %
QQ
% 1 2 3 4

Mid-Span Deflection (in)




Inelastic Behavior:
Combination P & M

M

| A %Af

Inelastic Behavior:
Combination P & M
for Plastic Hinge

Fully yielded
section when:

M<M,  P<P
M/M,<1  P/P, <1
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Material Nonlinear Analysis

+ Employ "Direct Stiffness Method" applying loads

in increments: [KJ{dA} = {dF}
<+ During the load increment, check to see if

plastic hinge(s) form. If so, scale back load
increment accordingly.

+ Reduce stiffness of yielded members and
continue load increments
* K= Kejastic * Kotastic  With Kyjoqric = plastic reduction

+ Continue to accumulate results of load

increments until all of load is applied or a plastic

mechanism forms.

8/12/2014



Simple Example Tt's
(with axial force): MASTANZ
timel
100 kips
W12x50 P = 400 kips
<
—12'-0" ——12’- 0" ——}W 12°-0" —
E = 29,000 ksi
o, = 50 ksi
»** Deflected Shape: 1st-Order Inelastic, Incr #9, Applied Load Ratio = 0.73197 **
0.648 l 0.732
< 0.677 I~ <
0.732
0.677
100;
’U? 80'
o
=
- 60}
8
- 40! —1. 1st-Order Elastic
2 ——2. 1st-Order Inelastic (P=0)
g 20! ——3. 1st-Order Inelastic (P=400)
0 1 2 3 4

Mid-Span Deflection (in)
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=
-} MASTANZ: C:
Ele Vew Ge

 TAN2Ywork\AISCExample.mat
~

we* Deflected Shape: 1st-Order Inelastic, Incr #9, Applied Load Ratio = 0.73197 ***

0.648 l 0.732
<] 0.677 ] <
0.732
0.677 " —
1. Yield Surface
0.8 ——2. Hinge 1 (Left)
3. Hinge 2 (Center)
_. 06 ——4. Hinge 3 (Right)
=
0.4}
02
% 02 02 06 08 1
M/Mp

Second-Order Effects

+ A.K.A. "Geometric Nonlinear Behavior"
< Equilibrium Equations

* Reality: Should be formulated on deformed
shape

» Difficulty: Deformed shape (deformations) is
a function of the member forces, which are in
turn a function of the deformations
(Chicken 'n Egg)

* Remedy: Perform a series of analyses with
loads applied in small increments and update
geometry after each load increment.




Equilibrium Equations

« Formulated on + Formulated on
Undeformed Shape Deformed Shape
P|LA 2

H

Truss is susceptible to
2nd-Order effects,
luckily A is often
quite small.

s

Different reactions and member forces.

Equilibrium Equations

« Formulated on « Formulated on
Undeformed Shape Deformed Shape
H H k=3EI/L3
H JL H | AIP 1J
k=3EI/L3
/ /|

Effective
lateral

stiffness
is reduced!
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Focus on Lateral Stiffness

+ Formulated on Undeformed Shape: Linear Response

® Before: ® After: A Lateral Stiffness
k. P _.| is slope of H-A
SP'”'"EJ H response curve

Jkla'rer'al = kspr'ing
1

A

Focus on Lateral Stiffness (cont.)

« Formulated on Deformed Shape: Nonlinear Response

® Before: ® After:
Ap Effective lateral
kspr'ing | 1 stiffness is reduced

. H-
J kspring
1

IJ kla‘reral < kspring

F

8/12/2014
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Focus on Lateral Stiffness (cont.)
« Equilibrium Formulated on Deformed Shape
Let's start by assuming L' = L,
AP ZM,=0 RL=HL+PA
i ko R=H+PA/L
Rekey g Kepringd = H + PA/L
H = Kepring - PA/L
H = (Kspring = P/L) A

+ Lateral Stiffness (slope of response curve)

1.0 H = kIcn‘er'alA with klaTer‘al = kspring- P/L

Some thoughts here...

<+ This simple analysis becomes less "accurate” as
A/L becomes large (i.e. A/L > 1/5)

* Remedy: Perform an incremental analysis and update
geometry after each load increment..hence, limit A/L
in each step to some small amount

* Keep in mind serviceability limits are often something
like A/L < 1/400
+ Most importantly, Kigterql = Kspring = P/L Takes on
the form:

| Geometric Stiffness |
k2nd-Or'der El. ~ kls‘r—Order' et kg
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Geometric Stiffness

« Effective lateral stiffness of a member:

- decreases as a member is compressed
- kg is negative for compressive P
- backpacker example

- increases when subjected to tension
- kg is positive for tensile P
- guitar string example

+ Employing geometric stiffness approach
* Other methods exist (i.e. stability functions)

How about real members? (recall...)
<+ Flexural members subjected to axial force
M
-0
)
= |
+ Stiffness k function of: F

- Geometry: Moment of Inertia & Length (I1,k1& L1, k|)
- Material: Elastic Modulus (E 1,k?1)

- Axial Force: Compressive (P1, k|)
M=k(ILEP)O |




Closer look at stiffness terms...

<+ Flexural members subjected to axial force

M
-\ 0
2
—
M= k(T LEP)O with 7

k = 4EI/L - 2PL/15 F=k(ILEP)A with
k = 12EI/L3 - 6P/5L

Again, basic form:

k2nd-Or'der = klsT—Order' = k

Geometric Nonlinear Analysis

+ Employ "Direct Stiffness Method" applying loads
in increments: Solve Equil. Egs. {dF} = [KXdA}

+ AT start of increment, modify member stiffness
to account for presence of member forces (such
as axial force):

* K= Kejgstic + Kg  with k, = geomeftric stiffness

+ At end of increment, update model of structural

geometry to include displacements

+ Continue to accumulate results of load increments
(A= A+ dA and f; = f; + df) until all of load is
applied or elastic instability is detected.

8/12/2014



-
-) MASTANZ: C: and Settings ¥ TANZYwork\AISCExample.mat
= : z

we* Deflected Shape: 2nd-Order Elastic, Incr # 10, Applied Load Ratio =1 **

' -

100
g 80
=
- 60
©
S
_Kg - —1. 1st-Order Elastic
Tt's 2 —=2. 2nd-Order Elastic (P=400)
MASTANZ
time!
e 0 02040608 1 1214186
' Mid-Span Deflection (in)

Comparison: 15*- and 2"d-Order Analysis Results

-) MASTANZ: C: and Wy AMASTANZIwork\AISCExample. mat
Geome! Properties  Conditions  Analysis  Results ~

*»* Moment Z: 2nd-Order Elastic, Incr # 10, Applied Load Ratio =1 ***

-4696
-2348
0.00C
4300 .
Moments increase by ~10%
cumers and et iy Do ST A o kASCizanple e

Moment Z: 1st-Order Elastic, Incr # 1, Applied Load Ratio =1
-4320

y\ l -2160
| 216000 —
0.00C "

3960

8/12/2014
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2nd-Order Inelastic Analysis

+ Employ "Direct Stiffness Method" applying loads
in increments: Solve Equil. Egs. {dF} = [K{dA}

+ At start of increment, modify member stiffness
to account for presence of member forces and
any yielding:

k = kelas‘ric + kgeome‘rric + kplas‘ric

+ At end of increment, update model of structural

geometry to include displacements

« Continue to accumulate results of load increments
(A = A+ dA and f; = f;_; + df) until all of load is
applied or inelastic instability is detected.

eometry  Properties  Condi

r
<) MASTANZ: C: and Settings\ziemi STANZWwork\ISCExample.mat []l
Eile Yiew GEOn Ana & »

oo Icted a: rder Inelastic, Incr # 9, Applied Load Ratio = 0.67031 **
0.626 l 0.670
0.670
0.652
100y
E-': 80'
=
b 60}
9 . 1st-Order Elastic
® 40 ——2. 2nd-Order Elastic (P=400)
, £ —=—3. 1st-Order Inelastic (P=0)
It's = 20t —<—4, 1st-Order Inelastic (P=400)
MASTANZ 5. 2nd-Order Inelastic (P=400)
timel 0
P —— 0 1 2 3 4
Mid-Span Deflection (in)




Critical Load Analysis (Basics)

+ Definition: Critical or buckling load is the
load at which equilibrium may be satisfied
by more than one deformed shape.

P Solution Solution |p

P —
#1 4 #2

Big Q: How does computer software calculate this?

