

Introduction to nonlinear finite element modeling Péter Z. Berke

1.2. Reminder of 'Prerequisites'

Inspired and adapted from the 'Nonlinear Modeling of Structures' course of Prof. Thierry J. Massart at the ULB

Universal laws

```
Need for constitutive equations
Elasticity - Hooke's law
FEM
```

```
Newton-Raphson iterative solution
```


Mass conservation

 \rightarrow The mass included in the material volume should be invariant

$$M^{\cdot} = \left[\int_{V} \rho dV \right]^{\cdot} = 0 \qquad \text{or} \qquad \partial_{0}\rho + \partial_{i} \left(\rho v_{i} \right) = 0$$

Linear momentum conservation

$$\int_{V} \rho v_{i}^{\cdot} dV = \int_{V} f_{i} dV + \oint_{S} T_{i}^{(n)} dS \quad \text{or} \quad \sigma_{ij,j} + f_{i} = \rho v_{i}^{\cdot}$$

Conservation of moment of linear momentum

$$\int_{V} \rho \delta_{ijk} x_j v_k^{\cdot} dV = \int_{V} \delta_{ijk} x_j f_k dV + \oint_{S} \delta_{ijk} x_j T_k^{(n)} dS \quad \text{or} \quad \sigma_{[ij]} = 0$$

These law are valid whatever the material behavior

Denumbering the number of unknowns and universal laws

 \rightarrow General case (dynamics, 3D) but without thermal exchanges, ...

Equations	How much	Unknowns	Number of unkowns
$\frac{\text{Continuity}}{\partial_0 \rho + \partial_i \left(\rho v_i\right)}$	1 = 0	$ ho, v_i$	4
Linear momentum $\sigma_{ii} = \rho_i$	1 3	σ_{ij}	9
Moment of lin. Mo $\sigma_{ij,j} + f_i = \rho v$	<i>i</i> m. 3 <i>j</i>	—	3
	7		13

 \rightarrow So there's a need to postulate 6 equations specific to the material

 $\sigma_{ij} = f\left(\text{defo}_{kl}\right)$

Linear elastic behaviour

- \rightarrow Use of infinitesimal strains (small displacements and strains)
- \rightarrow There exists a neutral state

 σ_{ij} Must be a linear homogeneous function of ε_{kl} $\sigma_{ij} = H_{ijkl}\varepsilon_{kl} \longrightarrow$ 81 material parameters !

 \rightarrow Symmetry of σ_{ij} and ε_{kl}

 $H_{ijkl} = H_{(ij)(kl)} \longrightarrow 36 \text{ material parameters!}$

ightarrow In case of isotropy, only 2 material constants enter H_{ijkl}

Strong form of the equilibrium problem Weak form of the equilibrium problem Matrix notation Discretised form of the equilibrium problem Isoparametric formulations and numerical integration

RSI

UNIVE

RUXE

0

I B R

SIT

NIVER

Equations to be solved

Volume translational equilibrium $\sigma_{ij,j} + f_i = 0$

Rotational equilibrium $\sigma_{[ij]} = 0$

Displacement boundary conditions $u_i = \overline{u}_i$ sur S_u

Surface equilibrium

Constitutive equations

 $\overline{T}_i^{(n)} = \sigma_{ij} n_j \text{ sur } S_T$

Strain-displacement relationship

 $defo_{ij} = f_{NL}\left(u_{i,j}\right)$

 $\sigma_{ij} = g_{NL}$ (defo)

Equilibrium problem - weak form

Equation to be satisfied under weak form

Find the displacement field u_i verifying

$$\sigma_{ij,j} + f_i = 0$$

$$\sigma_{[ij]} = 0$$
 'in a weak sense'

$$\overline{T}_i^{(n)} = \sigma_{ij}n_j \text{ sur } S_T$$

$$\begin{split} u_i &= \overline{u}_i \text{ sur } S_u \\ \text{defo}_{ij} &= f_{NL} \left(u_{i,j} \right) & \text{`in a strong sense'} \\ \sigma_{ij} &= g_{NL} \left(\text{defo} \right) \end{split}$$

→ There's a choice to be made to satisfy part of the set of equations in a strong sense (another choice could be made)

Weak form of equilibrium

Among all the displacement fields u_i satisfying $u_i = \overline{u}_i$ on S_u find the one which satisfies

$$\int_{V} w_i \left(\sigma_{ij,j} + f_i \right) dV + \int_{V} w_{[i,j]} \sigma_{ij} dV + \int_{S_t} w_i \left(\overline{T}_i^{(n)} - \sigma_{ij} n_j \right) dS = 0$$

