Nonlinear Multi-Scale Finite Element Modeling of the Progressive Collapse of Reinforced Concrete Structures

Lecture 7: Multilayered beam

Péter Z. Berke

Visiting Professor
Departamento de Engenharia Metalúrgica e de Materiais Universidade Federal do Ceará, Bloco 729
Scientific Collaborator
Building, Architecture and Town Planning Dept. (BATir)
Université Libre de Bruxelles (ULB), Brussels, Belgium

From material to structural behavior 2

Structure

Constitutive relationship for RC?

$$
-\mathbf{q}_{\text {global }}^{T}=\left\{\begin{array}{llllll}
u_{1} & w_{1} & \theta_{1} & u_{2} & w_{2} & \theta_{2}
\end{array}\right\}
$$

naturally decoupled from rigid rotation

Constitutive relationship for composite section?

$$
\mathbf{q}_{\text {local }}{ }^{T}=\left\{\begin{array}{lll}
\bar{u} & \bar{\theta}_{1} & \bar{\theta}_{2}
\end{array}\right\}
$$

naturally decoupled from rigid rotation
$u_{\text {local }}=\frac{x}{l} \bar{u}$

$$
w_{\text {local }}=x\left(1-\frac{x}{l}\right)^{2} \bar{\theta}_{1}+\frac{x^{2}}{l}\left(\frac{x}{l}-1\right) \bar{\theta}_{2}
$$

$$
\left[\begin{array}{l}
\bar{\varepsilon} \\
\chi
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial u_{\text {local }}}{\partial x} \\
\frac{\partial^{2} w_{\text {local }}}{\partial x^{2}}
\end{array}\right]
$$

Axial strain at a given beam depth (Bernoulli)

$$
\varepsilon(x, z)=\frac{\partial u_{\text {local }}}{\partial x}-\chi z=\frac{\bar{u}}{l}-z\left[\left(6 \frac{x}{l^{2}}-\frac{4}{l}\right) \bar{\theta}_{1}+\left(6 \frac{x}{l^{2}}-\frac{2}{l}\right) \bar{\theta}_{2}\right]
$$

Discretize the composite beam cross-section into layers of finite thickness!

Constitutive relationship for composite section?

Axial strain at a given beam depth (Bernoulli)

$$
\varepsilon(x, z)=\frac{\partial u_{\text {local }}}{\partial x}-\chi z=\frac{\bar{u}}{l}-z\left[\left(6 \frac{x}{l^{2}}-\frac{4}{l}\right) \bar{\theta}_{1}+\left(6 \frac{x}{l^{2}}-\frac{2}{l}\right) \bar{\theta}_{2}\right]
$$

Hyp \#1: Perfect adherence between concrete and steel

$$
\epsilon(x, z)_{\text {steel }}=\epsilon(x, z)
$$

Hyp \#2: Weighted average stress of a layer

$$
\sigma_{i, \text { total }}=\frac{\Omega_{i}-\Omega_{i, \text { steel }}}{\Omega_{i}} \sigma_{i, \text { conc }}+\frac{\Omega_{i, \text { steel }}}{\Omega_{i}} \sigma_{i, \text { steel }}
$$

P.Z. Berke, NL Multi-Scale FE modeling of PC of RC structures

Constitutive relationship for composite section?

Axial strain at a given beam depth (Bernoulli)

$$
\varepsilon(x, z)=\frac{\partial u_{\text {local }}}{\partial x}-\chi z=\frac{\bar{u}}{l}-z\left[\left(6 \frac{x}{l^{2}}-\frac{4}{l}\right) \bar{\theta}_{1}+\left(6 \frac{x}{l^{2}}-\frac{2}{l}\right) \bar{\theta}_{2}\right]
$$

Weighted average stress of a layer

$$
\sigma_{i, \text { total }}=\frac{\Omega_{i}-\Omega_{i, \text { steel }}}{\Omega_{i}} \sigma_{i, \text { conc }}+\frac{\Omega_{i, \text { steel }}}{\Omega_{i}} \sigma_{i, \text { steel }}
$$

Generalized stresses at Gauss points

$$
\begin{aligned}
& N=\int_{a_{\text {cor }}} \sigma d a \longrightarrow N=\sum_{i} \sigma_{i, \text { total }} \Omega_{i} \\
& M=-\int_{a_{\text {com }}} \sigma z d a \longrightarrow M=\sum_{i}-\bar{z}_{i} \sigma_{i, \text { total }} \Omega_{i}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{N}=\int_{v_{c o r}} \frac{\sigma}{l} d v=\int_{l} \frac{N}{l} d l \\
& \bar{M}_{1}=-\int_{v_{c o r}} \sigma z\left(6 \frac{x}{l^{2}}-\frac{4}{l}\right) d v=\int_{l} M\left(6 \frac{x}{l^{2}}-\frac{4}{l}\right) d l \\
& \bar{M}_{2}=-\int_{v_{c o r}} \sigma z\left(6 \frac{x}{l^{2}}-\frac{2}{l}\right) d v=\int_{l} M\left(6 \frac{x}{l^{2}}-\frac{2}{l}\right) d l
\end{aligned}
$$

Constitutive relationship obtained computationally!