Critical Load Analysis (Background)

+ Elastic stiffness of a member k =k, + kg
* k,isf(AorI,L,andE)
* kg is f(P.L), also note directly proportional o P
+ Elastic stiffness of structure [K] = Zk
 [K] = [Kgy] * [K,]
* [K;] directly proportional to applied force

- i.e. Double applied forces, hence, double internal force
distribution and double [Kg]

+ To the computer, "buckling” will occur when
our equilibrium equations {F} = [KI{A} permit
non-unique solutions, e.g. det[K] = O.
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Example

Demonstrate computational
method for calculating the
elastic critical load (buckling
load) for the structural
system shown.

lP
Rigid Beam

Example: Key Stiffness Terms

A By 1P
H  Rigid Beam H | -

_'V\/\,_kla‘rer'al
é kver"rical
: |
Vertical Stiffness: Lateral Stiffness:
P= kver"rical Aver'T H= kla‘rer‘al AIa‘r

Kirora = 12EL/L3 - 6P/5L

8/12/2014



Example: Solution

1. Apply reference load, and use 15'-
order elastic analysis to obtain
internal force distribution.

2. Determine load factor A at which
system stiffness degrades to p
permit buckling. 1 °r

#

Kiorory = 12ET/L3 - 6AP/5L
klaTer‘al = O when AP = 10EI/L2
P, = AP = 10ET/L2 LY v /)

100 kips
W12x50 P = 400 kips
—

4

<) MASTAN2: C: and gs y D TAN Example. mat
Ele Yew G rti Ar =,

Deflected Shape: Elastic Critical Load, Mode # 1, Applied Load Ratio = 9.386

A=9.4

¢ —

Deflected Shape: Inelastic Critical Load, Mode # 1, Applied Load Ratio = 1.7367

l .~

8/12/2014



Thoughts on Critical Load Analysis

< Computer analysis for a large system:

- First, apply reference and perform analysis

- Solve equilibrium eqgs. {F,.¢} = [KI{A}
- With displacements solve for member forces

- Second, assemble [K,] and [K,] based on {F,.¢}

» Finally, determine load factor A causing instability;
computationally this means find load factor A at which
[K]=[K,]+A[K,] becomes singular

- Determine A at which de‘r([Ke|]+)\[K9) =0

- "Eigenvalue"” problem: Eigenvalues = Critical Load Factors, A's
Eigenvectors = Buckling modes

« Accuracy increases with more elements per
compression members (2 often adequate)

Basic Introduction Complete

< Where do I go from here? (Learning to drive)
* Review the slides (Read the driver's manual)
* Acquire nonlinear software (Borrow a friend's car)
* Work lots of examples (Go for a drive, scary at first...)

» Apply nonlinear analysis in design
(Formula One? not quite)

Acquire nonlinear analysis software
« Commercial programs
Educational software
(i.,e. MASTANZ, Strand7, ...)

8/12/2014
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Levels of Analysis: MASTARS

1st-Order Elastic:  [K {A}={F}

2rd-Order Elastic:  [K, + K, {dA}={dF}
1s*-Order Inelastic: [K, + K, {dA}={dF}
2rd-Order Inelastic: [K, + K, + K, XdA}={dF}
Critical Load: [K, + )\Kg]{dA}z{O}

Yield Surface:
FUHCTIOH Of P, Mmqjor'l and Mminor'

-aeral 1sOrder
H / Elastic
H Elastic Critical Load
g Y A Elastic Stability Limit
es
2"-Order
Elastic . .
H. Inelastic Critical Load
1c
H, | ———_/_/_1%-Order Inelastic__ Inelastic Limit Load
A
H b-— __Inelastic Stability H =
IS 7 Z ’A—c"'t'JaT < =~ Limit ..........
r? 2"-Order ;
/4 Inelastic D
L ateral displacement, A




8/12/2014

Planar - MASTANZ
s
. timel ' astic Elastic
Fra m e ° e _—_—— FaCtor 1 18L°rder
Inelastic
0.8
60~ 120% 2"_Order
[y l 0.6 Inelastic
6k N b Ye d 04
i W27 x 84 ‘
24 W10 x 45 E = 29,000 ksi 0.2
a_ g, =36 ks i
Y e % 5 10 75 Ya(in.)
14 1665
1831 1720
. . ~—3
1
8783 (1st-Order)
8783 (2"9-Order)
Mechanism Moments at Limit (in. kips)

Summary and Conclusions

<+ Provided an introduction to nonlinear analysis
- Review of direct stiffness method
* Material nonlinear analysis (Inelastic hinge)
» Geometric nonlinear analysis (2"9-Order)
» 2nd-Order inelastic analysis (combine above)
* Critical load analysis (“eigenvalue analysis")

< Nonlinear...think modifying member stiffness!

< All of the above analysis methods appear in and
AISC 360, AS4100, and Eurocode 3




8/12/2014

References

+ Matrix Structural Analysis, 2" Ed., by
McGuire, Gallagher, and Ziemian (Wiley,
2000)

+* MASTANZ at www.mastan2.com
+ Tutorial that comes with MASTANZ2
+ OK, time to jump in and start driving...




Behavior of
Compression Members

Ron Ziemian

Lectures 3 & 4: 13-Aug-2014

A,
|Rnaer %

UFOP

Key Definitions

* Stability: Under load, component returns to
current state after applying a small disturbance
such as a deflection

 Bifurcation (critical load): Theoretical point at
which loading a component results in an
instantaneous change from current state to
significant deflection — two options: not buckled
or buckled

* Instability: Loading a component results in a
realistic transition from small deflection to
significant deflection — buckling preceded by
deflection

8/12/2014
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‘ Streﬁgtﬁ/ . Stiffness/ Competitive

| — —
-

Weight - Weight B8 $ LW
4 »—-:: ~ a——

Slender Members and Systems

) 4

Design for Stability!

Limit States of Compression Members

* Full yielding (today)
* Instability
—Along the member length
* Flexural buckling (today’s emphasis!)
* Torsional buckling
* Flexural-torsional buckling
— At the cross section
* local buckling
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Full Yielding

* Tensile test

g=P/A /—\

Perfectly Plastic (E = 0)

=
[

j
/e
1

* Assume same response for compression

- cry,compression ~ Yy tension

0vield

— Neglect strain hardening (assume elastic-plastic)

Full Yielding (2)
* Column Curve — Take 1
o=P,/A
Limit State: Full yield

g,

Acceptable?

* What about:
— member instability ??? (tonight!)

— cross section instability (local buckling) ??7?




Flexural Buckling

1%l

Torsional Buckling

Types of
Member
Instability

\,

7

Flexural- E
torsional
Buckling

(centroid = shear center) 2 (centroid # shear center)

Flexural Buckling

* Euler’s column
— solution
— assumptions

* Undoing Euler’s assumptions
(approaching reality)
— bending before bifurcation
— not fully elastic (partial yielding)
— support conditions

* Column curves
— AISC, AS4100, Eurocode 3, ...
— others

8/12/2014
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. \[ETHODLS
Euler Buckling | M.ri220
""7."1"?"”““"'
* Leonhard Euler, 1744 and 1757 '-f:fz.?::?.Ke:T-::lr.f.)'.-:“
. LEON!!‘(:;I;SHEULERO‘
* Assumptions! e

— prismatic member
(I = constant)

— small deflections after buckling

— no bending prior to bifurcation
+ perfectly straight
* concentrically loaded

— linear elastic behavior
(E = constant)

— pinned-roller supports
(frictionless)

Euler Buckling (2)

Equilibrium:
M. =0
M(x)+Pv(x)=0

Moment-curvature:
d’v(x)

2

IBLIAY M(x)  M(x)=El

P X




Euler Buckling (3)

—_—— Pe e
PP v  Eaquilibrium:
| | EB.D. M, =0
: : M(x)+Pv(x)=
Moment-curvature:
v(x) |, d’v(x)

XTe—z M(x) M(x)=El

dx

Solutlon

2
E1?+Pv 0 = v(x)=C cos(\/:x)+C sm\/7
X

wolframalpha.com
a2*y"(x)+al*y(x)=0

Euler Buckling (4) 5 5
v(x)=C, cos(y|=x)+C,sin(y[=x)
p=p, \ E/ \ &/

vix=0)=0 = C, =0 = v(x)=C,sin(
Boundary
Conditions!

vix=L)=0

&
EIX

8/12/2014



Euler Buckling (5)

vix=0)=0 = v(x):Czsin(JEfx)
El

Boundary
Conditions! p
vix=L)=0 = v(x=L)=0=C25in(\/gL)

1) C. =0 "trivial solution"
) €, n*m’El

P P e L
2) sin(4/—=L)=0 = ,|*L=nm =
El El n=12,3,...

P=P,

Euler Buckling (6 n*m’El
g( ) P=— n=1,23,...
P, E 2
3 p _9m’El _ m’El
n= E— 2 N2
T S (E)
Thoughts:

& —> =

* Bifurcation
=0 -2 d =unbounded
* 1t mode (n = 1) controls!
L (L,:'Z)Z * Interest in higher modes?
Think bracing!

_4Am’El . mlEl

_ m’El

8/12/2014



Euler Buckling (7)

* Euler Buckling Stress

’El P ’E /
PE=71-2 = 0'E=—f= id - withr=,/—
[ A (L/r) A

* Column Curve — Take 2

o=P, /A
Full yield \
o, L
m’E
Acceptable?
L/r
* What about those assumptions?
o=P, /A P,
Full yield \
L
It's
MASTANZ
timel
: L/r
W14x145 (E=29,000, F, =50, A=42.7, 1 :.,,=3.98)

50 199

150 597

8/12/2014
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Euler Buckling | Y5225

LINEAS CURVAS

Manns Miaimine propeicuee. guskises,
sr

* Leonhard Euler, 1744 and 1757  LSOLUTIO

FROBLEMATIS ISOPERIMETRICI
LATISSING SENSU ACCEPTL

* Assumptions

— prismatic member
(I = constant)
— small deflections after buckling

— no bending prior to bifurcation
+ perfectly straight
* concentrically loaded

— linear elastic behavior
(E = constant)

— pinned-roller supports
(frictionless) l l l

Bending
* Bending can be produced by:
1. Prior to loading, 2. Axial load not concentrically
column is not applied (e, is small, but not zero!)
perfectly straight P P
e~ - =

ze,x P

Reality: Some combination of above exists...




