

UFOP, Departamento de Engenharia Civil 8th May 2014

Nonlinear Multi-Scale Finite Element Modeling of the Progressive Collapse of Reinforced Concrete Structures

Lecture 7: Multilayered beam

Péter Z. Berke

Visiting Professor Departamento de Engenharia Metalúrgica e de Materiais Universidade Federal do Ceará, Bloco 729 Scientific Collaborator Building, Architecture and Town Planning Dept. (BATir) Université Libre de Bruxelles (ULB), Brussels, Belgium

From material to structural behavior 2

Structure

Constitutive relationship for RC? 3

Constitutive relationship for composite section? 4

rigid rotation

$$\mathbf{q}_{local}^{T} = \left\{ \bar{u} \quad \bar{\theta}_{1} \quad \bar{\theta}_{2} \right\} \text{ naturally decoupled from}$$
$$u_{local} = \frac{x}{l} \bar{u}$$
$$w_{local} = x \left(1 - \frac{x}{l} \right)^{2} \bar{\theta}_{1} + \frac{x^{2}}{l} \left(\frac{x}{l} - 1 \right) \bar{\theta}_{2}$$
$$\begin{bmatrix} \bar{\varepsilon} \\ \chi \end{bmatrix} = \begin{bmatrix} \frac{\partial u_{local}}{\partial x} \\ \frac{\partial^{2} w_{local}}{\partial x^{2}} \end{bmatrix}$$

Axial strain at a given beam depth (Bernoulli)

$$\varepsilon(x,z) = \frac{\partial u_{local}}{\partial x} - \chi z = \frac{\bar{u}}{l} - z \left[\left(6\frac{x}{l^2} - \frac{4}{l} \right) \bar{\theta}_1 + \left(6\frac{x}{l^2} - \frac{2}{l} \right) \bar{\theta}_2 \right]$$

Discretize the composite beam cross-section into layers of finite thickness!

Constitutive relationship for composite section? 5

Axial strain at a given beam depth (Bernoulli)

$$\varepsilon(x,z) = \frac{\partial u_{local}}{\partial x} - \chi z = \frac{\bar{u}}{l} - z \left[\left(6\frac{x}{l^2} - \frac{4}{l} \right) \bar{\theta}_1 + \left(6\frac{x}{l^2} - \frac{2}{l} \right) \bar{\theta}_2 \right]$$

Hyp #1: Perfect adherence between concrete and steel

Constitutive relationship for composite section? 6

Axial strain at a given beam depth (Bernoulli)

$$\varepsilon(x,z) = \frac{\partial u_{local}}{\partial x} - \chi z = \frac{\bar{u}}{l} - z \left[\left(6\frac{x}{l^2} - \frac{4}{l} \right) \bar{\theta}_1 + \left(6\frac{x}{l^2} - \frac{2}{l} \right) \bar{\theta}_2 \right]$$

Weighted average stress of a layer

$$\sigma_{i,total} = \frac{\Omega_i - \Omega_{i,steel}}{\Omega_i} \sigma_{i,conc} + \frac{\Omega_{i,steel}}{\Omega_i} \sigma_{i,steel}$$

Generalized stresses at Gauss points

$$N = \int_{a_{cor}} \sigma \, da \qquad \longrightarrow \qquad N = \sum_{i} \sigma_{i, total} \Omega_i$$

$$M = -\int_{a_{cor}} \sigma z \, da \longrightarrow M = \sum_{i} - \bar{z}_i \sigma_{i,total} \Omega_i$$

$$\bar{N} = \int_{v_{cor}} \frac{\sigma}{l} dv = \int_{l} \frac{N}{l} dl$$

$$\bar{M}_{1} = -\int_{v_{cor}} \sigma z \left(6\frac{x}{l^{2}} - \frac{4}{l} \right) dv = \int_{l} M \left(6\frac{x}{l^{2}} - \frac{4}{l} \right) dl$$

$$\bar{M}_{2} = -\int_{v_{cor}} \sigma z \left(6\frac{x}{l^{2}} - \frac{2}{l} \right) dv = \int_{l} M \left(6\frac{x}{l^{2}} - \frac{2}{l} \right) dl$$

Constitutive relationship obtained computationally!