Structural stiffness matrix 7

$$
\begin{aligned}
\mathbf{K}_{\text {global }}=\mathbf{T}^{T} \underbrace{}_{\begin{array}{l}
\text { local } \\
\text { contribution of the }
\end{array}} \mathbf{T}+\bar{N} \frac{\mathbf{z z}^{T}}{l_{f}}+\left(\bar{M}_{1}+\bar{M}_{2}\right) \frac{1}{l_{f}^{2}}\left(\mathbf{r z}^{T}+\mathbf{z r}^{T}\right) \\
\begin{array}{ll}
\text { Other terms: contribution of } \\
\text { the change in the geometry }
\end{array} \\
\mathbf{K}_{\text {local }}=\int_{l} \mathbf{B}^{T} \mathbf{H B} d l
\end{aligned}
$$

sectional stiffness

$$
\mathbf{H}=\frac{\partial \boldsymbol{\Sigma}^{\text {gen }}}{\partial \mathbf{E}^{\text {gen }}}=\left[\begin{array}{ccc}
\sum_{i} H_{i} \Omega_{i} & -\sum_{i} & H_{i} \bar{z}_{i} \Omega_{i} \\
-\sum_{i} H_{i} \bar{z}_{i} \Omega_{i} & -\sum_{i} & H_{i} \bar{z}_{i}^{2} \Omega_{i}
\end{array}\right] \quad \text { with }\left\{\begin{array}{l}
N=\sum_{i} \sigma_{i, \text { total }} \Omega_{i} \\
M=\sum_{i}-\bar{z}_{i} \sigma_{i, \text { total }} \Omega_{i}
\end{array} \quad \text { and } \quad \mathbf{E}^{\text {gen }}=\left[\begin{array}{l}
\bar{\varepsilon} \\
\chi
\end{array}\right]\right.
$$

material stiffness of a layer

$$
\begin{aligned}
& H_{i}=\frac{\partial \sigma_{i, \text { total }}}{\partial \varepsilon_{i}} \quad \text { material stiffiness } \\
& H_{i}=\frac{\Omega_{i}-\Omega_{i, \text { steel }}}{\Omega_{i}} L_{i, \text { conc }}+\frac{\Omega_{i, \text { steel }}}{\Omega_{i}} L_{i, \text { steel }}
\end{aligned}
$$

$$
\text { since } \quad \sigma_{i, \text { total }}=\frac{\Omega_{i}-\Omega_{i, \text { steel }}}{\Omega_{i}} \sigma_{i, \text { conc }}+\frac{\Omega_{i, \text { steel }}}{\Omega_{i}} \sigma_{i, \text { steel }}
$$

Return Mapping at layers (1D case)

At each layer of the cross section

$$
\begin{aligned}
& \sigma^{(k)}= \sigma_{c}+\mathrm{E}\left(\Delta \epsilon-\Delta \epsilon_{p}^{(k)}\right) \\
& \sigma_{t r}= \sigma_{c}+\mathrm{E} \Delta \epsilon \text { trial stress - elastic increment assumption } \\
& \text { if } \quad f_{p}\left(\sigma_{t r},{ }^{t} \kappa\right)>0 \\
& \sigma^{(k)}=\sigma_{t r}-\mathrm{E} \Delta \epsilon_{p}^{(k)} \\
& \frac{\sigma^{(k)}-\sigma_{t r}}{\mathrm{E}}+\Delta \epsilon_{p}^{(k)}=0
\end{aligned}
$$

solve using Newton-Raphson

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\sigma^{(k)}-\sigma_{t r}}{\mathrm{E}}+\Delta \epsilon_{p}^{(k)}=0 \\
f\left(\sigma^{(k)}, \kappa^{(k)}\right)=0
\end{array}\right. \\
& \left\{\begin{array}{c}
\sigma^{(k+1)} \\
\kappa^{(k+1)}
\end{array}\right\}=\left\{\begin{array}{c}
\sigma^{(k)} \\
\kappa^{(k)}
\end{array}\right\}-\left[\mathbf{J}_{p}\left(\sigma^{(k)}, \kappa^{(k)}\right)\right]^{-1}\left\{R^{(k)}\right\} \\
& L=\frac{\partial \sigma}{\partial \epsilon} \\
& \text { with } \quad \mathbf{J}_{p}\left(\sigma^{(k)}, \kappa^{(k)}\right)=\left[\begin{array}{cc}
\frac{\partial R_{\epsilon}}{\partial \sigma} & \frac{\partial R_{\epsilon}}{\partial \kappa} \\
\frac{\partial R_{f}}{\partial \sigma} & \frac{\partial R_{f}}{\partial \kappa}
\end{array}\right]
\end{aligned}
$$

P.Z. Berke, NL Multi-Scale FE modeling of PC of RC structures

Multilayered beam - summary 9

Integration point level

P.Z. Berke, NL Multi-Scale FE modeling of PC of RC structures

Solution - Return Mapping (1D case)