Let’s consider a column with initial
out-of-straightness:

*v

\ . TTX
i{/ v (x)= 505|nT

Initial imperfection
at mid-length

e.g. d, =L/1000

1
|
I
I
|
I
I
I
I

Bending (2)

Column with initial out-of-straightness:

vo(x):éosinﬂ

v, (x)
M(x,P)

v(x)= vo(x)+vp(x)

Bending (3)

8/12/2014
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Column with initial out-of-straightness:

)=V (x)+v,(x)

M(x,P)+Pv(x)=0

2

XZ

2

d
El

2
X

v
~+Pv (x)=—Pv (x)=—PF sinT

Bending (4)

Equilibrium -> Differential Equation:

dv
ElI—E +P(vo(x)+vp(x))=0

X

Column with initial out-of-straightness:

X:O"

vo(x):éosin%

v, (x)

v(x)= va(x)+vp(x)

2

Bending (5)

wolframalpha.com
a2*y"(x)+al*y(x)=-al*a3*sin(ad*x)

Differential Equation = Solution with BC's

v X
El—=+Pv,(x)=—PJ_ sin—
dx L
TX 1 TX
v, (x)= o 0 sin—= 0_sin—
/4
2 -1 —-1
PL P

8/12/2014

11



Column with initial out-of-straightness:

x=0v

T
vo(x)=505inTX

v,(x)

v

v(x)= vo(x)+vp(x)

[ v, (x)= %50 sinT

Bending (6)

X

$ O
P
x=1L ;
vp=OT v(x)=5osinﬂ+ 1 5osinE=(1+ L )50sinE
Loh_, L P, L
P P
Column with initial out-of-straightness: Bending (7)
P
x=0V y
Vp=0 vo(x):éosin%
v (x
(X) v(x)=v_(x)+v,(x)
1 TX
v(x)=(1+ )0, sin—
E_q L
P
1 . X
v(x)=——08 sin— = v(x)= v (x)
P ° L p °
1-— ="
P P

E

E

8/12/2014
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Column with initial out-of-straightness: Bending (8)

v (x=L/2)=6 v(x)= lp v (x)

\vix=L/2)=6(P) P.
6P =—— 8,
1- "
P
Column with initial out-of-straightness: Bending (9)
|
_.1 __________________ >
o
: o(P)= X0
| 1-F
PE
7 0
o

(o]

T Elastic instability occurs as compressive
force P approaches Euler critical load P

8/12/2014
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Column with initial out-of-straightness: Bending (10)

o)

o max
T Prevent excessive deflections by limiting
P to some proportion of P, i.e. P < aP,

'S

max

’ minor=1710)
L=597 and §, = L/1000 = 0.0.597 GNIA

W14x145 (E=29,000, F, = 50, |

14



* Limit elastic bending deflections Bending (11)

p__P
PSaPE = Zsa;f = 0=00,

* Column Curve —Take 3 § ‘
o=P, /A
Full yield

O,

* Consider yielding due to bending plus axial force?

o=P,/A
Full yield

O,

It's
MASTANZ2
Time!

| .

W14x145 (E=29,000, F, = 50, A=42.7, 1. =3.98)

150 597

8/12/2014
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Euler Buckling | Vi ients

LINEAS CURVAS
I

* Leonhard Euler, 1744 and 1757
* Assumptions!

— prismatic member
(I = constant)

— small deflections after buckling

— no bending prior to bifurcation
+ perfectly straight
* concentrically loaded

— linear elastic behavior
(E = constant)

— pinned-roller supports
(frictionless)

Review: Pure Bending
M =70 (major axis)

-0

Inelastic (1a)

,,,,,,,,,,,,,,,,, 2 Eer
M,=Sa, o, R i B
/ = \ +0g
E=0 - E EI<<(EI)eIast‘ic 4
N : )
E I<(E I)elas,ticﬂ:ry

-0y A

M
T\ |

1 ‘ A
(E I)elastic +°Y

.6

8/12/2014
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“ Review: Pure Bending |nelastic (1b)
_ (minor axis)
My=Zo, T
Partial Yielding N } -oiy
E=0 ===,
M, = Soy] N : )E
I i El<(EI
y. | elasrlc
= o S8
EI<(EI)eIasnc Y M
_qy A\ 2/ e
HY =
(El)elastic *0y e

Small Axial plus Bending Inelastic (2)
My=Zo,
Partial Yielding -~ <
MYSGY_k_ Ve ‘ '
________ EzQH'E R EI<<(EI)e,m:‘J
E I<(E |)elast'lc Y
N, P.M , Mp
Y | —+—=0
Ey AT | N 39
=,
(E I)elastic 0y . e

17



. Moderate Axial plus Bending Inelastic (3)

D
N -‘H-E

+0
EI<'<(E|)elastic: 4

E A M P
elast:ic‘iay -
_— = O-y
e

Large Axial plus Bending Inelastic (4)

8/12/2014
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Large Axial plus

Bending

Mp:Zo

El<<(EI)
(E I)elastic *0y

B0 [
RS

elastic

Inelastic (5)

_________ 7 Small amount of bending can quickly lead
to a significant amount of yielding in a
heavily loaded compression member!!!

P M
—+—=0
A S Y

p
A
\\"”/.-me

A A

-

v@————//

\r’m

Closer look at that bending:
P X

1 v (x)=38, sinT

Note: amplification
factor to account for
2nd-order effects

Equilibrium:

Inelastic (6)

M(x,P)+Pv(x)=0
M(x,P)=—Pv(x)

1 /4
M(x,P)= —P—aosinTx

1-
E

M(X,P)=1-(—P505in%]

1-

mO | o

1 1st—
M(x,P)=—P-M(x,P)°""-"

1——
P

E

8/12/2014
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Closer look at that bending: Inelastic (7)

All is good...as long as all is
elastic, i.e. no yielding!

Elastic M-diagram:

M

M(x,P):iﬁosinﬂ

X ¥ 1_5 L P M(X,P)

E A 5 y
L2 e M(é’P) = __'c; ) But, yielding will occur when

1- Pl [M(L/2,P

P Pl [ML/2,P)|
A S y
or, an axial load P that satisfies:
Note: relatively simple | P 1 PS

force that produces first yield

(excludes o,,,)

o __
equation to compute axial ;'*' ( p J S - Gy

And, once yielding occurs (ouch!):

Inelastic (8)

\ J

1.Yielded portion loses stiffness, £/ | VH
2.Increases in deflection, v(x) T b
3.Increases moment, M(x)=P-v(x) T U

) 4.Resulting in more yielding... s

M(x,P)

|

5.If equilibrium, apply more P
6.Repeat above steps 1 to 4

7.Apply more P repeating steps 1 to 6
1 until instability!

8/12/2014
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Inelastic (9) P,

o

[¢]

Elastic Response

“Initial yielding

Notes:

1. Inelastic instability occurs below the

T Euler critical load, i.e. P, <P,
2. The smaller the column slenderness L/r,
the further P, is below P, (t/rl P. m)

Inelastic (10) p

Only two P, p
E

!
__i__
options:
ICI)J >P Zs
y="E |
-or- |
P,<P,<Pg '

o

(o]

o

5

Notes:

>

1. Because of bending, P, cannot exceed P,
2. The larger the column slenderness L/r,
the more bending, and the further P, is

below Py

8/12/2014
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* Axial plus bending may cause Inelastic (11)
yielding _
P L/r—0, o, =0,
“ A /T, o, <0, and 0, <0,
* Column Curve —Take 4 Pa
o=P, /A

Full yield \ L

a

* What about residual stresses?

Residual Stresses

* Occurs in structural shapes
— Uneven cooling of hot-rolled shape after rolling
— Welding of plates for fabricated or built-up shapes
— Cold bending during fabrication

* Magnitude and distribution of residual stresses depend
on the cross-sectional shape and dimensions

* Residual stresses are usually independent of steel yield
strength

* Thermal residual stresses occur in rolled wide flange
shapes because locations with high surface area (e.g.,
flange tips) cool well before locations with smaller
surface area (flange-to-web intersections)

8/12/2014
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Residual Stresses (2)

C/ T/ C/’

Residual Stresses (3) A

- -

1. Entire section hot and starts to L
cool...lengthwise contraction
with E, << E -

2. Flange tips (surface area!) cool @
relatively faster than flange-web
intersection (smaller surface) area, £ = E

3. Flange-web intersection (smaller surface area) now
cools and wants to contract, but flange tips are already
set and do not want to contract.

4. Result — locations to cool last end up in tension and

equilibrium requires locations that cooled first to end
up in compression.