Structural stiffness matrix 7

$$\mathbf{K}_{global} = \mathbf{T}^{T} \underbrace{\mathbf{K}_{local}}_{I_{f}} \mathbf{T} + \overline{N} \frac{\mathbf{z} \mathbf{z}^{T}}{l_{f}} + (\overline{M}_{1} + \overline{M}_{2}) \frac{1}{l_{f}^{2}} \left(\mathbf{r} \mathbf{z}^{T} + \mathbf{z} \mathbf{r}^{T} \right)$$
Contribution of the stress variation
Other terms: contribution of the change in the geometry

▲ Z

 $\mathbf{K}_{local} = \int_{l} \mathbf{B}^{T} \mathbf{H} \mathbf{B} \, dl$

sectional stiffness

$$\mathbf{H} = \frac{\partial \mathbf{\Sigma}^{gen}}{\partial \mathbf{E}^{gen}} = \begin{bmatrix} \sum_{i} H_{i} \Omega_{i} & -\sum_{i} H_{i} \bar{z}_{i} \Omega_{i} \\ -\sum_{i} H_{i} \bar{z}_{i} \Omega_{i} & -\sum_{i} H_{i} \bar{z}_{i}^{2} \Omega_{i} \end{bmatrix} \text{ with } \begin{cases} N = \sum_{i} \sigma_{i, total} \Omega_{i} \\ M = \sum_{i} - \bar{z}_{i} \sigma_{i, total} \Omega_{i} \end{cases} \text{ and } \mathbf{E}^{gen} = \begin{bmatrix} \bar{\varepsilon} \\ \chi \end{bmatrix}$$

material stiffness of a layer

3

At each layer of the cross section

 $\sigma^{(k)} = \sigma_c + \mathbf{E} \left(\Delta \epsilon - \Delta \epsilon_p^{(k)} \right)$

 $\sigma_{tr} = \sigma_c + E \Delta \epsilon$ trial stress - elastic increment assumption

if
$$f_p\left(\sigma_{tr}, {}^t\kappa\right) > 0$$

 $\sigma^{(k)} = \sigma_{tr} - E\Delta\epsilon_p^{(k)}$
 $\frac{\sigma^{(k)} - \sigma_{tr}}{E} + \Delta\epsilon_p^{(k)} = 0$

solve using Newton-Raphson

$$\begin{cases} \frac{\sigma^{(k)} - \sigma_{tr}}{\mathbf{E}} + \Delta \epsilon_p^{(k)} = 0\\ f(\sigma^{(k)}, \kappa^{(k)}) = 0 \end{cases}$$

$$\begin{cases} \sigma^{(k+1)} \\ \kappa^{(k+1)} \end{cases} = \begin{cases} \sigma^{(k)} \\ \kappa^{(k)} \end{cases} - [\mathbf{J}_p(\sigma^{(k)}, \kappa^{(k)})]^{-1} \begin{cases} R^{(k)} \\ R^{(k)} \end{cases}$$
 with $\mathbf{J}_p(\sigma^{(k)}, \kappa^{(k)}) = \begin{bmatrix} \frac{\partial R_{\epsilon}}{\partial \sigma} & \frac{\partial R_{\epsilon}}{\partial \kappa} \\ \frac{\partial R_f}{\partial \sigma} & \frac{\partial R_f}{\partial \kappa} \end{bmatrix}$

Multilayered beam - summary 9

Integration point level

Solution - Return Mapping (1D case) 10

At each Gauss point

 $\sigma^{(k)} = \sigma_c + \mathbf{E} \left(\Delta \epsilon - \Delta \epsilon_p^{(k)} \right)$

