

Geometrically nonlinear finite element modelling of linear elastic truss

structrures

Péter Z. Berke

1.6. Summary

Inspired and adapted from the 'Nonlinear Modeling of Structures' course of Prof. Thierry J. Massart at the ULB

Sources of nonlinearities Geometrical nonlinearities - Strain and stress measures in FD Material nonlinearities Solution procedures

- Newton-Raphson procedure

Advanced subjects

Case studies

ш

BATIr ³

Translational equilibrium	$\sigma_{ij,j} + f_i = 0$
Rotational equilibrium	$\sigma_{[ij]} = 0$
Displacement boundary conditions	$u_i = \overline{u}_i$ sur S_u
Surface equilibrium	$\overline{T}_i^{(n)} = \sigma_{ij} n_j \text{ sur } S_T$
Strain-displacement relationship	$defo_{ij} = f_{NL}\left(u_{i,j}\right)$
Constitutive equations	$\sigma_{ij} = g_{NL}$ (defo)

RS

UNIVE

S

ш

BRUXE

0

R

8

UNIVERS

Geometrical nonlinearities

Cause of a non proportionnality between applied forces and Resulting displacements

Sources

Geo NL - Strain measures

Different tensors can be defined

- Biot strain
- Logarithmic strain
- Euler strain tensor

$$\mathbf{E}^B = \mathbf{U} - \mathbf{I}$$

$$\mathbf{E}^N = \ln \mathbf{U}$$

$$\mathbf{E}^{E} = \frac{1}{2} \left(\mathbf{I} - \mathbf{U}^{-2} \right)$$
$$\mathbf{E}^{G} = \frac{1}{2} \left(\mathbf{U}^{2} - \mathbf{I} \right) = \frac{1}{2} \left(\mathbf{F}^{T} \mathbf{F} - \mathbf{I} \right)$$

The infinitesimal strain tensor is NOT objective!

ULB

D'EU

UNIVERSI

RUXELLES

0

BR

SITÉ

Geo NL - Principle of virtual work

 $\delta W_{int} = \delta W_{ext}$

with

$$\delta W_{int} = \int_{vol} (\text{stress}) : \delta(\text{conjugate strain})d(vol)$$

 $\delta W_{ext} = \int_V \vec{f} \cdot \delta \vec{u} dV + \int_S \vec{p} \cdot \delta \vec{u} dS$

Conjugate quantities

By definition, two stress and strain quantities are conjugate if their internal product integrated on the proper configuration gives the correct internal work

Solution procedures

ULB

Why working with increments ?

The behaviour of materials may depend on the path followed The radius of convergence of iterative procedures (NR) is limited

 \Rightarrow Apply loads with discrete, successive steps

 \Rightarrow The structural response is evaluated at discrete points

ВАТ

UROP

R S

UNIVE

S

ш

ш

RUX

0

R

S

UNIVER

ROP

Case study #1

ш Q VLI F -S R NIVE S ш -ЕL N X R 8 ш D ш R 8 -_ **L** -S R ш > z

Metrodome, Minneapolis, USA December 2010

[http://www.themegaworldnews.com/wpcontent/uploads/2010/12/dome_pic2.jpg]

[http://cdn.bleacherreport.net/images_root/images/photos/001/087/ 887/metrodome-269x198_crop_340x234.jpg?1292257653]

Seattle, 24th May 2013

Washington bridge

http://www.foxnews.com/us/2013/05/24/highway-bridge-collapses-in-washington-state-people-in-water/

UROPE

D - E

SITÉ

R

NIVE

ES, U

XELL

ΡE

Case study #3

Sheet metal forming - Elastic springback?

ULB

BATIr¹³

[http://baetlanguedoc.blog50.com/archive/2009/01/30/nouvelle-generation-de-pneus.html]

Case study #6

Complexities, necessary physical ingredients?

http://www.eef.org.uk/NR/rdonlyres/CABEE2C5-271E-419B-876A-6E8ED573A15F/12685/hot4.jpg

ULB

Case study #7

[http://cache2.allpostersimages.com/p/LRG/26/2634/EPCMD00Z/p oster/cork-flying-out-of-champagne-bottle.jpg]

BATIIr¹⁷

PE

0

U R

D'E

NIVERSITÉ

.

S

BRUXELLE

DE

RE

LIB

L

NIVERSIT

Case study #7

Fig. 15. The configurations of the cork at several time instants (0.0, 0.8, 1.0, 1.5, 2.0, 2.6, 2.7 and 3.0 msec).

