

Geometrically nonlinear finite element modelling of linear elastic truss

structrures

Péter Z. Berke

1.5. Geometrically nonlinear bar finite element

Inspired and adapted from the 'Nonlinear Modeling of Structures' course of Prof. Thierry J. Massart at the ULB

Derivation of F_{int} and K_{el}

Lab: Complete missing element relationships Analyse the 'V' shaped structure

Problem statement

ULB

Determine the displacements of structures at equilibrium

Large displacements and small deformations, linear elastic material

Nonlinear response?

BAT

Linear elastic computation

Stadium of Geneva

N N

Kinematics of the bar

$$\vec{r}^{T} = \{x, y\}$$
 $\vec{u}^{T} = \{u, v\}$
 $\vec{r_{n}} = \vec{r_{0}} + \vec{u}$

 $\mathbf{x}^T = \{x_1, x_2, y_1, y_2\}$ nodal coordinates $\mathbf{u}^T = \{u_1, u_2, v_1, v_2\}$ nodal displacements

Order of dof!

Defining $\mathbf{x}_{21}^T = \{(x_2 - x_1), (y_2 - y_1)\}$ $\mathbf{u}_{21}^T = \{(u_2 - u_1), (v_2 - v_1)\}$

Initial and current length of the bar $l_0^2 = 4 \ \alpha_0^2 = \mathbf{x}_{21}^T \ \mathbf{x}_{21}$

$$l_n^2 = 4 \ \alpha_n^2 = (\mathbf{x}_{21} + \mathbf{u}_{21})^T \ (\mathbf{x}_{21} + \mathbf{u}_{21})$$

M. A. **Crisfield**, Non-linear Finite Element Analysis of Solids and Structures VOLUME 1: ESSENTIALS. John Wiley & Sons Ltd. Bafins Lane, Chichester West Sussex PO19 IUD, England, 1991, p65-70

ULB

OPE

É D'EUR

UNIVERS

DE BRUXELLES

BR

UNIVERSITÉ

Green strain measure

'Green' strain definition

$$\epsilon_G = \frac{l_n - l_0}{l_0} = \frac{(l_n - l_0)(l_n + l_0)}{l_0 \ (l_n + l_0)} = \frac{l_n^2 - l_0^2}{l_0^2 \ (2 + \epsilon_G)} \text{ with } \epsilon_G \text{ small}$$

$$\epsilon_G = \frac{l_n^2 - l_0^2}{2l_0^2} = \frac{(\mathbf{x}_{21} + \mathbf{u}_{21})^T (\mathbf{x}_{21} + \mathbf{u}_{21}) - \mathbf{x}_{21}^T \mathbf{x}_{21}}{2 \mathbf{x}_{21}^T \mathbf{x}_{21}}$$

because
$$\begin{cases} l_0^2 = 4 \ \alpha_0^2 = \mathbf{x}_{21}^T \ \mathbf{x}_{21} \\ l_n^2 = 4 \ \alpha_n^2 = (\mathbf{x}_{21} + \mathbf{u}_{21})^T \ (\mathbf{x}_{21} + \mathbf{u}_{21}) \\ \text{with} \\ \mathbf{x}_{21}^T = \{(x_2 - x_1), \ (y_2 - y_1)\} \\ \mathbf{u}_{21}^T = \{(u_2 - u_1), \ (v_2 - v_1)\} \end{cases}$$

Link between $\delta\epsilon$ - δu and σ - ϵ

$$\begin{aligned} \epsilon_{G} &= \frac{l_{n}^{2} - l_{0}^{2}}{2l_{0}^{2}} = \frac{(\mathbf{x}_{21} + \mathbf{u}_{21})^{T} (\mathbf{x}_{21} + \mathbf{u}_{21}) - \mathbf{x}_{21}^{T} \mathbf{x}_{21}}{2 \mathbf{x}_{21}^{T} \mathbf{x}_{21}} \\ \mathbf{b}_{1}^{T} &= \frac{1}{4\alpha_{0}^{2}} \{-x_{21}, x_{21}, -y_{21}, y_{21}\} \\ \mathbf{b}_{2}(\mathbf{u})^{T} &= \frac{1}{4\alpha_{0}^{2}} \{-u_{21}, u_{21}, -v_{21}, v_{21}\} \end{aligned} \quad \text{with} \begin{cases} x_{21} = x_{2} - x_{1} \\ y_{21} = y_{2} - y_{1} \\ \dots \end{cases} \end{aligned}$$