8/12/2014
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Residual Stresses (4)

From previous slide

A
/C/'T /C

© -

Closer to actual distribution

Residual Stresses (5)

Shape
H

x13

H

Approx = 0.5 g,

[Approx o,

Mild Steel
Welded

8/12/2014
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Residual Stresses patterns often ~ Residual Stresses (6)

used in computational studies:

Galambos and Ketter ECCS
. to, =030 rk\ /41 res
I\v "iom,; y e ;{ -
Gres
’ O-:els
c =————E£L————G
bttt (d-2t)
) | to_ =03 [\ /] O pes
I\*v—'ﬂ i;,._,,} i 4 E’

d/b,<12 = o, =050,
d/b,>12 = o =030
f res 4

Stub Column Test Residual Stresses (7)

Sectionin
2
22 A
Z >
4
7> .
- >
. ’ =)
A & s |
' £z
+2 s =
.~ ,el\\
= = 2
ir -
A Z ]
<10
, _*V.‘i'
"
nice
a = - Cross section without
P/A 9, " residual stresses
i
" Cross section with
residual stresses
o, E\} \
Cross section (c) secion
begins to yield of'eS = E AL/L
£
. X
e=AL/L f) suice

8/12/2014
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Residual Stresses (8)

—/(')—:‘-E
N
EA<<(EA)

elastic |

elastic

Ores + Pin/A = 0,

O0..=0,-P. /A
elastic res : il N AL

. Simple expression to model

' Residual Stresses (9)

stub column response

(EA),, =E,A with E,=7E

‘ , r=4£[1—iJ for 05<-2<1.0

o o o
y y y

(o}
y

.e =AL/L

8/12/2014
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* Euler -to- Inelastic Buckling Stress ~ ResidualStresses (10)
3 2 E =1E
_ mE _ TE,

E 2 Et , \2 r=4=
(t/r) (t/r) %

o
=10 for —<0.5

a
v

1—1] for 0.5<££1.0

¥

* Column Curve —Take 5 o,
=P, /A p.
Full yield \
o

?
0.50,| Acceptable:

L/r
* But wait! What about bending?
Residual Stresses (11)
* Compression members include 1950-70’s
— Bending without residual stresses? (no!) British Standard
— No bending with residual stress? (no!) AISC
— Bending with residual stresses? (yes!) o

* Partial yielding now occurs p+M
sooner when: A s
o+ £+M =0 o =
res A .S y

res
+ :
Note: M is due to initial /
imperfection and/or EZ0— '_\_E
non-concentric loading "4

* Partial yielding = loss of flexural stiffness, EI<<El, ..

8/12/2014
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=P, /A
Full yield

P

It's
MASTANZ
timel

EE— N L/r
W14x145 (E=29,000, F, = 50, A=42.7, 1., =3.98)

50 199

150 597

Minor Axis Compressive Strength by FEA
(W14x145, A992)

0.8 \ e
5, = L/1000
N "+ andnoo, 1

06

10, =1/1000 *
and o, (G&K)
04

0.2

L/r

0 20 40 60 80 100 120 140 160 180 200

8/12/2014
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Major Axis Compressive Strength by FEA
(W14x145, A992)

14
o/o, b‘\ Euler P
0.8 / h —
5, = L/1000
/¢ and no 0., 18

5, =L/1000 7

and O, (G&K) \

0.6

04

0.2

L/r

0 20 40 60 80 100 120 140 160 180 200

Comparison of Compressive Strengths by FEA
(W14x145, A992)

o/o, Euler P,

0.8 —
\\\ Major Axis L
/
0.6
Minor Axis)\

0.4

0.2

5, = L/1000 .
and O, (G&K) L/r
° 0 26 40 6'0 Bb 100 120 140 160 180 200

8/12/2014
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Compressive Strength Curves

* Key observations from FEA

— Strength reduced for initial imperfection and further
reduced for residual stresses

— All curves approach Euler, but are slightly below

— Partial yielding accentuated by residual stresses impact
minor axis strength more than major axis strength

— Different strength curves for major and minor axis
bending
* Additional thoughts

— Strength curves for W-shapes are function of dimensions,
and thus will vary depending on W-shape

— Other shapes (e.g., HSS, C’s, and built-up shapes) will also
have different compressive strength curves

Maximum Compressive Strength Curves
for Many Different Column Types

1.0
o
ay
05
Initial out-of- straightness:
1/1000
(L/r for
(15) (30) (45) (60) (7[5) (90) (105) | (120) = Ag992)
0 | ] | | ] ) | | | [ L1
0 0.5 10 1.5

N \/‘7 L
Bjorhovde, 1972 L E T

8/12/2014
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Column Curves for Design

+ AISC employs a single curve “fit” to experimental

and analytical data. Other codes use multiple
curves.

* Background to AISC curve:

— Bjorhovde, R. (1972), “Deterministic and Probabilistic
Approaches to the Strength of Steel Columns,” Ph.D.
Dissertation, Lehigh University, Bethlehem, PA.

—Tide, R.H.R. (2001), “A Technical Note: Derivation of
the LRFD Column Design Equations,” Engineering
Journal, AISC, Vol. 38, No. 3, 3rd Quarter, pp. 137-1309.

— Ziemian, R.D. (ed.) (2010), Guide to Stability Design

Criteria for Metal Structures, 6th Ed., John Wiley &
Sons, Inc., Hoboken, NJ.

AISC Column Curve:
. Elastic Buckling:

——— L E
~ ->471 f—
~ &\ ~..\>- N \ r O'y

Inelastic Buckling: o =0.8770
cr ) 3

05} £g 4.71 £
r O'y

o, =0658"0C,

(15) (30) | (45) (60) (7[5) (90) (105)
0 | I 1 L 1 Il ! ‘, 1
0 05 1.0

. _1 /% L
Bjorhovde, 1972 A= Ve T

‘S\Q

(L/r for
(1%0) { A992)

1.5
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Comparison of Compressive Strengths

(W14x145, A992)
1
0/0\,—\ Euler £
0.8 /
Major Axis (FEA)
AISC «
0.6
. /
Minor Axis (FEA)
04
0.2 E
FEA: 8, = L/1000 3
and o,,, (G&K) . Yy L/r
° 0 20 40 Gb 80 160 ' 1é0 140 16‘0 18:0 200
Multiple Column Curves:
Eurocode 3 : ]]’ I EIRE
e gl o= | A K
Li_‘ “ oma | 17| 5| S
ey ] e e 1P
NN — T T
NN H ool =11
gu :Q§§ 1 B =
N H o HE

U
— ¢ g 4 Ly (except as
| below)
4 Moy - et ¥
<3 E) 1 thick welds: 3. 0.5k
I .
= . by« 30
z | .
i --. b by <30
A W8 18 20 22 24 28 28 ::E' §§
23

Nen dumenscnal sknderness 1.

|
-4
&

L-section

8/12/2014
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Comparison of Compressive Strengths by FEA
(W14x145, A992)

o/o, Euler P,

08
\\ ~ Major Axis L
P
0.6
Minor Axis)\
0.4

0.2

8, = L/1000 .
and O, (G&K) L/r
’ 0 26 40 6'0 Bb 100 1é0 140 160 180 200

Multiple Column Curves:  Eurocode 3

1.1

Major Axis

1,0 —

0,9 :\\\an e 40 -y :

| \\\\h |

NN\ ,. W14x145| °
: d\\ \\ 1 y=y b
73 0,6 /&\\ \\\ 1< 100 mm P .
é 0511 M A - \\\\Qk\ 1> 100 mm :'1
3 Inor Axis
AN

03 \\

0,2 __\

01

0,0 |

0,0 0,2 04 06 08 1,0 1,2 14 16 18 20 22 24 26 28 3,0

Non-dimensional slendemess A
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Euler Buckling | MEIHODUS

INFENIENDI
LINEAS CURVAS

Manns Miaimine propeicuee. guskises,

* Leonhard Euler, 1744 and 1757 SOLUTLO

FROBLEMATIS ISOPERIMETRICI
LATISSING SENSU ACCEPTL

* Assumptions

— prismatic member
(I = constant)

— small deflections after buckling

— no bending prior to bifurcation
+ perfectly straight
* concentrically loaded

— linear elastic behavior
(E = constant)

— pinned-roller supports
(frictionless)

| | [ ]
Support Conditions
TABLE C-A-7.1
(a) (b) [ ©) (d) (e) U]
R oo
4.:“( “{i;{ﬂ 7] \TJ Igdfll /? 1/ T..
i ] \ ’*
Buckled shape of I’J | / \ / f
column is shown by i ! / : : £
dashed line . \ / 1 / !
\\ ",i f,c‘ /l rr “’f
\w 1} .‘ _/l ! “,‘
’7"7;’/?:' 77"7"1" .'ﬂz!ﬂl f,‘.’i ‘4 Firrr 7-"&7
T b o 1
Euler Buckling -.Jj
What about the others?

34



o Support Conditions (2)

‘x=L Equilibrium = Differential Equation:
// dz M X
/ M(x=0)=M = EI—+Pv—

| Solution:
\ M X
\ v(x)=C, cos(\/:x)+C sin(

wolframalpha.com
x=0 a2*y"(x)+al*y(x)=a3*x
i X =

o Support Conditions (3)

‘x=L Equilibrium = Differential Equation:
/f dZ M X
/ M(x=0)=M = EI—+Pv—

Solution:

I\\\ v(x)=C, cos(\/:x)+C sm(\f

Boundary Conditions:
v(x=0)=0, v(x=0)=0, v(x=L)=0

.

