Geometrically nonlinear finite element modelling of linear elastic truss structrures
 Péter Z. Berke

1.5. Geometrically nonlinear bar finite element of Prof. Thierry J. Massart at the ULB

Outline

Derivation of $\mathrm{F}_{\text {int }}$ and K_{el}

Lab: Complete missing element relationships Analyse the ' V ' shaped structure

Problem statement

Determine the displacements of structures at equilibrium

Large displacements and small deformations, linear elastic material

Stadium of Geneva

Nonlinear response?

Linear elastic computation

Stadium of Geneva

Kinematics of the bar

Initial and current length of the bar

$$
\begin{aligned}
& l_{0}^{2}=4 \alpha_{0}^{2}=\mathbf{x}_{21}^{T} \mathbf{x}_{21} \\
& l_{n}^{2}=4 \alpha_{n}^{2}=\left(\mathbf{x}_{21}+\mathbf{u}_{21}\right)^{T}\left(\mathbf{x}_{21}+\mathbf{u}_{21}\right)
\end{aligned}
$$

Green strain measure

'Green' strain definition

$$
\epsilon_{G}=\frac{l_{n}-l_{0}}{l_{0}}=\frac{\left(l_{n}-l_{0}\right)\left(l_{n}+l_{0}\right)}{l_{0}\left(l_{n}+l_{0}\right)}=\frac{l_{n}^{2}-l_{0}^{2}}{l_{0}^{2}\left(2+\epsilon_{G}\right)} \text { with } \epsilon_{G} \text { small }
$$

$$
\epsilon_{G}=\frac{l_{n}^{2}-l_{0}^{2}}{2 l_{0}^{2}}=\frac{\left(\mathbf{x}_{21}+\mathbf{u}_{21}\right)^{T}\left(\mathbf{x}_{21}+\mathbf{u}_{21}\right)-\mathbf{x}_{21}^{T} \mathbf{x}_{21}}{2 \mathbf{x}_{21}^{T} \mathbf{x}_{21}}
$$

$$
\begin{gathered}
\text { because }\left\{\begin{array}{l}
l_{0}^{2}=4 \alpha_{0}^{2}=\mathbf{x}_{21}^{T} \mathbf{x}_{21} \\
l_{n}^{2}=4 \alpha_{n}^{2}=\left(\mathbf{x}_{21}+\mathbf{u}_{21}\right)^{T}\left(\mathbf{x}_{21}+\mathbf{u}_{21}\right)
\end{array}\right. \\
\text { with } \\
\mathbf{x}_{21}^{T}=\left\{\left(x_{2}-x_{1}\right),\left(y_{2}-y_{1}\right)\right\} \\
\mathbf{u}_{21}^{T}=\left\{\left(u_{2}-u_{1}\right),\left(v_{2}-v_{1}\right)\right\}
\end{gathered}
$$

Link between $\delta \varepsilon-\delta u$ and $\sigma-\varepsilon$

$$
\begin{aligned}
& \epsilon_{G}=\frac{l_{n}^{2}-l_{0}^{2}}{2 l_{0}^{2}}=\frac{\left(\mathbf{x}_{21}+\mathbf{u}_{21}\right)^{T}\left(\mathbf{x}_{21}+\mathbf{u}_{21}\right)-\mathbf{x}_{21}^{T} \mathbf{x}_{21}}{2 \mathbf{x}_{21}^{T} \mathbf{x}_{21}} \\
& \mathbf{b}_{1}^{T}=\frac{1}{4 \alpha_{0}^{2}}\left\{-x_{21}, x_{21},-y_{21}, y_{21}\right\} \\
& \mathbf{b}_{2}(\mathbf{u})^{T}=\frac{1}{4 \alpha_{0}^{2}}\left\{-u_{21}, u_{21},-v_{21}, v_{21}\right\}
\end{aligned} \quad \text { with } \quad\left\{\begin{array}{l}
x_{21}=x_{2}-x_{1} \\
y_{21}=y_{2}-y_{1} \\
\cdots
\end{array}\right.
$$