At each Gauss point

$$
\begin{aligned}
& \sigma^{(k)}=\sigma_{c}+\mathrm{E}\left(\Delta \epsilon-\Delta \epsilon_{p}^{(k)}\right) \\
& \sigma_{t r}= \sigma_{c}+\mathrm{E} \Delta \epsilon \text { trial stress - elastic increment assumption } \\
& \text { if } \quad f_{p}\left(\sigma_{t r},{ }^{t} \kappa\right)>0 \\
& \sigma^{(k)}=\sigma_{t r}-\mathrm{E} \Delta \epsilon_{p}^{(k)} \\
& \frac{\sigma^{(k)}-\sigma_{t r}}{\mathrm{E}}+\Delta \epsilon_{p}^{(k)}=0
\end{aligned}
$$

solve using Newton-Raphson

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\sigma^{(k)}-\sigma_{t r}}{\mathrm{E}}+\Delta \epsilon_{p}^{(k)}=0 \\
f\left(\sigma^{(k)}, \kappa^{(k)}\right)=0
\end{array}\right. \\
& \begin{aligned}
\left\{\begin{array}{c}
\sigma^{(k+1)} \\
\kappa^{(k+1)}
\end{array}\right\}=\left\{\begin{array}{c}
\sigma^{(k)} \\
\kappa^{(k)}
\end{array}\right\} & -\left[\mathbf{J}_{p}\left(\sigma^{(k)}, \kappa^{(k)}\right)\right]^{-1}\left\{R^{(k)}\right\} \\
& L=\frac{\partial \sigma}{\partial \epsilon}
\end{aligned} \text { with } \mathbf{J}_{p}\left(\sigma^{(k)}, \kappa^{(k)}\right)=\left[\begin{array}{ll}
\frac{\partial R_{\epsilon}}{\partial \sigma} & \frac{\partial R_{\epsilon}}{\partial \kappa} \\
\frac{\partial R_{f}}{\partial \sigma} & \frac{\partial R_{f}}{\partial \kappa}
\end{array}\right]
\end{aligned}
$$

P.Z. Berke, NL Multi-Scale FE modeling of PC of RC structures

Loop on loading (for) 1
Initialise residual
\longrightarrow Loop on iterations (while residual > tolerance) 2
Assembly of stiffness (Loop on elements) 3
Computation reaction forces
Compute internal forces (loop on elements) 4
Compute stresses at Gauss points (Gaus pt loop) 5
Compute stresses at layers (loop on layers) 6 Return-Mapping at each layer (plasticity) 7

Evaluate new residual
$\boxed{E n d}$ of iteration loop
End of loop on loading

Level of the loop

-

layer

Structure of a NL FE code 12
Graphical interpretation

- Reduced number of assumptions
- Physically based section model
- Reinforcement scheme
- Reinforcement ratio
- 1D constitutive laws vs. experiments
- Extended parametric studies
- Local stresses, section states \qquad
- Currently planar frames only
- High computational cost

Future extensions

- Shear failure (Timoshenko layered beam),
- Stirrups vs. concrete strength,
- Bond slip effect,
- Damage coupled to plasticity,
- 3D extension (material fibers),

Applications - Planar Frame, Dynamics 14
Eurocode 2 vs NBR6118

EUROCODE based design

Loads(kN/m)	Dead	Live	Total
Floor Beams	43.2	18.0	52.2
Roof Beams	43.2	6.0	46.2

NBR 6118 based design

Floor Beams	18.7	12.0	24.7
Roof Beams	18.7	6.0	21.7

Applications - Planar Frame, Dynamics
Eurocode 2 vs NBR6118

Concrete quasi-static behavior
Eurocode 2

NBR6118

$2 \phi 12.5$
$2 \phi 12.5$
$2 \phi 12.5$
$2 \phi 12.5$

Applications - Planar Frame, Dynamics

Eurocode 2 vs NBR6118
Deformed configurations at $\mathrm{t}=2 \mathrm{sec}$ (displacements $\times 10$)

P.Z. Berke, NL Multi-Scale FE modeling of PC of RC structures

Applications - Planar Frame, Dynamics

Deformed configurations at $\mathrm{t}=2 \mathrm{sec}$ (displacements $\times 10$)

State of the sections at $\mathrm{t}=2 \mathrm{sec}$

∇ Crushed concrete in less than 30% of the section

- Plastified steel
B.S. Iribarren, P. Berke, Ph. Bouillard, J. Vantomme, T.J. Massart, Investigation of the influence of design and material parameters in the progressive collapse analysis of RC structures, Engineering Structures, Vol. 33, page 2805-2820, 2011.
J.-M. Battini, Corotational beam elements in instability problems, Ph.D. Thesis, Royal Institute of Technology, Department of Mechanics, Stockholm, Sweden, 2002.
C.E.M. Oliveira, A.G. Marchis, P.Z. Berke, R.A.M. Silveira, T.J. Massart, Computational analysis of a RC planar frame using corotational multilayered beam FE, correlated to experimental results, In Proceedings of XXXIV CILAMCE, 13 pages, 2013