V(<x—)rmvr; x=0

m’El
(0.70L)2

8/12/2014
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Support Conditions (4)

TABLE C-A-7.1
Approximate Values of Effective

T’E

(ke/r)

Length Factor, K Elastic Buckling
@ [ ®» | @ | @ @ | o | Stress:
L ! % ‘l 1 * L \ 1
e < m a.?a e o
Buckled shape of
column is shown by
b | o rrberr .;.",»_ ,,,,, 55‘:4
Lot R ‘
Theoretical K value | LK} | 0.7 ] 10 | 10 | 20 | 20

Support Conditions (5)

TABLE C-A-7.1
Approximate Values of Effective
Length Factor, K

Notes on “effective length” KL:
* Find the Euler column?!
* Distance between inflection points (M=0)

Elastic Buckling

T’E

©(ku/r)

(a) (b} (c) (a} o)

) LA RER ; Stress:
Buckled shape of
"
oot kvawe 050 0.7L | 1L

8/12/2014
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Properties Conditions Analysis Results

It's
MASTANZ2
time!

Compute 10 modes
using elastic critical
load analysis (LBA)

I Elastic Critical Load Analysis I Status| # of Modes Calculated = 10 ----> Success: Analysis Complete
I Analysis Type: ly) i) Max. # of Modos:j 10 >|E. Apply i Cancel r

It's
Case: a b ¢ d e f MATS_TAINZ
ime!
T 1 % 7 ¢ P a——
2
TEl
Compute P =
cr ( )2
a |El
) andK=— |—
4 x 4 4 1 @4 1 ¢«
Column Theoretical Analysis % Theoretical Analysis % Sort
Case | End Restraints Per Per 'difference K K difference | Order
a fixed —fixed
b fixed—pinned
¢ fixed—free
d pinned—pinned
e fixed—free
f pinned—no rot.
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Support Conditions (6)
TABLE C-A-7.1
Approximate Values of Effective
Length Factor, K . -
e — Elastic Buckling
| g ls d |t pe & Stress:
’ AN ‘ r _ m’E
:B:::'n?\::ﬂn, i ] . ! ' - 2
s 2] (kL/r)
Thaorebical K valua I 0s | ar | 10 | 10 20 20

Notes on “effective length” KL:

» Distance between inflection points (M=0)

* Function of degree of column end-restraint

* Degree of column end-restraint can be difficult to
compute accurately in real structures (hmmm...)

D

W)

Degree of
column
end-restraint...

What’s
KL?

e

Diff. Eq./Eigenvalue FEA
Alignment charts (careful!)

Possible solutions:

8/12/2014
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Support Conditions (4)

* Degree of column end restraint accounted for
by use of “effective length” KL (i.e., o, 2 0,)

* AISC Column Curve — Final Take!

o=P,/A P,
o |Full yield \ '
y N G n_ZE L

Acceptable?
YES!!!

o
2~ >

o _=0.658"0c |0 =0.8770,

KL/r
<

Ki/r<471JE/o,
: . METHODUS
Euler Buckling | e,
* Leonhard Euler, 1744 and 1757 | st borhrue
. ‘ LEDNIIA‘:\E&I;ZULERO,
* Assumptions! i g it

— prismatic member
(I = constant)

8/12/2014
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Summary

Course introduction and stability concepts

Limit states of compression members with

focus on flexural buckling

Euler Buckling = Maximum Compressive
Strength Column Curve

Column curves in codes account for:

— full yielding

— bending due to initial imperfection (out-of-
straightness)

— partial yielding accentuated by presence of
residual stresses

— degree of end restraint

Summary(2)

* AISC and Eurocode column curves discussed

* Other ideas introduced, including
— moment amplification factor (2"-order effects)
— stiffness reduction t-factor

— Difficulty in computing K-factors...

8/12/2014
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Behavior of
Flexural Members

Ron Ziemian

Lectures 5 & 6: 14-Aug-2014

A,
|Rnaer %

Limit States of Flexural Members

* Full yielding (today)

* Instability
—Along the member length (today’s emphasis!)
* Lateral torsional buckling

—elastic
—inelastic
— At the cross section
* local buckling

8/12/2014



Full Yielding

* Tensile test

oc=P/A /_\

yield [ Perfectly Plastic (E = 0)

- E/as e

* Assume same response for compression

- cry,compression = Gy tension yield

— Neglect strain hardening (assume elastic-plastic)

=0

Full Yielding (2)

M, o
Myz=Zoy, ’
Partial Yielding
M= SUYJ = it
- E= O:I:E EI<<(EI)eIast1c':I
EI<(EI)eIast|c M
A A
\ ) \\ D e
T |=~
(El)elastlc 0y .6

8/12/2014



Full Yielding (3)

M

Full Yielding (4)

* Beam Curve —Take 1 ')M"
M Al
g o . ( L
Limit State: Full yield -
Acceptable?
Ly

* What about:

— member instability ??? (today!)

— cross section instability (local buckling) ??7?

8/12/2014



Member instability...Consider a M
simply supported beam subject to
equal and opposite end moments:

Initially, beam bends downward
resulting in only vertical deflection...

Keep increasing those M
end moments:

. ~T

-

Who will win?

8/12/2014



Compression (top) portion buckles with M
tension (bottom) portion resisting...

Twisting
movement

Lateral
movement

“Lateral torsional buckling (LTB)”

Member instability:
Lateral Torsional Buckling

l‘.'\‘l

\
[

M

8/12/2014
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Member instability:
Lateral Torsional Buckling

Lateral Torsional Buckling

* Theoretical bifurcation
— solution
— assumptions
* Undoing those assumptions
(approaching reality)
— not fully elastic, partial yielding
— alternative loading and support conditions
* Beam curves
— AISC and Eurocode
— others




Lateral Torsional Buckling (LTB)

* Bifurcation solution
* Assumptions! 3

. . M<M,
— prismatic member

(I = constant) C

— only major axis bending
occurs before buckling J

— linear elastic behavior
(E = constant)

S

— uniform moment

distribution ]
— braced at the ends v,

(frictionless)

LTB (2)

* Before obtaining the theoretical solution for M,
let’s do a “parametric” analysis...

* Terms expected in the solution?

M=M,
— Minor axis buckling: £/, and L,
— Torsion )
* St. Venant: GJand L, M:I\ffn
* Warping: EC,,and L, [
—Others? 7 (of course!) N5

* What's their impact? material: ET,6T = M T
Terms in numerator«—Section: | T,JT,c T = M T
y w e

Term in denominator “—Unbraced length: Lb T = Me J,

[

8/12/2014



Walit...

* Minor axis buckling, | recall from
Sessions 1 and 2

2
TT°El
PE = 2
L
* But, | need a quick refresher on

ian!
torsion: St. Venant ?

Warping ??7?7?

St. Venant Torsion

Consider a portion of the
member of length dx
subject to a torque T.
If we consider only St.
Venant (uniform) torsion,
the rotation per unit
length is:

do. T

dx @GJ

8/12/2014



St. Venant Torsion (2) Open Shape:
s ]
Closed Shape: h
=2 3|
4A% bt’ |
[RLLEN N 3
U 3 |
U =median H
_ circumference M
A =area enclosed
by U / 11
_ — X
Circular Hollow Shape: e
t=0.25", A=3.84in? ” ”
! W8x13 (t=0.237, t,=0.26"):
D = Af(xt) = 4.90" P P ‘3 B4 in? )
n2/a\2 .
=4(7[D _4) t=2295|n4 J'=0.0871|n4
D

Factor of 264...closed sections rule in torsion!

Warping Torsion (your new best friend!)

Top View

—C

Notice that this torque T
also causes the flanges to
bend in opposite
directions. This “cross
flange” bending can also
resist the applied torque.

8/12/2014



Warping Torsion (2)
Relationship to rotation?

h

T=2V —=Vnh
f f
2 dM
with Vf =—1
dx
d*w
M =—El
f T dx?
dw=ﬁ de
2 X

Warping Torsion (3)
Relationship to rotation?