Link between the variation of displacements and the variation of strain

$$\delta \epsilon_G = \frac{\partial \epsilon_G}{\partial \mathbf{u}} \delta \mathbf{u} = (\mathbf{b}_1 + \mathbf{b}_2(\mathbf{u}))^T \delta \mathbf{u} = \mathbf{b}^T \delta \mathbf{u}$$

Link between stress and strain

$$\sigma_G = \epsilon_G \; E \quad$$
 since linear elastic material

4

0

RS

UNIVE

E S

RUXE

0

BR

VERSITÉ

Expression of the internal force vector

Virtual work theorem $\,\delta {f u}_v\,$ is the virtual displacement vector

$$\sum_{e} \delta \mathbf{u}_{v}^{T} \mathbf{f}_{int} = \sum_{e} \int \sigma_{G} \delta \epsilon_{v} dV_{0} = \sum_{e} \delta \mathbf{u}_{v}^{T} \int \sigma_{G} \mathbf{b} dV_{0}$$

because

$$\delta \epsilon_G = \frac{\partial \epsilon_G}{\partial \mathbf{u}} \delta \mathbf{u} = (\mathbf{b}_1 + \mathbf{b}_2(\mathbf{u}))^T \delta \mathbf{u} = \mathbf{b}^T \delta \mathbf{u}$$

$$\sigma_G = \epsilon_G \ E$$

Expression of the internal forces

$$\mathbf{f}_{int} = \int \sigma_G \mathbf{b} \ dV_0 = 2\alpha_0 A_0 \sigma_G \mathbf{b}$$

element cross-section

Derivation of the stiffness matrix (I/II)

Internal force vector

$$\mathbf{f}_{int} = \int \sigma_G \mathbf{b} \, dV_0 = 2\alpha_0 \, A_0 \mathbf{b} \, \sigma_G$$

Stiffness matrix of a bar

Contribution of the stress change in a bar

$$\frac{\partial \sigma_G}{\partial \mathbf{u}} = E \frac{\partial \epsilon_G}{\partial \mathbf{u}} = E \mathbf{b}(\mathbf{u})^T$$

$$\mathbf{K}_t^s = 2\alpha_0 \ A_0 \ \mathbf{b} \frac{\partial \sigma_G}{\partial \mathbf{u}} = 2\alpha_0 \ A_0 \ E \ \mathbf{b} \mathbf{b}^T$$

ULB

Derivation of the stiffness matrix (II/II)

Contribution of the change in the geometry

$$\frac{\partial \mathbf{b}}{\partial \mathbf{u}} = \frac{\partial \mathbf{b}_2}{\partial \mathbf{u}} = \frac{1}{4\alpha_0^2} \mathbf{S} \qquad \mathbf{b}_2(\mathbf{u})^T = \frac{1}{4\alpha_0^2} (-u_{21}, u_{21}, -v_{21}, v_{21})$$
$$\mathbf{S} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \end{bmatrix}$$

$$\mathbf{K}_{t}^{g} = 2\alpha_{0} A_{0} \frac{\partial \mathbf{b}}{\partial \mathbf{u}} \sigma_{G} = \frac{A_{0} \sigma_{G}}{2\alpha_{0}} S$$

Expression of the stiffness matrix of a bar

$$\mathbf{K}_t = 2\alpha_0 \ A_0 \ E \ \mathbf{b}\mathbf{b}^T + \frac{A_0 \boldsymbol{\sigma}_G}{2\boldsymbol{\alpha}_0} S$$

ULB

ERS

VIV

XE

→Incremental loop (for)

Initialize the residual

→Iteration loop (while residual > tolerance)

Assembly of the tangent stiffness

Elimination of the prescribed and dependent dof

Solve the system

Substitute prescribed and dependent dof

Compute internal forces

Compute new residual

End of iteration loop

Save converged displacements

- End of incremental loop

R S

N I V

ULB

NL structural response

3

BATIr¹²