 $\forall w_i \text{ such that } w_i = 0 \quad \text{on } S_u$

This choice of w_i drops the (unknown) reactions as $\int_{S_u} w_i \sigma_i j n_j dS = 0$

Integrating the first term by parts

$$\int_{V} \sigma_{ij} w_{(i,j)} dV = \int_{V} w_{i} f_{i} dV + \int_{S_{t}} w_{i} \overline{T}_{i}^{(n)} dS$$
$$\forall w_{i} \text{ Such that } w_{i} = 0 \text{ on } S_{u}$$
with $u_{i} = \overline{u}_{i}$ on S_{u}

ULB

UNIVERS

ES

ш

NX

SIT

NIVER

Equilibrium problem - weak form

Weak form - energetic interpretation

Among the displacement fields u_i satisfying $u_i = \overline{u}_i$ on S_u Find the one that satisfies

$$\underbrace{\int_{V} \sigma_{ij} w_{(i,j)} dV}_{W_{int}} = \underbrace{\int_{V} w_{i} f_{i} dV + \int_{S_{t}} w_{i} \overline{T}_{i}^{(n)} dS}_{W_{ext}}$$

 $\forall w_i$ Virtual displacement such that $w_i = 0$ on S_u

Remarks

The solutions of the weak and strong forms are identical For a (large) number of problems, the weak form can be reformulated as a minimisation problem (including for some non linear problems!)

Matrix notation

Matrices[X]Matrix with 2 dimensions $\{X\}$ Column matrix $\langle X \rangle = \{X\}^t$ Line matrix

Stresses, strains, ...

$$\begin{array}{l} \langle \sigma \rangle = \left\langle \begin{array}{ccc} \sigma_{x} & \sigma_{y} & \sigma_{z} & \sigma_{xy} & \sigma_{xz} & \sigma_{yz} \end{array} \right\rangle \\ \langle \varepsilon \rangle = \left\langle \begin{array}{ccc} \varepsilon_{x} & \varepsilon_{y} & \varepsilon_{z} & \varepsilon_{xy} & \varepsilon_{xz} & \varepsilon_{yz} \end{array} \right\rangle \\ \langle u \rangle = \left\langle \begin{array}{ccc} u_{x} & u_{y} & u_{z} \end{array} \right\rangle \\ \langle f \rangle = \left\langle \begin{array}{ccc} f_{x} & f_{y} & f_{z} \end{array} \right\rangle \end{array} \right\rangle \left\langle \overline{T}^{(n)} \right\rangle = \left\langle \begin{array}{ccc} \overline{T}_{x} & \overline{T}_{y} & \overline{T}_{z} \end{array} \right\rangle$$

Internal and external works

$$\int_{V} \sigma_{ij} \varepsilon_{ij} dV = \int_{V} \langle \varepsilon \rangle \{\sigma\} dV = \int_{V} \langle \sigma \rangle \{\varepsilon\} dV$$
$$\int_{V} w_{i} f_{i} dV = \int_{V} \langle w \rangle \{f\} dV = \dots$$

Approximation of the weak form

One should test ALL fields u_i satisfying $u_i = \overline{u}_i$ on S_u w_i $w_i = 0$ on S_u

We choose to test only some subspaces described by discrete unknow values of the method u_i and w_i at certain nodes and interpolation functions $N_i(x)$ with a limited support

This choice introduces an approximation!

$$u^{h}(x) = \sum_{i} N^{(i)}(x)u^{(i)} \qquad \left\{ u^{h}(x) \right\} = [N(x)] \{q\}$$
$$w^{h}(x) = \sum_{i} N^{(i)}(x)w^{(i)} \qquad \left\{ w^{h}(x) \right\} = [N(x)] \{d\}$$

Strain-displacement relationship in strong form

$$\left\{\varepsilon^{h}\left(u^{h}\right)\right\} = [D]\left[N\left(x\right)\right]\left\{q\right\} = [B\left(x\right)]\left\{q\right\}$$
$$\left\{\varepsilon^{h}\left(w^{h}\right)\right\} = [D]\left[N\left(x\right)\right]\left\{d\right\} = [B\left(x\right)]\left\{d\right\}$$