T=th
d3
r=|-g N25% |,
12 dx?
d’6
T =—EC 3"
Y dx

8/12/2014
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The twist on torsion
St. Venant (uniform):

d6.
T., =GJ )
Warping(non-uniform):
3
T =—EC X
" Y dx’
Total resisting torque:
T=TSV +TW
d d’0
T=G/]——-EC X
% w dx3
Elastic lateral torsional M

buckling moment, M,

M

Twisting
movement

Lateral
movement

=277

M

11



Elastic lateral torsional M
buckling moment, M,

yv(x)

Twisting
movement

Lateral
movement

Z,w(x)

Me

m, [ ') Section View

X 6
( K r/
zw(x) vy
z fMy' M
6 issmalll \j\x\
g M

M_ =M cos(6 )=M, 4
My, =M _sin(60 )=M 6

M. =M @6

y e x

8/12/2014
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Top View . Pa:%
;T ?M
| o e
M

o is smalll
M =M_ cos(a)~M,

A ——

r=m ™
¢ dx
Summary
Equilibrium: w, e
“applied” torque “resisting” torque (
f | d ' d@ | dge\ Zw(x)
T=M _W —GJ X _FC ;
¢ dx dx w an
dx S dx dx dx w dX3
d? d’e ‘9
M, =2 =G —*—EC, —.
© dx b "

8/12/2014
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Summary (2)
M, y.v(x)
d? d’6 d'o ( Z()
M, VZ=GJ L _FC —X
dx dx dx
d’ d’ M
M =m6 =—F ¥ o C¥W__eg
oot Ty x> E,
: d’6 d'6
— e 9 — GJ 2x _EC 4X
Iy' dx u dX
Summary (3)
Solve differential equation m, [P

d'o d’6 M’ (

EC —X—G/—X——=20 =0 .
dx dx” El, |/ b
and apply boundary conditions

6 (x=0)=0, 6 (x=L)=0
6 (x=0)=0, 0 (x=L)=0

2
TEl 2
M5={ : "J(Gj+ﬂTECwJ
Lb Lb

Results in

8/12/2014

14



Summary (4)
This sort of makes sense! m. [yrve)
e JL
X
2 g
5 T Ely 7;'2 ( &<
M? = GJ+—EC T
e LZ LZ w
b b
L T J L T
Top flange in Bottom flange in tension resisting this minor
compression trying axis buckling by creating a resisting torque,
to produce minor which includes both St. Venant and Warping
axis buckling components

which simplifies to:

2
Also note that our M = E El GJ+ mE | C
earlier parametric e L y L y w
study was spot on! b b

* Elastic lateral-torsional buckling

2
m ==L E/GJ+(”—E] Ic
e I y L y w

b

b

* Beam Curve — Take 2
M

Full yield \
M y

Acceptable?

* What about those assumptions?

8/12/2014
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M

Full yield \
M ull yie

s
MASTANZ2

timel Acceptable? ,
— i, b
W24x68 (E=29,000, F, = 50, Z=177, include warping)

-m

300

Lateral Torsion Buckling

* Theoretical bifurcation
— solution
— assumptions

("« Undoing those assumptions
(approaching reality)
— not fully elastic, partial yielding

\ — alternative loading and support conditions )

* Beam curves
— AISC
— others

8/12/2014
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Lateral Torsional Buckling (LTB)

* Bifurcation solution
* Assumptions!

— prismatic member

(I = constant) C
— only major axis bending w,
occurs before buckling

— linear elastic behavior
(E = constant)

. M=M
— uniform moment
distribution (
— braced at the ends Q

(frictionless)

At the onset of loading, some

minor axis bending and twist M
can be produced by factors,
such as initial member out-of-
straightness and/or 0
unintended eccentricities

M

8/12/2014
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Top View:

Response including initial
M. : member out-of-straightness

Elastic instability occurs as applied
moment M approaches M,

Top View: Response including initial
M member out-of-straightness

M

d,(x)

Mg
o(x)=
0 (x)+
J,,(x)

W24x68 (E=29,000, F, = 50)
L =100 and &, = L/1000 = 0.10 LBA vs. GNIA

8/12/2014

18



Lateral Torsional Buckling (LTB)

* Bifurcation solution

* Assumptions!

. . M<M,
— prismatic member

(I = constant) (
— only major axis bending '
occurs before buckling ﬁ

— linear elastic behavior
(E = constant)

-3

— uniform moment J
distribution

— braced at the ends &
(frictionless)

Partial Yielding

* As loading is applied,
cross section may begin
to yield due to

— major axis bending

— minor axis bending
— torsion (warping stresses)

* Yielding is accentuated by presence of residual
stresses

* Yielding results in loss of stiffness, which may
result inelastic lateral torsional buckling.

8/12/2014
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Occur in rolled wide flange shapes because locations with high surface
area (e.g., flange tips) cool well before locations with smaller surface
area (flange-to-web intersections)

Partial Yielding (2) M
A A
N e
M,=Za, % ‘A
Partial Yielding - -
elding P
£<0- 1 ™E
Mj:So’i N f ‘
S EI<(EI)eIast‘ic+cry
Mr AN————— M/S = o,
N % M. = 5(0,-0,.s)
l\ Mr.:‘?,S(J'y:[i’)AAy
(E I)elas"cic +":‘IY N 6

8/12/2014
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Partial Yielding (3)

M 1 ;
| : .
Elastic Response Elastic LTB
Mc=71————— —\.— ———————————————— =2
Inelastic LTB
____________________ =>

Inelastic instability occurs well below M

Wait! Where’s M? Partial Yielding (4)

Iy 2 possibilities...

|
< 1. M, (long L,)
Elastic LTB
—___.J

Initial
yielding

1 0

8/12/2014
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* Beam Curve — Take 3

\

Acceptable?

|
|
I
|
|
|
|
|
|
|
|
|
1

|

|

|

|

l
1. Full L 2.Inelastic (3. Elastic
yield LTB LTB

* Where did L, and L, come from?
* What about those assumptions?

1. FU”
yield | 2. Inelasti

LTB
Accepta bile?

|
|
1
|
|
|
|
|

It's
MASTANZ2

timel

me——

W24x68 (E=29,000, F, = 50, include warping and )

300

8/12/2014
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Flexural Strengths per FEA

/
o0 W14x53 (A992)

* Beam Curve —Take 3

“

|
|
Acceptable? |
|
|

1. Full Lp 2. Inelastic 'Lr 3. Elastic
yield LTB LTB

* Where did L, and L, come from? (done!)

* What about those assumptions? (hmmm...)

23



Lateral Torsional Buckling (LTB)

. . . M <M,
* Bifurcation solution
* Assumptions!
. . M<M,
— prismatic member
(I = constant) C
— only major axis bending
occurs before buckling J M=M,
— linear elastic behavior
(E = constant)
M =M,
[¥

— uniform moment
distribution ]
— braced at the ends &
(frictionless)

Uniform Moment Distribution

* Provides for “simplest” differential equation and
corresponding solution to the elastic LTB
problem.

* Most conservative case
— M(x) = constant
— maximum compressive stress occurs along entire

unbraced length

* In place of formulating and solving for other
moment M(x) distributions, results can be
adequately approximated by scaling the uniform
moment in/elastic LTB solution.

8/12/2014
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Uniform Moment

Moment gradient

Only over a
small portior

As expected, larger
LTB capacity!
MCr > Me

M_=CM. with C,>1.0

Uniform Moment

Moment gradient

As expected,

It's
MASTANZ
timel

‘ e

larger LTB
M >M capacity!
cr e

M_=C,M. with C,>1.0

W24x68 (E=29,000, F, = 50)

L=300 LBA (C,=7???

8/12/2014
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Uniform Moment Moment gradient

oo
& ‘\-)‘\a%‘a |
P
D
o™

. !
Only over a { /

small portion

of L, As expected, even

larger LTB capacity!

’ M >M
m="lee+ % ¢ a” e _
L\ e M_=CM with C,>1.0

Uniform Moment Moment gradient
M

As expected, even

larger LTB capacity!
MCT > ME

M_=C,M, with C, >1.0

It's
W24x68 (E=29,000, F, = 50)
timel _ !

-4 : L=300,k=+1 LBA (C,=???

26
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LTB Moment Gradient Factor, C,

* In/elastic LTB M, can be adequately approximated
by scaling the uniform moment in/elastic LTB

solution c =1
M =CM*» <M
n b n p
* Under no conditions can M, exceed M,

regardless of moment gradient
* Many possibilities for C,, AISC uses
12.5m_ |
Cb =
25\M_|+3

+3|M,,

o/

Mab/4|+4"‘”tb/z

* See 2010 AISC EJ paper by Wong and Driver!

Moment Gradient Factor, C,

—O—CAN/CSA-S16-01 hd

X &
—5—AISC 2005 ) &
—#—Kirby and Nethercot e , ‘; i ; k
- B
—6—BS5950-1 2o /}/ Q T o)
—%—AS4100 b f @ m\g
~——Sema et al 2.4 / . -
—

X Eurocode 3
——Proposed ! 2.2

cb # Numerical L=8 m (Serna et al.)
B Numencal L=16 m (Serna et al.) |

A Numerical (Suryoatmono & Ho)

@® Numerical (Nethercot and Trahair)

© Numerical (Clark and Hill)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

2010 AISC EJ paper by Wong and Driver K
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* Beam Curve — Final Take!

|
|
|
|
|
|
|
|
|
|
|
|
|

1. Full Lp 2. Inelastic (3. Elastic
yield LTB LTB

Lateral Torsional Buckling (LTB)

* Bifurcation solution

* Assumptions!

— prismatic member
(I = constant)

— only major axis bending
occurs before buckling

— linear elastic behavior
(E = constant)

— uniform moment
distribution (
A\,

— braced at the ends
(frictionless)

8/12/2014
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Providing Additional Brace Points |P

* Not vertical supports!