 $\sigma_{tr} = \sigma_c + E \Delta \epsilon$ trial stress - elastic increment assumption

if
$$f_p\left(\sigma_{tr}, {}^t\kappa\right) > 0$$

 $\sigma^{(k)} = \sigma_{tr} - E\Delta\epsilon_p^{(k)}$
 $\frac{\sigma^{(k)} - \sigma_{tr}}{E} + \Delta\epsilon_p^{(k)} = 0$

solve using Newton-Raphson

$$\begin{cases} \frac{\sigma^{(k)} - \sigma_{tr}}{\mathbf{E}} + \Delta \epsilon_p^{(k)} = 0\\ f(\sigma^{(k)}, \kappa^{(k)}) = 0 \end{cases}$$

$$\begin{cases} \sigma^{(k+1)} \\ \kappa^{(k+1)} \end{cases} = \begin{cases} \sigma^{(k)} \\ \kappa^{(k)} \end{cases} - [\mathbf{J}_p(\sigma^{(k)}, \kappa^{(k)})]^{-1} \begin{cases} R^{(k)} \\ R^{(k)} \end{cases}$$
 with $\mathbf{J}_p(\sigma^{(k)}, \kappa^{(k)}) = \begin{bmatrix} \frac{\partial R_{\epsilon}}{\partial \sigma} & \frac{\partial R_{\epsilon}}{\partial \kappa} \\ \frac{\partial R_f}{\partial \sigma} & \frac{\partial R_f}{\partial \kappa} \end{bmatrix}$

Loops in the solution procedure 11

Loop on loading (for) 1

Loop on iterations (while residual > tolerance) 2

Assembly of stiffness (Loop on elements) 3

Computation reaction forces

Compute internal forces (loop on elements) 4

Compute stresses at Gauss points (Gaus pt loop) 5

Compute stresses at layers (loop on layers) 6

Return-Mapping at each layer (plasticity) 7

Evaluate new residual — End of iteration loop End of loop on loading

Level of the loop

Structure of a NL FE code 12 Graphical interpretation

Summary 13

- Reduced number of assumptions
- Physically based section model
 - Reinforcement scheme
 - Reinforcement ratio
- 1D constitutive laws vs. experiments
- Extended parametric studies
- Local stresses, section states

Currently planar frames onlyHigh computational cost

Future extensions

- Shear failure (Timoshenko layered beam),
- Stirrups vs. concrete strength,
- Bond slip effect,
- Damage coupled to plasticity,
- 3D extension (material fibers),

Applications – Planar Frame, Dynamics 14 Eurocode 2 vs NBR6118

Roof Beams

18.7

21.7

6.0

Applications – Planar Frame, Dynamics 15 Eurocode 2 vs NBR6118

Applications – Planar Frame, Dynamics 16 Eurocode 2 vs NBR6118

Deformed configurations at t = 2 sec (displacements x 10)

Universidade Federal do Ceará

Applications – Planar Frame, Dynamics 17 Eurocode 2 vs NBR6118

 ∇ Crushed concrete in less than 30% of the section

Plastified steel

Applications – Planar Frame, Dynamics 18 Left column removal, bending moment evolution

Recommended literature 19

B.S. Iribarren, P. Berke, Ph. Bouillard, J. Vantomme, T.J. Massart, Investigation of the influence of design and material parameters in the progressive collapse analysis of RC structures, *Engineering Structures*, Vol. 33, page 2805-2820, 2011.

J.-M. Battini, Corotational beam elements in instability problems, *Ph.D. Thesis*, Royal Institute of Technology, Department of Mechanics, Stockholm, Sweden, 2002.

C.E.M. Oliveira, A.G. Marchis, P.Z. Berke, R.A.M. Silveira, T.J. Massart, Computational analysis of a RC planar frame using corotational multilayered beam FE, correlated to experimental results, In Proceedings of XXXIV CILAMCE, 13 pages, 2013