Link between the variation of displacements and the variation of strain

$$
\delta \epsilon_{G}=\frac{\partial \epsilon_{G}}{\partial \mathbf{u}} \delta \mathbf{u}=\left(\mathbf{b}_{1}+\mathbf{b}_{2}(\mathbf{u})\right)^{T} \delta \mathbf{u}=\mathbf{b}^{T} \delta \mathbf{u}
$$

Link between stress and strain

$$
\sigma_{G}=\epsilon_{G} E \quad \text { since linear elastic material }
$$

Expression of the internal force vector

Virtual work theorem $\delta \mathbf{u}_{v}$ is the virtual displacement vector

$$
\sum_{e} \delta \mathbf{u}_{v}^{T} \mathbf{f}_{i n t}=\sum_{e} \int \sigma_{G} \delta \epsilon_{v} d V_{0}=\sum_{e} \delta \mathbf{u}_{v}^{T} \int \sigma_{G} \mathbf{b} d V_{0}
$$

because

$$
\begin{aligned}
\delta \epsilon_{G} & =\frac{\partial \epsilon_{G}}{\partial \mathbf{u}} \delta \mathbf{u}=\left(\mathbf{b}_{1}+\mathbf{b}_{2}(\mathbf{u})\right)^{T} \delta \mathbf{u}=\mathbf{b}^{T} \delta \mathbf{u} \\
\sigma_{G} & =\epsilon_{G} E
\end{aligned}
$$

Expression of the internal forces

$$
\mathbf{f}_{i n t}=\int \sigma_{G} \mathbf{b} d V_{0}=2 \alpha_{0} \overbrace{\text { element cross-section }}^{A_{0}} \sigma_{G} \mathbf{b}
$$

Derivation of the stiffness matrix (I/II)

Internal force vector

$$
\mathbf{f}_{i n t}=\int \sigma_{G} \mathbf{b} d V_{0}=2 \alpha_{0} A_{0} \mathbf{b} \sigma_{G}
$$

Stiffness matrix of a bar

Contribution of the stress change in a bar

$$
\begin{aligned}
& \frac{\partial \sigma_{G}}{\partial \mathbf{u}}=E \frac{\partial \epsilon_{G}}{\partial \mathbf{u}}=E \mathbf{b}(\mathbf{u})^{T} \\
& \mathbf{K}_{t}^{s}=2 \alpha_{0} A_{0} \mathbf{b} \frac{\partial \sigma_{G}}{\partial \mathbf{u}}=2 \alpha_{0} A_{0} E \mathbf{b} \mathbf{b}^{T}
\end{aligned}
$$

Derivation of the stiffness matrix (II/II)

Contribution of the change in the geometry

$$
\begin{aligned}
& \frac{\partial \mathbf{b}}{\partial \mathbf{u}}=\frac{\partial \mathbf{b}_{2}}{\partial \mathbf{u}}=\frac{1}{4 \alpha_{0}^{2}} \mathbf{S} \quad \mathbf{b}_{\mathbf{2}}(\mathbf{u})^{T}=\frac{1}{4 \alpha_{0}^{2}}\left(-u_{21}, u_{21},-v_{21}, v_{21}\right) \\
& \mathbf{S}=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{array}\right] \\
& \mathbf{K}_{t}^{g}=2 \alpha_{0} A_{0} \frac{\partial \mathbf{b}}{\partial \mathbf{u}} \sigma_{G}=\frac{A_{0} \sigma_{G}}{2 \alpha_{0}} S
\end{aligned}
$$

Expression of the stiffness matrix of a bar

$$
\mathbf{K}_{t}=2 \alpha_{0} A_{0} E \mathbf{b b}^{T}+\frac{A_{0} \sigma_{G}}{2 \alpha_{0}} S
$$

Use of the element in the NL code

\rightarrow Incremental loop (for)

Initialize the residual

\rightarrow Iteration loop (while residual > tolerance)
Assembly of the tangent stiffness
Elimination of the prescribed and dependent dof
Solve the system
Substitute prescribed and dependent dof
Compute internal forces
Compute new residual
L End of iteration loop
Save converged displacements
End of incremental loop

NL structural response