* Braces should restrain
— twist
— lateral movement

* All rules apply with L,
reduced to distance
between brace points

* Must confirm strength
within each unbraced
span

* Design of braces
(stiffness and strength)

L,cl=mM" L,C =M
Mi<oM? M <oM?

—" W24x68
L = 300"

M = S~ Much larger! M =
\‘\.

W24x68 (E=29,000, F, = 50)
-4 : L =300 LBA

It's
MASTANZ2
Ti! N

8/12/2014
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Lb =L L/vl‘/ 2
— W24x68 | b=
L = 40’-0”
c =227 =Cb:\/f’v‘” +(T_E] W C =167
L, =40'-0" L, =20'-0"
M, =319 kip-ft < wuchiargen - M_ =677 kip-ft

Inflection point at mid-span FEA Results

End View

flection point and brace point at mid-span
End View

Top View

8/12/2014
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Inflection point
at mid-span

Inflection point is not a brace point!

Why does FEA give a significantly higher M_, for
I.P. and B.P. case? pg*%¢ =677 vs. M =911

Lateral Torsional Buckling (LTB)

* Bifurcation solution

* Assumptions!

— prismatic member
(I = constant)

8/12/2014
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Lateral Torsional Buckling

* Theoretical bifurcation
— solution
— assumptions
* Undoing those assumptions
(approaching reality)
— not fully elastic, partial yielding
— alternative loading and support conditions
* Behavior

— For shorter unbraced lengths (full yielding)
— For longer unbraced lengths (elastic LTB)
— For intermediate unbraced lengths (inelastic LTB)

m— A|SC doubly-symmetric

Comparison of Flexural | —scsmeysymmenic

Strengths by Standard oo

M / M \‘"\\ EC3 equivalent welded
n p “~
0.8 EC3 rolled curve 2
EC3 general welded
0.6
0.4

02+ W27x84 (F,=50 ksi)

, uniform moment Ly/L,

0 1 2 3 4 5

8/12/2014
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Comparison of Flexural Strengths

800 FEA: §, = /1000
N ¢, = 1/1000
LN O (GEK)

Summary

Limit states of flexural members with focus on
full yielding and lateral torsional buckling

LTB Theory -to- Flexural Strength Beam Curve

* Beam curve accounts for:
— full yielding

— bending due to initial imperfection (out-of-
straightness)

— partial yielding accentuated by presence of
residual stresses

— moment gradient and brace points

AISC, Eurocode, and other standards
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Beam-columns
and
Structural Systems

Ron Ziemian
Lecture 7: 14-Aug-2014

A,
|Rnaer %

UFOP

Basis for Design of Systems

* Elastic Analysis (AISC, AS4100, Eurocode 3, ...)
— Allows for no force redistribution due to yielding

— Strength (stability) of system is indirectly assessed
by assessing strength of its components

— In other words, strength of system is assured by
ensuring adequate strength of its components

* Inelastic Analysis (AISC and AS4100)

— Force redistribution due to yielding is accounted for
in the analysis

— System strength (stability) can be assessed directly
by the analysis

8/12/2014



Basis for Design of Systems

 Elastic Analysis (AISC, AS4100, Eurocode 3)
— Allows for no force redistribution due to yielding

— Strength (stability) of system is indirectly assessed
by assessing strength of its components

— In other words, strength of system is assured by
ensuring adequate strength of its components

Elastic __ 1t
Y e Stability
Analysis $3 v Column (3 & 4)
Required . Design  Beams (5 & 6)
Strength Strength | Beam-columns (7)

Limit States of Beam-Columns

* Full yielding (today!)
* |Instability
—Along the member length
* Lateral-torsional buckling (Lectures 5 and 6)
* Flexural buckling (Lectures 3 and 4)
* Torsional-flexural buckling (today!)
— At the cross section
* local buckling

8/12/2014
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From Section Strength to Member Strength:

Development of AISC Interaction Equation for
beam-columns (sort of!)

Limit the strength to initial yield:
P M

P M o
o _t—+—=<0 = —+ ol <1.0
“ A S / c, Ao, SO,

y

Important Note!

No factors of safety (¢’s or Q’s) are
included in tonight’s lecture...learn
behavior based on nominal strengths

From Section Strength to Member Strength:
Development of ALSC Interaction Equation for
beam-columns (sort of!)
Limit the strength to initial yield:
M o P M
O +—+—<0 = = 4 + <1.0
“ A S / o Ao So
y Y y
Cross section strength /
(full yield):
P M
Psoar Bi8M 1o
P P 9M
y y p
P
—<0.2 li+MSI.0
Py 2 Py M




From Section Strength to Member Strength:

Development of AISC Interaction Equation for
beam-columns (sort of!)

Limit the strength to initial yield:

M o
o t+t—+—<0 = —=+ + <1.0
res A S y

y y y
Cross section strength
(fU“ \/Ield) Member Strength:
P M

Psoos Pi8M 1o PL8M 10
P P 9M . P 9M

y y P ~ n n

P 1P M

— <02 lﬂ+ﬂg1.o ——+—<1.0
Py 2 Py Mp 2P M

Beam-Column Strengths

* Cross section strength (small L/r)
— full yield
— local buckling

» Elastic member strength (large L/r)

— compressive (P) : flexural buckling (or torsional or
flexural torsional)

— flexural (M, ;. ): lateral torsional buckling
— torsional-flexural buckling (P + M__...)

* |nelastic member strength (intermediate L/r)

— same possible failure modes as elastic, except
reduced due to partial yielding accentuated by

presence of initial imperfections (geometric and
residual stresses)

8/12/2014



Full Yielding

Py=Aoc, M (Column)
Partial ’:-'-\-E EZ Oj H
Yielding Nl ﬁl—(v)

; EA<<(EA)eIast1c )
L
P - Yk
EA<(EA)eIast‘ic
I Ores *+ P/A =0,
(EA)eIasﬁc
Full Yielding (Beam) ]ﬁloh ;
N 5
E=0ﬁh : '
M, \‘iﬂ ’ Lo

M=Zo, W J/ EI=0 Y
Partial Yielding \

-0, ~
B ' E=0..

M,=Sg ¢ _/Ik b B '
R SN 3 E|<<(E|)elast|:a

jﬂr ______ EI<(EI)daﬂw Y

Ores * M/S = 0, M
A A
KI ______________ \ ______ | \igme
‘A
(El)ehsnc *0y >E)

8/12/2014



Full Yielding (Beam-Column)
MM =za

elastlc %

EI<(EI)

P M
+—+—=0
S

(E I)elas'tic +ICY

¥

El<<(E I)

elastlc

Full Yielding (Beam-Column)
Mim.=Zo

EI<(EI)

\ elastlc 9
P M

o _+—+—=0
I ‘ m —

(E l)elasnc +’0Y

Note: Distance
below M, is
function of P

M p

A
A 4\6
=

Vm

8/12/2014



Full Yielding (Beam-Column)
-0, P=P

Full Yielding (Beam-Column)

P/P
' P s Mminor'

1.0

0.2

8/12/2014



Full Yielding (Beam-Column)
P/P1y Compression plus

biaxial bending!

Beam-Column Strengths

* Cross section strength (small L/r)
— full yield
— local buckling

* Elastic member strength (large L/r)

— compressive (P) : flexural buckling (or torsional or
flexural torsional)

— flexural (M, ;) lateral torsional buckling
— torsional-flexural buckling (P + M _ .. )
* Inelastic member strength (intermediate L/r)

— same possible failure modes as elastic, except
reduced due to partial yielding accentuated by
presence of initial imperfections (geometric and
residual stresses)

8/12/2014



P20and M=0 Elastic Member Strength u
(Session 1) (P+M

2 2
p=nEl I

P=0and M#0
(Session 3) P ]
2 -8
M, = \/EI GJ+(JTE} ic, 0o

major)

b

P#0and M # 0 (Beam-Column) ' \J

For a given M, P_, is smallest root of:

P—P)P—-P)=AM?/I  with:
(E cr)(t cr) /P !p=/x+[y

P = AG)+mEC,) /1’

P/Pe Elastic Member Strength N
PN (P+M ‘3,

major)
M

H /

_ 2
e

0.6 P =0.877P,

AISC Eq. H1-2 <«— W14x132, L, =60 ft
P M
0.4 — -
PH(IS 05— ] [M ] =1.0 W24x76, L, =30 ft
P 8 Note L, > L,
0.2 - AISC E 9
Eq H1-1 1P
2P
0" | S | MM
0 0.2 0.4 0.6 0.8 1 M/M,

8/12/2014



0.6 + W14x145 (L, =300in, E=29,000, F, =50, include
warping; first compute P, and M; use non-
04 | Broportional loading w/ M first and then P)
) \ \
PE = A |‘ ‘\\k - ,GNA ‘ F / |_j‘|;
0.2 M, = 0.2
I o:
0 T - - - 2
0 0.2 0.4 0.6 0.8 , WM,

MASTANZ

fime! .Zr
b —<=m

Beam-Column Strengths

* Cross section strength (small L/r)
— full yield
— local buckling

» Elastic member strength (large L/r)

— compressive (P) : flexural buckling (or torsional or
flexural torsional)

— flexural (M, ;. ): lateral torsional buckling
— torsional-flexural buckling (P + M__._)

* Inelastic member strength (intermediate L/r)

— same possible failure modes as elastic, except
reduced due to partial yielding accentuated by
presence of initial imperfections (geometric and
residual stresses)

8/12/2014
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Inelastic Member
Strength (Beam-Column)

1.07

_ 087 -

W14x53 < .
L=15"-0" = 0.67

0,=50ksi " :

E 04 -

0.2 «

d, = L/1000,
$,=0.001, and

Investigate many
+ combinations of
* P. M,, and M,

04 06 038 1.0
=M,/M

Inelastic Member
Strength

8/12/2014
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. _ P
Inelastic Member 1

Strength L W14x53
P/P % . — L=15"-0"
0.6 — - o,=50ksi
y = ‘ " Fea:
. 8,20.001L
44+ | ¢,=0.001
G,.s=0.30,

. : . M,

M,/My = 023

0 0.2 0.4 0.6 0.8 My/ M,

3D Beam-Column Behavior  Compression plus
P/%\o]o biaxial bending!