ULR

Discretisation of the weak form

Among all the displacement fields u^h such that $u^h = \overline{u}$ on S_u Find the one that satisfies

 $\int_{V} \left\langle \varepsilon^{h} \left(w^{h} \right) \right\rangle \left\{ \sigma^{h} \left(u^{h} \right) \right\} dV = \int_{V} \left\langle w^{h} \right\rangle \left\{ f \right\} dV + \int_{S_{t}} \left\langle w^{h} \right\rangle \left\{ \overline{T} \right\} dS$ $\forall w^{h} \text{ virtual such that } w^{h} = 0 \text{ on } S_{u}$

Substituting the discrete fields, and imposing equality $\forall \{d\}$

$$\underbrace{\int_{V} [B]^{t} \left\{ \sigma^{h} \left(u^{h} \right) \right\} dV}_{\{f_{int}\}} \underbrace{= \int_{V} [N]^{t} \left\{ f \right\} dV + \int_{S_{t}} [N]^{t} \left\{ \overline{T} \right\} dS}_{\{f_{ext}\}}$$

Remarks

- This is a general format that does depend on the material law
- Computing $\left\{\sigma^{h}\left(u^{h}
 ight)
 ight\}$ as a fonction of $\left\{q
 ight\}$ requires such a law

Linear elastic case

Introduction of Hooke's law (in a strong sense !)

$$\left\{\sigma^{h}\left(u^{h}\right)\right\} = [H]\left\{\varepsilon^{h}\left(u^{h}\right)\right\} = [H][B]\left\{q\right\}$$

Expression of the internal forces explicitly in terms of $\{q\}$

$$\int_{V} [B]^{t} \left\{ \sigma^{h} \left(u^{h} \right) \right\} dV = \underbrace{\left[\int_{V} [B]^{t} [H] [B] dV \right]}_{[K]} \{q\}$$

Discretised equilibrium equations $[K] \{q\} = \{f_{ext}\}$

For other material laws

More complex relationship between $\left\{\sigma^{h}\left(u^{h}
ight)
ight\}$ and $\left\{q
ight\}$

Relationship to be satisfied in a strong sense

Such a relation can potentially be different at different points in an element

ROP

D'EU

S I

IVER

N N

BRUXELLES

0

BR

L

Newton-Raphson

Principle

Find a new approximation based on an initial value and the slope of the function at this point

Newton-Raphson

Iterative scheme

Re-write F(x) = 0 under the form x = f(x)

Construct a series of successive approximations $x^{(1)} = f(x^{(0)})$

 $x^{(k)} = f(x^{(k-1)})$ $x^{(k)} = f(x^{(k-1)})$

Newton-Raphson approximation

$$x^{(1)} = x^{(0)} - \frac{F(x^{(0)})}{F'(x^{(0)})}$$

$$x^{(k+1)} = x^{(k)} - \frac{F(x^{(k)})}{F'(x^{(k)})}$$

Requires the knowledge of the function derivative Quadratic local convergence, <u>if the derivative is right</u> This last point is CRUCIAL for a proper convergence!

Interpretation from a series development

Assume a first approximation is available $x^{(k)}$

Express the value of the function as a first order development

 $F(x^{(k+1)}) = F(x^{(k)}) + F'(x^{(k)})(x^{(k+1)} - x^{(k)}) + \frac{F''(x^{(k)})}{2!}(x^{(k+1)} - x^{(k)})^2 + \dots$ If this new value has to vanish (to find the root) $F(x^{(k+1)}) = 0$

Using the first order development, a new approximation is

$$F(x^{(k)}) + F'(x^{(k)})(x^{(k+1)} - x^{(k)}) \approx C$$
$$x^{(k+1)} = x^{(k)} - \frac{F(x^{(k)})}{F'(x^{(k)})}$$

Potential shortcomings

Vanishing derivatives

Deadlocks between particular points

Systems of NL equations

For the system of equations

 $F_1(x_1, ..., x_n) = 0$ $F_n(x_1, ..., x_n) = 0$

The iterative scheme becomes

Initial approximation $\{x^{(0)}\} = \{x_1^{(0)}, ..., x_n^{(0)}\}^T$

A new approximation is found by solving

$$\begin{bmatrix} J_F\left(\left\{x^{(k)}\right\}\right) \end{bmatrix} \left(\left\{x^{(k+1)}\right\} - \left\{x^{(k)}\right\}\right) = -\left\{F\left(\left\{x^{(k)}\right\}\right)\right\}$$