W14x145 (L, =300in, E=29,000, F, =50, include
warping and d_; first compute Pyand M/’s; use
non-proportional loading w/ M'’s first and then P)

M, = 13000 0.1

px

M, = 6650 0.4
M

V It's L
MASTANZ
/M5 1.00 08

timel M/M

p.X

8/12/2014
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Analysis Essentials to obtain Required Strengths

P P 8M
For —=20.2, —+—-<1.0

P P SM

Effects that may impact stability of system
and its components (AISC, Ch C— Design for
Stability):

» flexural, shear, axial deformations

» second-order effects (both P-A and P-0 )

* geometric imperfections

 stiffness reductions due to inelasticity

Analysis Essentials to obtain Required Strengths

For 2202, —+5M <10
P P 9M

Effects that may impact stability of system and its
components (AISC, Ch C — Design for Stability):
» flexural, shear, axial deformations

[ FL
") \e _ FL
4EI A 12E] " GAS
1\\\/' -
AH — 1 1A
F

13



Analysis Essentials to obtain Required Strengths

p
For =202, —+2% <10
P P 9M

Effects that may impact stability of system and its
components (AISC, Ch C— Design for Stability):
* second-order effects (both P-A and P-9 )

A
Hl lP
ﬂ(

ase=HL+PA

P g
y @) the next war.

IREEHOGEER BSLishten ttp| o
M I'm already against

bl QUESTION
REALITY

8/12/2014
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Including Second-Order Effects

* Analysis options for :

— Rigorous analysis (recommended!)
* loads applied incrementally/iteratively
» geometric stiffness matrix or use of stability functions
* updating geometry after each increment of loading
— Approximate amplification factors
* M=B,M,, +B,M, (AISC)
* Eurocode has similar equations...
* Approximate amplifiers can be useful indicators
of the significance of

— PJ effects
— PA effects

Analysis Essentials to obtain Required Strengths

For 2202, —+5M <10
P P 9M

Effects that may impact stability of system and its
components (AISC, Ch C — Design for Stability):
» geometric imperfections

Member out-of- Frame out-of-plumb:
straightness: Ay —
d |

(Sessions 1 & 3)

8/12/2014
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Analysis Essentials to obtain Required Strengths

P P 8M
For 2202, —+2M <10
P P 9M

Effects that may impact stability of system and its
components (AISC, Ch C — Design for Stability):
» stiffness reductions due to inelasticity

Partial yielding accentuated by residual stresses:
A=Z

M1

q’ ~—
Y ' S
E1<<(E D) g

Analysis Essentials to obtain Required Strengths

For 2202, £48M o9
F)ﬂ PI".' 9 Mn

Effects that may impact stability of system
and its components (AISC, Ch C— Design for
Stability):

* flexural, shear, axial deformations

* second-order effects (both P-A and P-9

* geometric imperfections

» stiffness reductions due to inelasticity

8/12/2014
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Methods for Designing for Stability

* Any rational method that considers all of the
effects

* Methods appearing in AISC Specification

— Based on 2"%-order Elastic Analysis

» Effective Length or Buckling Length Method
— Established in early 1960’s

* Direct Analysis Method
— Established in AISC in 2005

— Based on 2"%-order Inelastic Analysis
* Appendix 1

System Strength (Stability) — Frame Example

E = 29,000 ksi, F, = 50 ksi

LC1=1.2D+1.6L
D=1.347KMft L=1.347 Kkt

EREANEREORCERNAREEENNEANE R
W24x55 B2-1 W30x99 B2-2
C2-1 C2-2 C2-3| -
W6x9 W8x40 wsx24| @

D=2887 kft L=2887 Kkt -
EREAOENE RUCWERESNEEROTREEER |
W30x99 B1-1 W36x160 B1-2
C1-1 C1-2 C1-3
W14x90 W14x90 W14x90 C,

Member orientation: 8

Beams: Major axis bending

Column: Minor axis bending R

/AN A R

‘ 20-0" : 48'-0" :

8/12/2014
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Predicting “actual” behavior with elastic analysis:

1.6
Applied
Load
Ratio 42|

~ Elastic Buckling]
(Critical load))

T

2"d_Order Elastic, /
E=29,000 ksi, A, = -H/500

2"d-Order Inelastic, /
per AISC Appendix 1
includes,

It's 0.9E, 0.9Fy
MASTANZ Ao =-H/500 ™

0.8

A -

. 1 % of area
time! 0 Jiei
! yielded and
— Gres (G&K) ™ hinges at
A A A =0.86 N

L 1 1 L 2

o]
-20 -18 -16

-12

-14 10 -8 6 -4 -2 0
Lateral Displacement, A, (in)
From: Gmail <chenwiltred @gmail.com>
Subject: Fwd: Second order analysis and design of flower dome and cloud forest tories - Structural Excellent Award

2013

Date: May 13, 2014 1:41:44 PM EDT

To: Guo-Qiang Li <gqli@tongji.edu.cn>, Bjorhovde Reidar <rbj@bjorhovde.com>, Galambos Ted <galam001@umn.edu>, ziemian Ron
<ziemian @bucknell.edu>, Zandonini Riccardo <Riccardo.Zandonini@ing.unitn.it>, Bazant Zdenek <z-bazant@northwestern.edu>, Jerry
lu <iu.jerryu@gmail.com>

The two structures they designed are beautiful and nature with advanced analysis.
W.F.Chen
Begin forwarded message

From: “Liew Jat Yuen, Richard” >
Date: May 11, 2014 at 11:31:21 PM PDT

Subject: Second order analysis and design of flower dome and cloud forest conservatories - Structural Excellent Award
2013

Dear Prof Chen

To share with you that Prof S L Chan and | have design this unusual structures in Singapore using the direct second order analysis theory.

The use of effective length method in this project is not valid and we adopt the direct second order method to check the design of this
awarded winning project.

We have been using this new design approach to design several iconic and unusual structures in Singapere and Hong Kong.

With regardg

Richard Liew

Professor. National University of Singapore

D of Civil & E ental Engi g

8/12/2014
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Gardens b; the B;y in S!qgapo}e ZWelcome You.

4

Summary

* Basis for Design of Systems

— Elastic Analysis

* strength of system is assured by ensuring adequate
strength of its components

— Inelastic Analysis

*» System strength (stability) can be assessed directly by the
analysis

* Stability of members
— Compression (Lectures 3 & 4)
— Flexural (Lectures 5 & 6)

— Combined compression and flexure (Lecture 7)
* Behavior of beam-columns (today!)
* Behavior of Systems (only a small amount, today!)

8/12/2014
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Summary (2)

* Behavior of Beam-Columns
— full yield (interaction surface)
— member instability

* from flexural buckling -to- lateral torsional buckling,
including torsional-flexural buckling

* Factors impacting system stability
— flexural, shear, axial deformations
— second-order effects

* rigorous analysis vs. amplification factors

— geometric imperfections
— stiffness reductions due to inelasticity

Summary (3)

* Design Systems for Stability

— elastic analysis vs. inelastic analysis

* Elastic analysis
— Effective or buckling length method (KL > L)
— Direct analysis method (KL = L)
— Discussion on comparison

* Finally, if you still do not have confidence that
your structural system is stable, then you can
always...

8/12/2014
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Applying Nonlinear Analysis to
Learn the Fundamentals of
Structural Stability

Ron Ziemian

13-Aug-2014 to 14-Aug-2014

8/12/2014
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Course QOverview

 Employ a virtual laboratory to learn basic
concepts of structural stability
« Seven 90-minute lectures

— Lectures 1 & 2 Introduction to Nonlinear
Analysis

— Lectures 3 & 4 Behavior of Compression
Members

— Lectures 5 & 6 Behavior of Flexural Members
— Lecture 7 Beam-columns and Structural Systems

« Software employed is MASTANZ which is
available at no cost at www.mastan2.com

%, Better designs will come from a

")) better understanding of behavior
" 6. Winter, W. McGuire, T. Pekoz, A. Nilson,
J. Abel, P. Gergely, R. White, T. Ingrafea

U = zExperiences
=] |

-
M American
Iron and Steel BRABEr 880
Wl Institute +

Obrigado !

8/12/2014
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